[1]
Ajayan, P.M.; Schadler, L.S.; Braun, P.V. In: Nanocomposite science and technology; Wiley: New York, 2003.
[2]
Bayer, A.G. Eur. Patent 339 340 1988.
[3]
Jonas, F.; Schrader, L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 1991, 831, 41-43.
[4]
Heywang, G.; Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater., 1992, 4, 116.
[5]
Winter, I.; Reece, C.; Hormes, J.; Heywang, G.; Jonas, F. The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem. Phys., 1995, 194, 207.
[6]
Dietrich, M.; Heinze, J.; Heywang, G.; Jonas, F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem., 1994, 369, 87.
[7]
Groenendaal, L.B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 2000, 12(7), 481-494.
[8]
Kalfagiannis, N.; Karagiannidis, P.G.; Pitsalidis, C.; Hastas, N.; Panagiotopoulos, N.T.; Patsalas, P.; Logothetidis, S. Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesul-fonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films, 2014, 560, 27-33.
[9]
Shen, J.; Zhu, Y.; Yang, X.; Li, Ch. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun., 2012, 48, 3686-3699.
[10]
Kvarnström, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H.J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta, 1999, 44, 2739-2750.
[11]
Rannou, P.; Nechtschein, M. Ageing of Poly(3,4-ethylenedioxy-thiophene): Kinetics of conductivity decay and lifespan. Synth. Met., 1999, 101, 474.
[12]
Erdogdu, G.; Karagozler, A.E. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta, 1997, 44, 2011-2018.
[13]
Atta, N.F.; Marawi, I.; Petticrew, K.L.; Zimmer, H.; Mark, H.B.; Galal, A. Electrochemistry and detection of some organic and biological molecules at conducting polymer electrodes. Part 3. Evidence of the electrocatalytic effect of the heteroatom of the poly(hetetroarylene) at the electrode/electrolyte interface. J. Electroanal. Chem., 1996, 408, 47-52.
[14]
Mark, H.B., Jr; Atta, N.; Maa, Y.L.; Petticrew, K.L.; Zimmer, H.; Shi, Y.; Lunsford, S.K.; Rubinson, J.F.; Galal, A. The electrochemistry of neurotransmitters at conducting organic polymer electrodes: electrocatalysis and analytical applications. Bioelectrochem. Bioenerg., 1995, 38, 229-245.
[15]
Yeh, W-M.; Ho, K-Ch. Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal. Chim. Acta, 2005, 542, 76-82.
[16]
Mantione, D.; Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 2017, 9, 354.
[17]
Kros, A.; Sommerdijk, N.A.J.M.; Nolte, R.J.M. Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications. Sens. Actuat. B, 2005, 106, 289-295.
[18]
F., Fuck Farbe & Lack, 1998, 104, 32.
[19]
Krzyczmonik, P.; Socha, E.; Andrijewski, G. Determination of ascorbic acid by a Composite-Modified platinum electrode. Anal. Lett., 2017, 50(5), 806-818.
[20]
Latessa, G.; Brunetti, F.; Reale, A.; Saggio, G.; Di Carlo, A. Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuat. B, 2009, 139, 304-309.
[21]
Jang, J.; Chang, M.; Yoon, H. Chemical sensors based on highly conductive Poly(3,4-ethylenedioxythiophene). Nanorods. Adv. Mater., 2005, 17, 1616-1620.
[22]
Liu, N.; Fang, G.; Wan, J.; Zhou, H.; Long, H.; Zhao, X. Electrospun PEDOT:PSS-PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem., 2011, 21, 18962-18966.
[23]
Yamato, H.; Ohwa, M.; Wernett, W. Stability of polypyrrole and poly(3,4_ethylenedioxy thiophene) for biosensor application. J. Electroanal. Chem., 1995, 397, 163-170.
[24]
Jeyalakshmi, S.R.; Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.M.; Yegnaraman, V. Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes. Indian J. Chem., 2007, 46A, 957-961.
[25]
Belaidi, F.S.; Civélas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P. PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens. Actuat. B., 2015, 214, 1-9.
[26]
Gualandi, I.; Marzocchi, M.; Scavetta, E.; Calienni, M.; Bonfiglio, A.; Frabonia, B. A simple all-PEDOT:PSS electrochemical transistor for ascorbic acid sensing. J. Mater. Chem. B, 2015, 3, 6753-6762.
[27]
Gualandi, I.; Tonelli, D.; Mariani, F.; Scavetta, E.; Marzocchi, M.; Fraboni, B. Selective detection of dopaminę with an all PEDOT:PSS organic electrochemical transistor. Sci. Rep., 2016, 6, 35419.
[28]
Jayakumar, C.; Reddy, Y.S.; Kulandainathan, M.A.; Jeyaraj, B. Fabrication of PEDOT-PSS modified glassy carbon electrode for Biosensor and its performance in determining L-dopa in the presence of Ascorbic acid. J. Chem. Pharm. Res., 2016, 8(6), 512-520.
