[3]
Barnes, P.J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin. Chest Med., 2014, 35(1), 71-86.
[4]
Postma, D.S.; Rabe, K.F. The Asthma-COPD Overlap Syndrome. N. Engl. J. Med., 2015, 373(13), 1241-1249.
[5]
Fame, C.; Pauli, H.; Scherrer, M. [Various considerations on the classification into A and B types (“Pink puffers” and “Blue bloaters”) of chronic bronchial obstruction syndrome]. Rev. Med. Suisse Romande, 1970, 90(3), 203-218. [Article in French].
[6]
Agusti, A.G. COPD, a multicomponent disease: Implications for management. Respir. Med., 2005, 99(6), 670-682.
[7]
Rogliani, P.; Ora, J.; Puxeddu, E.; Cazzola, M. Airflow obstruction: is it asthma or is it COPD? Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 3007-3013.
[8]
Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; Stockley, R.A.; Sin, D.D.; Rodriguez-Roisin, R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2013, 187(4), 347-365.
[9]
Postma, D.S.; Bush, A.; van den Berge, M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet, 2015, 385(9971), 899-909.
[10]
Schamberger, A.C.; Mise, N.; Meiners, S.; Eickelberg, O. Epigenetic mechanisms in COPD: Implications for pathogenesis and drug discovery. Expert Opin. Drug Discov., 2014, 9(6), 609-628.
[11]
Castaldi, P.J.; Cho, M.H.; San José Estépar, R.; McDonald, M.L.; Laird, N.; Beaty, T.H.; Washko, G.; Crapo, J.D.; Silverman, E.K. Genome-wide association identifies regulatory loci associated with distinct local histogram emphysema patterns. Am. J. Respir. Crit. Care Med., 2014, 190(4), 399-409.
[12]
Lococo, F.; Cesario, A.; Petracca-Ciavarella, L.; Granone, P.; Russo, P. Role of CHRNA5-A3 genetic Locus variants and developing drug for chronic obstructive pulmonary disease. Curr. Med. Chem., 2012, 19(34), 5863-5870.
[13]
Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2010, 182(5), 693-718.
[14]
Benowitz, N.L. Nicotine addiction. N. Engl. J. Med., 2010, 362(24), 2295-2303.
[15]
Russo, P.; Nastrucci, C.; Alzetta, G.; Szalai, C. Tobacco habit: Historical, cultural, neurobiological, and genetic features of people’s relationship with an addictive drug. Perspect. Biol. Med., 2011, 54(4), 557-577.
[16]
Cardinale, A.; Nastrucci, C.; Cesario, A.; Russo, P. Nicotine: Specific role in angiogenesis, proliferation and apoptosis. Crit. Rev. Toxicol., 2012, 42(1), 68-89.
[17]
Salvi, S.S.; Barnes, P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet, 2009, 374(9691), 733-743.
[18]
van Koeverden, I.; Blanc, P.D.; Bowler, R.P.; Arjomandi, M. Secondhand Tobacco Smoke and COPD Risk in Smokers: A COPDGene Study Cohort Subgroup Analysis. COPD, 2015, 12(2), 182-189.
[19]
Kim, W.J.; Lee, S.D. Candidate genes for COPD: Current evidence and research. Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 2249-2255.
[20]
Lococo, F.; Cesario, A.; Del Bufalo, A.; Ciarrocchi, A.; Prinzi, G.; Mina, M.; Bonassi, S.; Russo, P. Novel therapeutic strategy in the management of COPD: A systems medicine approach. Curr. Med. Chem., 2015, 22(32), 3655-3675.
[21]
Rigotti, N.A. Smoking cessation in patients with respiratory disease: Existing treatments and future directions. Lancet Respir. Med., 2013, 1(3), 241-250.
[22]
Rennard, S.I.; Drummond, M.B. Early chronic obstructive pulmonary disease: Definition, assessment, and prevention. Lancet, 2015, 385(9979), 1778-1788.
[23]
Gallus, S.; Tramacere, I.; La Vecchia, C.; Colombo, P.; Zuccaro, P.; Paleari, L.; Cesario, A.; Russo, P.; Apolone, G. Use of pharmacotherapy for smoking cessation in Italy. Arch. Intern. Med., 2009, 169(20), 1927-1928.
