[1]
Florey, K. Analytical Profiles of Drug substances; Academic Press: New York, 1982, Vol. 11, pp. 79-137.
[2]
Goodman, A.; Goodman, L.S.; Rall, T.W.; Murad, F. Les Bases Farmacologicas de la Terapeutica; Panamericana: Madrid, 1989, pp. 616-620.
[3]
Ozkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[4]
Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids. Anal. Meth, 2015, 7, 8673-8682.
[5]
Adams, R.N.; Olson, C. Carbon paste electrodes application to anodic voltammetry. J. Anal. Chim. Acta, 1960, 22, 582-589.
[6]
Ghoreishi, S.M.; Behpour, M.; Delshad, A.; Khoobi, A. Electrochemical determination of tyrosine in the presence of uric acid at a carbon paste electrode modified with multi-walled carbon nanotubes enhanced by sodium dodecyl sulfate. Cent. Eur. J. Chem., 2012, 10, 1824-1829.
[7]
Tashkhourian, M.R.; Nezhad, H.; Khodavesi, J.; Javadi, S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem., 2009, 633, 85-91.
[8]
Mazloum-Ardakani, M.; Sabaghian, F.; Khoshroo, A.; Abolhasani, M.; Naeimi, H. Electrochemical determination of captopril in the presence of acetaminophen, tryptophan, folic acid, and L-cysteine at the surface of modified carbon nanotube paste electrode. Ionics, 2015, 21, 239-250.
[9]
Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Bibi-Fatemeh, M.; Zamani, L. Simultaneous determination of captopril, acetaminophen and tryptophan at a modified electrode based on carbon nanotubes. J. Electroanal. Chem., 2012, 686, 12-18.
[10]
Shahrokhian, S.; Karimi, M.; Khajehsharifi, H. Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sens. Actuat. B, 2005, 109, 278-284.
[11]
Fouladgar, M. Electrocatalytic measurement of trace amount of captopril using multiwall carbon nanotubes as a sensor and ferrocene as a mediator. Int. J. Electrochem. Sci., 2011, 6, 705-716.
[12]
Dias, I.A.R.B.; Costa, W.M.; Cervini, P.; Cavalheiro, E.T.G.; Marques, A.L.B. Ruthenium hexacyanoferrate (III) modified glassy carbon electrode for determination of captopril. Electroanalysis, 2016, 28, 1-8.
[13]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Rezaei, B. Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples. Colloids Surf. B, 2011, 87, 480-488.
[14]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Jouyban, A. Electropolymerization of taurine on gold surface and its sensory application for determination of captopril in undiluted human serum. Mater. Sci. Eng. C, 2014, 38, 197-205.
[15]
Ghoreishi, S.M.; Karamali, E.; Khoobi, A.; Enhessari, M. Preparation of a manganese titanate nanosensor: Application in electrochemical studies of captopril in the presence of para-aminobenzoic acid. Anal. Biochem., 2015, 487, 49-58.
[16]
Stefan-van Staden, R-I.; Balasoiu, S-C.; Bazylak, G.; Frederick-van Staden, J.; Aboul-Enein, H.Y.; Radu, G.L. Inulins as electroactive materials for enantioanalysis of chiral drugs. J. Electrochem. Soc., 2013, 160(10), B192-B195.
[17]
Parham, H.; Zargar, B. Square-wave voltammetric (SWV) determination of Captopril in reconstituted serum and pharmaceutical formulations. Talanta, 2005, 65, 776-780.
[18]
Zargar, B.; Parmar, H.; Hatamie, A. Mercury thin film at glassy carbon electrode for adsorptive stripping voltammetric determination of captopril in pharmaceutical samples. Anal. Bioanal. Electrochem, 2015, 7(3), 344-357.
[19]
Ioannides, X.; Economou, A.; Voulgaropoulos, A. A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal., 2003, 33, 309-316.
[20]
Rajabzadeh, N.; Ali, B.; Mazloum-Ardakani, M.; Afsaneh, D.F.; Rasoul, V. A highly sensitive sensor based on reduced graphene oxide, carbon nanotube and a Co(II) complex modified carbon paste electrode: simultaneous determination of isoprenaline, captopril and tryptophan. Electroanalysis, 2015, 27, 2792-2799.
[21]
Chermini, S.A.; Karimi, H.; Keyvanfard, M.; Aliza, K. Determination of captopril using multiwall carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Iran. J. Pharm. Res., 2016, 15(1), 107-117.
[22]
Karimi-Maleh, H.; Ensafi, A.A.; Allafchian, A.R. Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J. Solid State Electrochem., 2010, 14, 9-15.
[23]
Beitollahi, H.; Susan, G.I.; Reza, A.; Rahman, H. Preparation, Characterization and electrochemical application of ZnO-CuO Nanoplates for voltammetric determination of captopril and tryptophan using modified carbon paste electrode. Electroanalysis, 2015, 27, 1-9.
[24]
Seifie-Makrani, R.; Nasim, S.; Omran, Y.; Hasan, B. A new strategy for determination of captopril as a hypertension drug using ZnO nanoparticle modified carbon paste electrode. Int. J. Electrochem. Sci., 2014, 9, 1799-1811.
[25]
Beitollahi, H.; Mohammad, A.T.; Malihe, A.; Rahman, H. Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: Application to determination of captopril in pharmaceutical and biological samples. Measurement, 2014, 47, 770-776.
[26]
Ensafi, A.A.; Rezaei, B.; Mirahmadi-Zare, Z.; Karimi-Maleh, H. Highly selective and sensitive voltammetric sensor for captopril determination based on modified multiwall carbon nanotubes paste electrode. J. Braz. Chem. Soc., 2011, 22(7), 1315-1322.
[27]
Bagheri, H.; Karimi-Maleh, H.; Karimi, F.; Mallakpour, S.; Keyvanfard, M. Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor. J. Mol. Liq., 2014, 198, 193-199.
[28]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Amiri, A.; Gholami, F.; Mazhabi, R.M. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode. Chin. Chem. Lett., 2010, 21, 1467-1470.
[29]
Rezaei, B.; Damiri, S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuat. B 134, 2008, 324-331.
[30]
Ensafi, A.A.; Monsef, M.; Rezaei, B.; Karimi-Maleh, H. Electrocatalytic oxidation of captopril on a vinylferrocene modified carbon nanotubes paste electrode. Anal. Meth, 2012, 4, 1332-1338.
[31]
Siangproh, W.; Ngamukot, P.; Chailapakul, O. Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system. Sens. Actuat. B, 2003, 91, 60-66.
[32]
Ziyatdinova, G.K.; Budnikov, G.K.; Pogorel’tsev, V.I. Determination of captopril in pharmaceutical forms by stripping voltammetry. J. Anal. Chem., 2006, 61(8), 798-800.
[33]
Hossein, B.; Fahimeh, J. Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator. Int. J. Electrochem., 2011, 2011, Article ID 864358.
[34]
Fahimeh, J.; Hossein, B. Homogeneous electrocatalytic oxidation of captopril by iodide and its application to pharmaceutical analysis. J. Iran. Chem. Soc., 2012, 9, 889-894.
[35]
Wen-Rong, C.; Guang-Yao, Z.; Tao, S.; Xue-Ji, Z.; Dan, S. Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: The enhanced electrochemical sensing of captopril. Electro. Chim. Acta, 2016, 198, 32-39.
[36]
Habibi, D.; Faraji, A.R.; Gil, A. A highly sensitive supported manganese-based voltammetric sensor for the electrocatalytic determination of captopril. Sens. Actuat. B., 2013, 182, 80-86.