[29]
Sipa, K.; Socha, E. Skrzypek, Sł.; Krzyczmonik, P. Electrodes modified with composite layers based on poly(3,4-ethylenedioxythiophene) as sensors for paracetamol. Anal. Sci., 2017, 33(3), 281.
[30]
Ho, K-Ch.; Yeh, W-M.; Tung, T-S.; Liao, J-Y. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Anal. Chim. Acta, 2005, 542, 90-96.
[31]
Su, W.; Nguyen, H.T.; Cho, M.; Son, Y.; Lee, Y. Synthesis, characterization and self-assembled film of poly(3-((2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methoxy)propane-1-thiol) (PEDTMSHA). Synth. Met., 2010, 160, 2471-2475.
[32]
Asuri, P.; Bale, S.S.; Karajanagi, S.S.; Kane, R.S. The Protein/Nanomaterial interface. Curr. Opin. Biotechnol., 2005, 17, 562.
[33]
Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens. Bioelectron., 2011, 30, 107-111.
[34]
Falka, M.; Andoralova, Y.; Bluma, Z.; Sotresa, J.; Suyatinb, D.B.; Ruzgasa, T.; Arnebranta, T.; Shleev, S. Biofuel cell as a power source for electronic contact lenses. Biosens. Bioelectron., 2012, 37, 38-45.
[35]
Negash, N.; Alemu, H.; Tessema, M. Determination of phenol and chlorophenols at single-wall carbon nanotubes/poly(3,4- ethylenedioxythiophene) modified glassy carbon electrode using flow injection amperometry. ISRN Anal. Chem., 2014, 2014, Article ID 926213..
[36]
Xu, G.; Li, B.; Wang, X.; Luo, X. Electrochemical sensor for nitrobenzene based on carbon paste electrode modified with a poly(3,4-ethylenedioxythiophene) and carbon nanotube nanocomposite. Mikrochim. Acta, 2014, 181, 463-469.
[37]
Lin, K.C.; Tsai, T.H.; Chen, S.M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film. Biosens. Bioelectron., 2010, 26, 608-614.
[38]
Xu, G.; Li, B.; Luo, X. Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens. Actuat. B., 2013, 176, 69-74.
[39]
Xu, G.; Li, B.; Cui, X.T.; Ling, L.; Luo, X. Electrodeposited conducting polymer PEDOT doped with pure carbonnanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuat. B., 2013, 188, 405-410.
[40]
Zhang, L.; Wen, Y-P.; Yao, Y-Y.; Wang, Z-F.; Duan, X-M.; Xu, J-K. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin. Chem. Lett., 2014, 25, 517-522.
[41]
Nie, T.; Lu, L. Bai1, L.; Xu, J.; Zhang, K.; Zhang, O.; Wen, Y.; Wu, L. Simultaneous determination of folic acid and uric acid under coexistence of L-Ascorbic acid using a modified electrode based on Poly(3,4-Ethylenedioxythiophene) and functionalized single-walled carbon nanotubes composite. Int. J. Electrochem. Sci., 2013, 8, 7016-7029.
[42]
Tsai, T-H.; Lin, K-C.; Chen, S-M. Electrochemical synthesis of Poly(3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci., 2011, 6, 2672-2687.
[43]
Stoyanova, A.; Tsakova, V. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: I. Role of the polymer layer thickness. J. Solid State Electrochem., 2010, 14, 1947-1955.
[44]
Stoyanova, A.; Tsakova, V. Copper-modified poly(3,4-ethylenedioxythiophene) layers for selective determination of dopamine in the presence of ascorbic acid: II Role of the characteristics of the metal deposit. J. Solid State Electrochem., 2010, 14, 1957-1965.
[45]
Harish, S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. PEDOT/Palladium composite material: Synthesis, characterization and application to simultaneous determination of dopamine and uric acid. J. Appl. Electrochem., 2008, 38, 1583-1588.
[46]
Mathiyarasu, J.; Kumar, S.S.; Phani, K.L.N.; Yegnaraman, V. PEDOT-Au nanocomposite film for electrochemical sensing. Mat. Lett., 2008, 62, 571-573.
[47]
Zanardi, C.; Terzi, F.; Seeber, R. Composite electrode coatings in amperometric sensors. Effects of differently encapsulated gold nanoparticles in poly(3,4-ethylendioxythiophene) system. Sens. Actuat. B., 2010, 148, 277-282.
[48]
Kumar, S.S.; Mathiyarasu, J.; Phani, K.L. Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopaminę. J. Electroanal. Chem., 2005, 578, 95-103.