[24]
Filippo, L.; Principe, R.; Cesario, A.; Apolone, G.; Carleo, F.; Ialongo, P.; Veronesi, G.; Cardillo, G. Smoking cessation intervention within the framework of a lung cancer screening program: Preliminary results and clinical perspectives from the “Cosmos-II” Trial. Hai, 2015, 193(1), 147-149.
[25]
Field, J.K.; Oudkerk, M.; Pedersen, J.H.; Duffy, S.W. Prospects for population screening and diagnosis of lung cancer. Lancet, 2013, 382(9893), 732-741.
[26]
Parsons, A.; Daley, A.; Begh, R.; Aveyard, P. Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ, 2010, 340, b5569.
[27]
Hajek, P.; Stead, L.F.; West, R.; Jarvis, M.; Hartmann-Boyce, J.; Lancaster, T. Relapse prevention interventions for smoking cessation. Cochrane Database Syst. Rev., 2013, 8(8)CD003999
[28]
Cahill, K.; Stevens, S.; Perera, R.; Lancaster, T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst. Rev., 2013, 5(5)CD009329
[29]
Cahill, K.; Stevens, S.; Lancaster, T. Pharmacological treatments for smoking cessation. JAMA, 2014, 311(2), 193-194.
[30]
Crooks, P.A.; Bardo, M.T.; Dwoskin, L.P. Nicotinic receptor antagonists as treatments for nicotine abuse. Adv. Pharmacol., 2014, 69, 513-551.
[31]
Minicã, C.C.; Mbarek, H.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Vink, J.M. Pathways to smoking behaviours: biological insights from the Tobacco and Genetics Consortium meta-analysis. Mol. Psychiatry, 2016, 22(1), 82-88.
[32]
Bierut, L.J.; Stitzel, J.A.; Wang, J.C.; Hinrichs, A.L.; Grucza, R.A.; Xuei, X.; Saccone, N.L.; Saccone, S.F.; Bertelsen, S.; Fox, L.; Horton, W.J.; Breslau, N.; Budde, J.; Cloninger, C.R.; Dick, D.M.; Foroud, T.; Hatsukami, D.; Hesselbrock, V.; Johnson, E.O.; Kramer, J.; Kuperman, S.; Madden, P.A.; Mayo, K.; Nurnberger, J., Jr; Pomerleau, O.; Porjesz, B.; Reyes, O.; Schuckit, M.; Swan, G.; Tischfield, J.A.; Edenberg, H.J.; Rice, J.P.; Goate, A.M. Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry, 2008, 165(9), 1163-1171.
[33]
Woodruff, P.G.; Agusti, A.; Roche, N.; Singh, D.; Martinez, F.J. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet, 2015, 385(9979), 1789-1798.
[34]
Horita, N.; Goto, A.; Shibata, Y.; Ota, E.; Nakashima, K.; Nagai, K.; Kaneko, T. Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev., 2017, 2CD012066
[35]
Olland, A.; Reeb, J.; Puyraveau, M.; Hirschi, S.; Seitlinger, J.; Santelmo, N.; Collange, O.; Mertes, P.M.; Kessler, R.; Falcoz, P.E.; Massard, G. Bronchial complications after lung transplantation are associated with primary lung graft dysfunction and surgical technique. J. Heart Lung Transplant., 2017, 36(2), 157-165.
[36]
Criner, G.J. Alternatives to lung transplantation: Lung volume reduction for COPD. Clin. Chest Med., 2011, 32(2), 379-397.
[37]
Müllerova, H.; Maselli, D.J.; Locantore, N.; Vestbo, J.; Hurst, J.R.; Wedzicha, J.A.; Bakke, P.; Agusti, A.; Anzueto, A. Hospitalized exacerbations of COPD: Risk factors and outcomes in the ECLIPSE cohort. Chest, 2015, 147(4), 999-1007.
[38]
Walters, J.A.; Tan, D.J.; White, C.J.; Gibson, P.G.; Wood-Baker, R.; Walters, E.H. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2014, 9(9)CD001288
[39]
Karner, C.; Cates, C.J. Combination inhaled steroid and long-acting beta(2)-agonist in addition to tiotropium versus tiotropium or combination alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2011, 3(3)CD008532
[40]
Mercado, N.; Ito, K.; Barnes, P.J. Accelerated ageing of the lung in COPD: New concepts. Thorax, 2015, 70(5), 482-489.
[41]
Saha, S.; Brightling, C.E. Eosinophilic airway inflammation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2006, 1, 39-47.
[42]
Holtzman, M.J.; Byers, D.E.; Alexander-Brett, J.; Wang, X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat. Rev. Immunol., 2014, 14(10), 686-698.
[43]
Malhotra, R.; Olsson, H. Immunology, genetics and microbiota in the COPD pathophysiology: Potential scope for patient stratification. Expert Rev. Respir. Med., 2015, 9(2), 153-159.
[44]
Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Pancholi, M.; Venge, P.; Lomas, D.A.; Barer, M.R.; Johnston, S.L.; Pavord, I.D.; Brightling, C.E. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med., 2012, 186(1), 48-55.
[45]
Pascoe, S.; Locantore, N.; Dransfield, M.T.; Barnes, N.C.; Pavord, I.D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med., 2015, 3(6), 435-442.
[46]
Brusselle, G.G.; Bracke, K.; Lahousse, L. Targeted therapy with inhaled corticosteroids in COPD according to blood eosinophil counts. Lancet Respir. Med., 2015, 3(6), 416-417.
[47]
Pavord, I.D.; Lettis, S.; Locantore, N.; Pascoe, S.; Jones, P.W.; Wedzicha, J.A.; Barnes, N.C. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax, 2016, 71(2), 118-125.
[48]
Liao, W.; Long, H.; Chang, C.C.; Lu, Q. The eosinophil in health and disease: from bench to bedside and back. Clin. Rev. Allergy Immunol., 2016, 50(2), 125-139.
[49]
Furuta, G.T.; Atkins, F.D.; Lee, N.A.; Lee, J.J. Changing roles of eosinophils in health and disease. Ann. Allergy Asthma Immunol., 2014, 113(1), 3-8.
[50]
Broughton, S.E.; Dhagat, U.; Hercus, T.R.; Nero, T.L.; Grimbaldeston, M.A.; Bonder, C.S.; Lopez, A.F.; Parker, M.W. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol. Rev., 2012, 250(1), 277-302.
[52]
Powell, C.; Milan, S.J.; Dwan, K.; Bax, L.; Walters, N. Mepolizumab versus placebo for asthma. Cochrane Database Syst. Rev., 2015, 7(7)CD010834
[56]
Lu, T.X.; Lim, E.J.; Besse, J.A.; Itskovich, S.; Plassard, A.J.; Fulkerson, P.C.; Aronow, B.J.; Rothenberg, M.E. MiR-223 deficiency increases eosinophil progenitor proliferation. J. Immunol., 2013, 190(4), 1576-1582.
[57]
Hua, L.; Zheng, W.; Xia, H.; Zhou, P.; An, L. Integration of multi-microarray datasets to identify chronic obstructive pulmonary disease-related miRNAs. Biomed. Mater. Eng., 2015, 26(26)(Suppl. 1), S1903-S1915.
[58]
Ezzie, M.E.; Crawford, M.; Cho, J.H.; Orellana, R.; Zhang, S.; Gelinas, R.; Batte, K.; Yu, L.; Nuovo, G.; Galas, D.; Diaz, P.; Wang, K.; Nana-Sinkam, S.P. Gene expression networks in COPD: MicroRNA and mRNA regulation. Thorax, 2012, 67(2), 122-131.
[59]
Wong, C.K.; Lau, K.M.; Chan, I.H.; Hu, S.; Lam, Y.Y.; Choi, A.O.; Lam, C.W. MicroRNA-21* regulates the prosurvival effect of GM-CSF on human eosinophils. Immunobiology, 2013, 218(2), 255-262.