[49]
Chang, L-Ch.; Wu, H-N.; Lin, C-Y.; Lai, Y-H.; Hu, C-W.; Ho, K.C. One-pot synthesis of poly(3,4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor. Nano. Res. Lett., 2012, 7, 319.
[50]
Liu, Z.; Lu, B.; Gao, Y.; Yang, T.; Yue, R.; Xu, J.; Gao, L. Facile one-pot preparation of Pd-Au/PEDOT/ graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Adv, 2016, 6, 89157-89166.
[51]
Sethuraman, V.; Muthuraja, P. AnandhaRaj, J.; Manisankar, P. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced grapheme oxide-metal oxide enzyme modified electrode. Biosens. Bioelectron., 2016, 84, 112-119.
[52]
Wang, W.; Wang, W.; Davis, J.J.; Luo, X. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim. Acta, 2015, 182, 1123-1129.
[53]
Si, W.; Lei, W.; Zhang, Y.; Xia, M.; Wang, F.; Hao, Q. Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim. Acta, 2012, 85, 295-301.
[54]
Si, W.; Lei, W.; Han, Z.; Hao, Q.; Zhang, Y.; Xia, M. Selective sensing of catechol and hydroquinone based onpoly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sens. Actuat. B., 2014, 199, 154-160.
[55]
Wang, W.; Xu, G.; Cui, X.T.; Sheng, G.; Luo, X. Enhanced catalytic and dopaminę sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron., 2014, 58, 153-156.
[56]
Feng, Z-L.; Yao, Y-Y.; Xu, J-K.; Zhang, L.; Wang, Z-F.; Wen, Y-P. One-step co-electrodeposition of graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene) film and its electrochemical studies of indole-3-acetic acid. Chin. Chem. Lett., 2014, 25, 511-516.
[57]
Liu, Z.; Xu, J.; Yue, R.; Yang, T.; Gao, L. Facile one-pot synthesis of Au-PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta, 2016, 196, 1-12.
[58]
Su, W.; Cho, M.; Nam, J-D.; Choe, W-S.; Lee, Y. Aptamer-Assisted gold Nanoparticles/PEDOT platform for ultrasensitive detection of LPS. Electroanalysis, 2013, 25(2), 380-386.
[59]
Kuralay, F.; Demirci, S.; Kiristi, M.; Oksuz, L.; Oksuz, A.U. Poly(3,4-ethylenedioxy-thiophene) coated chitosan modified disposable electrodes for DNA and DNA-drug interaction sensing. Coll. Surf. B. Biointerf., 2014, 123, 825-830.
[60]
Karadag, M.; Geyik, C.; Demirkol, D.O.; Nil, F.; Timur, E.S. Modified gold surfaces by 6-(ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Mater. Sci. Eng. C, 2013, 33, 634-640.
[61]
Krzyczmonik, P.; Socha, E. Skrzypek, Sł. Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 2015, 101, 8-13.
[62]
Lang, U.; Naujoks, N.; Dual, J. Mechanical characterization of PEDOT:PSS thin films. Synth. Metal., 2009, 159, 473-479.
[63]
Krzyczmonik, P.; Socha, E.; Skrzypek, S. Electrochemical detection of glucose in beverages samples using poly(3,4-ethylenedioxythiophene) modified electrodes with immobilized glucose oxidase. Electrocatalysis, 2018, 9(3), 380-387.
[64]
Kim, D.M.; Rahman, Md. A.; Do, M.H.; Ban, C.; Shim, Y.B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron., 2010, 25, 1781-1788.
[65]
Paimard, G.; Gholivand, M.B.; Shamsipur, M.; Gholivand, K.; Mohammadi-Behzad, L.; Gholami, A.; Barati, A. Fabrication of a highly sensitive amperometric sensor using 1,4-phenylene-N,N0-bis (O,O-diphenylphoramidate)/CdS quantum dots/multi-walled carbon nanotubes for nanomolar detection of captopril. J. Electroanal. Chem., 2015, 738, 176-183.
[66]
Ye, X.; Du, Y.; Duan, K. Daban, Lu, D.; Wang, Ch.; Shi, X. Fabrication of nano-ZnS coated PEDOT-reduced graphene oxidehybrids modified glassy carbon-rotating disk electrode and itsapplication for simultaneous determination of adenine, guanine, and thymine. Sens. Actuat. B., 2014, 203, 271-281.
[67]
Ouyang, X.; Luo, L.; Ding, Y.; Liu, B.; Xu, D. Simultaneous determination of purine and pyrimidine bases in DNA using poly(3,4-ethylenedioxythiophene)/graphene composite film. J. Electroanal. Chem., 2014, 735, 51-56.
[68]
Sriprachuabwong, Ch.; Karuwan, Ch.; Wisitsorrat, A.; Phokharatkul, D.; Lomas, T.; Sritongkham, P.; Tuantranont, A. Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem., 2012, 22, 5478.