[60]
Lu, T.X.; Sherrill, J.D.; Wen, T.; Plassard, A.J.; Besse, J.A.; Abonia, J.P.; Franciosi, J.P.; Putnam, P.E.; Eby, M.; Martin, L.J.; Aronow, B.J.; Rothenberg, M.E. MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J. Allergy Clin. Immunol., 2012, 129(4), 1064-75.e9.
[61]
Tantisira, K.G.; Lasky-Su, J.; Harada, M.; Murphy, A.; Litonjua, A.A.; Himes, B.E.; Lange, C.; Lazarus, R.; Sylvia, J.; Klanderman, B.; Duan, Q.L.; Qiu, W.; Hirota, T.; Martinez, F.D.; Mauger, D.; Sorkness, C.; Szefler, S.; Lazarus, S.C.; Lemanske, R.F., Jr; Peters, S.P.; Lima, J.J.; Nakamura, Y.; Tamari, M.; Weiss, S.T. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med., 2011, 365(13), 1173-1183.
[62]
Izuhara, Y.; Matsumoto, H.; Kanemitsu, Y.; Izuhara, K.; Tohda, Y.; Horiguchi, T.; Kita, H.; Kuwabara, K.; Tomii, K.; Otsuka, K.; Fujimura, M.; Ohkura, N.; Tomita, K.; Yokoyama, A.; Ohnishi, H.; Nakano, Y.; Oguma, T.; Hozawa, S.; Nagasaki, T.; Ito, I.; Oguma, T.; Inoue, H.; Tajiri, T.; Iwata, T.; Ono, J.; Ohta, S.; Tamari, M.; Hirota, T.; Yokoyama, T.; Niimi, A.; Mishima, M. GLCCI1 variant accelerates pulmonary function decline in patients with asthma receiving inhaled corticosteroids. Allergy, 2014, 69(5), 668-673.
[64]
Kim, W.J.; Lee, S.D. Candidate genes for COPD: Current evidence and research. Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 2249-2255.
[65]
Hobbs, B.D.; Parker, M.M.; Chen, H.; Lao, T.; Hardin, M.; Qiao, D.; Hawrylkiewicz, I.; Sliwinski, P.; Yim, J.J.; Kim, W.J.; Kim, D.K.; Castaldi, P.J.; Hersh, C.P.; Morrow, J.; Celli, B.R.; Pinto-Plata, V.M.; Criner, G.J.; Marchetti, N.; Bueno, R.; Agusti, A.; Make, B.J.; Crapo, J.D.; Calverley, P.M.; Donner, C.F.; Lomas, D.A.; Wouters, E.F.; Vestbo, J.; Paré, P.D.; Levy, R.D.; Rennard, S.I.; Zhou, X.; Laird, N.M.; Lin, X.; Beaty, T.H.; Silverman, E.K.; Cho, M.H. NETT Genetics; ECLIPSE; COPD Gene; International COPD Genetics Network Investigators. Exome array analysis identifies a common variant in IL27 associated with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2016, 194(1), 48-57.
[66]
Lamonaca, P.; Prinzi, G.; Kisialiou, A.; Cardaci, V.; Fini, M.; Russo, P. Metabolic disorder in chronic obstructive pulmonary disease (COPD) patients: Towards a personalized approach using marine drug derivatives. Mar. Drugs, 2017, 15(3), 3-15.
[67]
Hardin, M.; Cho, M.H.; McDonald, M.L.; Wan, E.; Lomas, D.A.; Coxson, H.O.; MacNee, W.; Vestbo, J.; Yates, J.C.; Agusti, A.; Calverley, P.M.; Celli, B.; Crim, C.; Rennard, S.; Wouters, E.; Bakke, P.; Bhatt, S.P.; Kim, V.; Ramsdell, J.; Regan, E.A.; Make, B.J.; Hokanson, J.E.; Crapo, J.D.; Beaty, T.H.; Hersh, C.P. A genome-wide analysis of the response to inhaled β2-agonists in chronic obstructive pulmonary disease. Pharmacogenomics J., 2016, 16(4), 326-335.
[68]
Rabe, K.F.; Fabbri, L.M.; Israel, E.; Kögler, H.; Riemann, K.; Schmidt, H.; Glaab, T.; Vogelmeier, C.F. Effect of ADRB2 polymorphisms on the efficacy of salmeterol and tiotropium in preventing COPD exacerbations: A prespecified substudy of the POET-COPD trial. Lancet Respir. Med., 2014, 2(1), 44-53.
[69]
Nielsen, A.O.; Jensen, C.S.; Arredouani, M.S.; Dahl, R.; Dahl, M. Variants of the ADRB2 gene in COPD: Systematic review and meta-analyses of disease risk and treatment response. COPD, 2017, 14(4), 451-460.
[70]
Emeryk-Maksymiuk, J.; Emeryk, A.; Krawczyk, P.; Wojas-Krawczyk, K.; Milanowski, J. Beta-2-adrenoreceptor polymorphism at position 16 determines the clinical severity of chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther., 2017, 43, 1-5.
[71]
Cherubini, E.; Esposito, M.C.; Scozzi, D.; Terzo, F.; Osman, G.A.; Mariotta, S.; Mancini, R.; Bruno, P.; Ricci, A. Genetic Polymorphism of CHRM2 in COPD: Clinical Significance and Therapeutic Implications. J. Cell. Physiol., 2016, 231(8), 1745-1751.
[72]
Tantisira, K.G.; Lasky-Su, J.; Harada, M.; Murphy, A.; Litonjua, A.A.; Himes, B.E.; Lange, C.; Lazarus, R.; Sylvia, J.; Klanderman, B.; Duan, Q.L.; Qiu, W.; Hirota, T.; Martinez, F.D.; Mauger, D.; Sorkness, C.; Szefler, S.; Lazarus, S.C.; Lemanske, R.F., Jr; Peters, S.P.; Lima, J.J.; Nakamura, Y.; Tamari, M.; Weiss, S.T. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med., 2011, 365(13), 1173-1183.
[73]
van den Berge, M.; Hiemstra, P.S.; Postma, D.S. Genetics of glucocorticoids in asthma. N. Engl. J. Med., 2011, 365(25), 2434-2435.
[74]
Mosteller, M.; van den Berge, M.; Hosking, L.; Timens, W.; Hiemstra, P.S.; Crim, C. Genetic evaluation of the effect of GLCCI1 rs37973 on corticosteroid response in chronic obstructive pulmonary disease. COPD Res. Pract., 2017, 3, 2.
[75]
Lei, Y.; Gao, Y.; Chen, J.; Li, M.; Wu, X.; Ning, Q.; Zhao, J.; Xiong, W.; Xu, Y.; Xie, J. GLCCI1 rs37973: a potential genetic predictor of therapeutic response to inhaled corticosteroids in Chinese chronic obstructive pulmonary disease patients. Sci. Rep., 2017, 7, 42552.
[76]
Priyadharshini, V.S.; Teran, L.M. Personalized medicine in respiratory disease: role of proteomics. Adv. Protein Chem. Struct. Biol., 2016, 102, 115-146.
[77]
Paone, G.; Leone, V.; Conti, V.; De Marchis, L.; Ialleni, E.; Graziani, C.; Salducci, M.; Ramaccia, M.; Munafò, G. Blood and sputum biomarkers in COPD and asthma: A review. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(4), 698-708.
[78]
Terracciano, R.; Pelaia, G.; Preianò, M.; Savino, R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin. Appl., 2015, 9(1-2), 203-220.
[79]
Paone, G.; Leone, V.; Conti, V.; De Marchis, L.; Ialleni, E.; Graziani, C.; Salducci, M.; Ramaccia, M.; Munafò, G. Blood and sputum biomarkers in COPD and asthma: a review. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(4), 698-708.
[80]
Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature, 2008, 455(7216), 1054-1056.
[81]
Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker metabolites can be therapeutic targets as well. Nature, 2008, 456(7221), 443.
[82]
Nobakht, M.; Gh, B.F.; Aliannejad, R.; Rezaei-Tavirani, M.; Taheri, S.; Oskouie, A.A.; Oskouie, A.A. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers, 2015, 20(1), 5-16.
[83]
Adamko, D.J.; Nair, P.; Mayers, I.; Tsuyuki, R.T.; Regush, S.; Rowe, B.H. Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J. Allergy Clin. Immunol., 2015, 136(3), 571-580.e3.
[84]
Naz, S.; Kolmert, J.; Yang, M.; Reinke, S.N.; Kamleh, M.A.; Snowden, S.; Heyder, T.; Levänen, B.; Erle, D.J.; Sköld, C.M.; Wheelock, Å.M.; Wheelock, C.E. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur. Respir. J., 2017, 49(6)1602322
[85]
Singh, B.; Jana, S.K.; Ghosh, N.; Das, S.K.; Joshi, M.; Bhattacharyya, P.; Chaudhury, K. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease. J. Pharm. Biomed. Anal., 2017, 132, 103-108.
[86]
Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet., 2011, 12(1), 56-68.
[87]
Janjić, V.; Pržulj, N. Przulj, N. The core diseasome. Mol. Biosyst., 2012, 8(10), 2614-2625.
[88]
Suratanee, A.; Plaimas, K. DDA: A novel network-based scoring method to identify disease-disease associations. Bioinform. Biol. Insights, 2015, 9, 175-186.
[89]
Glass, K.; Quackenbush, J.; Silverman, E.K.; Celli, B.; Rennard, S.I.; Yuan, G.C.; DeMeo, D.L. Sexually-dimorphic targeting of functionally-related genes in COPD. BMC Syst. Biol., 2014, 8, 118.
[90]
Ng, C.T.; Mendoza, J.L.; Garcia, K.C.; Oldstone, M.B. Alpha and beta type 1 interferon signaling: Passage for diverse biologic outcomes. Cell, 2016, 164(3), 349-352.
[92]
Agustí, A.; Barberà, J.A.; Wouters, E.F.; Peinado, V.I.; Jeffery, P.K. Lungs, bone marrow, and adipose tissue. A network approach to the pathobiology of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2013, 188(12), 1396-1406.
[93]
Castaldi, P.J.; Benet, M.; Petersen, H.; Rafaels, N.; Finigan, J.; Paoletti, M. MarikeBoezen, H.; Vonk, J.M.; Bowler, R.; Pistolesi, M.; Puhan, M.A.; Anto, J.; Wauters, E.; Lambrechts, D.; Janssens, W.; Bigazzi, F.; Camiciottoli, G.; Cho, M.H.; Hersh, C.P.; Barnes, K.; Rennard, S.; Boorgula, M.P.; Dy, J.; Hansel, N.N.; Crapo, J.D.; Tesfaigzi, Y.; Agusti, A.; Silverman, E.K.; Garcia-Aymerich, J. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72(11), 998-1006.
[94]
Agusti, A.; Bel, E.; Thomas, M.; Vogelmeier, C.; Brusselle, G.; Holgate, S.; Humbert, M.; Jones, P.; Gibson, P.G.; Vestbo, J.; Beasley, R.; Pavord, I.D. Treatable traits: Toward precision medicine of chronic airway diseases. Eur. Respir. J., 2016, 47(2), 410-419.
[95]
Shrimanker, R.; Choo, X.N.; Pavord, I.D. A new approach to the classification and management of airways diseases: Identification of treatable traits. Clin. Sci. (Lond.), 2017, 131(10), 1027-1043.
[96]
Fragoso, C.A. Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) in aging populations. COPD, 2016, 13(2), 125-129.
[97]
Vetrano, D.L.; Bianchini, E.; Onder, G.; Cricelli, I.; Cricelli, C.; Bernabei, R.; Bettoncelli, G.; Lapi, F. Poor adherence to chronic obstructive pulmonary disease medications in primary care: Role of age, disease burden and polypharmacy. Geriatr. Gerontol. Int., 2017, 17(12), 2500-2506. Epub ahead of print
[98]
Andrews, A. ASCO and NCI launch largest precision medicine trials using real-world evidence. Am. Health Drug Benefits, 2015, 8(Spec Issue), 37.
[99]
Price, D.; Brusselle, G.; Roche, N.; Freeman, D.; Chisholm, A. Real-world research and its importance in respiratory medicine. Breathe (Sheff.), 2015, 11(1), 26-38.