Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Voltammetric Detection of Tetrodotoxin Real-Time In Vivo of Mouse Organs using DNA-Immobilized Carbon Nanotube Sensors

Author(s): Huck Jun Hong* and Suw Young Ly

Volume 15, Issue 5, 2019

Page: [567 - 574] Pages: 8

DOI: 10.2174/1573411014666180510145320

Price: $65

Abstract

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step.

Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems.

Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX.

Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.

Keywords: Tetrodotoxin, cyclic voltammetry, square wave anodic stripping voltammetry, carbon nanotube sensors, in vivo detection, DNA-immobilization, anticancer agent, neurotoxin.

Graphical Abstract

[1]
Lago, J.; Rodríguez, L.P.; Blanco, L.; Vieites, J.M.; Cabado, A.G. Tetrodotoxin, an extremely potent marine neurotoxin: Distribution, toxicity, origin and therapeutical uses. Mar. Drugs, 2015, 13, 6384-6406.
[2]
Noguchi, T.; Ebesu, J.S.M. Puffer poisoning: Epidemiology and treatment. Toxin Rev., 2001, 20, 1-10.
[3]
Bane, V.; Lehane, M.; Dikshit, M.; O’Riordan, A.; Furey, A. Tetrodotoxin: Chemistry, toxicity, source, distribution and detection. Toxins , 2014, 6, 693-755.
[4]
Moran, O.; Picollo, A.; Conti, F. Tonic and phasic guanidinium toxin-block of skeletal muscle na channels expressed in mammalian cells. Biophys. J., 2003, 84, 2999-3006.
[5]
Agnew, W.S.; Moore, A.C.; Levinson, S.R.; Raftery, M.A. Identification of a large molecular weight peptide associated with a tetrodotoxin binding proteins from the electroplax of electrophorus electricus. Biochem. Biophys. Res. Commun., 1980, 92, 860-866.
[6]
Lee, C.H.; Ruben, P.C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels, 2008, 2, 407-412.
[7]
Zaki, Z.A.; Mady, E.A.; Ahmed, S.M.; Youssef, N.M. Effect of tetrodotoxin (TTX) on some brain neurotransmitters in rats. J. Nat. Toxins, 2001, 10, 307-316.
[8]
Wakita, M.; Kotani, N.; Akaike, N. Tetrodotoxin abruptly blocks excitatory neurotransmission in mammalian CNS. Toxicon, 2015, 103, 12-18.
[9]
Noguchi, T.; Arakawa, O.; Takatani, T. TTX accumulation in pufferfish. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2006, 1, 145-152.
[10]
Noguchi, T.; Onuki, K.; Arakawa, O. Tetrodotoxin poisoning due to pufferfish and gastropods, and their intoxication mechanism. ISRN Toxicol., 2011, •••276939
[11]
Narita, H.; Matsubara, S.; Miwa, N.; Akahane, S.; Murakami, M.; Goto, T.; Nara, M.; Noguchi, T.; Saito, T.; Shida, Y. Vibrio alginolyticus, a TTX-producing bacterium isolated from the starfish astropecten polyacanthus. Nippon Suisan Gakkaishi, 1987, 53, 617-621.
[12]
Lee, M.J.; Jeong, D.Y.; Kim, W.S.; Kim, H.D.; Kim, C.H.; Park, W.W.; Park, Y.H.; Kim, K.S.; Kim, H.M.; Kim, D.S. A tetrodotoxin-producing vibrio strain, LM-1, from the puffer fish fugu vermicularis radiates. Appl. Environ. Microbiol., 2000, 66, 1698-1701.
[13]
Yang, G.; Xu, J.; Liang, S.; Ren, D.; Yan, X.; Bao, B. A novel TTX-producing aeromonas isolated from the ovary of takifugu obscurus. Toxicon, 2010, 56, 324-329.
[14]
Daly, J.W.; Gusovsky, F.; Myers, C.W.; Yotsu-Yamashita, M.; Yasumoto, T. First occurrence of tetrodotoxin in a dendrobatid frog (colostethus inguinalis), with further reports for the bufonid genus atelopus. Toxicon, 1994, 32, 279-285.
[15]
Pires, O.R.; Sebben, A.; Schwartz, E.F.; Bloch, C.; Morales, R.A.; Schwartz, C.A. The occurrence of 11-oxotetrodotoxin, a rare tetrodotoxin analogue, in the brachycephalidae frog brachycephalus ephippium. Toxicon, 2003, 42, 563-566.
[16]
Hwang, D.F.; Chueh, C.H.; Jeng, S.S. Occurrence of tetrodotoxin in the gastropod mollusk natica lineata (lined moon shell). Toxicon, 1990, 28, 21-27.
[17]
Huang, H.N.; Lin, J.; Lin, H.L. identification and quantification of tetrodotoxin in the marine gastropod nassarius by LC-MS. Toxicon, 2008, 51, 774-779.
[18]
Tsai, Y.H.; Ho, P.H.; Hwang, C.C.; Hwang, P.A.; Cheng, C.A.; Hwang, D.F. Tetrodotoxin in several species of xanthid crabs in southern Taiwan. Food Chem., 2006, 95, 205-212.
[19]
Konosu, S.; Inoue, A.; Noguchi, T.; Hashimoto, Y. Comparison of crab toxin with saxitoxin and tetrodotoxin. Tocixon, 1968, 6, 113-117.
[20]
Yasumoto, T.; Yotsu, M.; Murata, M.; Naoki, H. New tetrodotoxin analogs from the newt cynops ensicauda. J. Am. Chem. Soc., 1988, 110, 2344-2345.
[21]
Pires, O.R., Jr; Sebben, A.; Schwartz, E.F.; Morales, R.A.; Bloch, C., Jr; Schwartz, C.A. Further report of the occurrence of tetrodotoxin and new analogues in the anuran family brachycephalidae. Toxicon, 2005, 45, 73-79.
[22]
Abdul, M.; Hoosein, N. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res., 2002, 22, 1727-1730.
[23]
House, C.D.; Wang, B.D.; Ceniccola, K.; Williams, R.; Simaan, M.; Olender, J.; Patel, V.; Baptista-Hon, D.T.; Annunziata, C.M.; Gutkind, J.S.; Hales, T.G.; Lee, N.H. Voltage-gated na+ channel activity increases colon cancer transcriptional activity and invasion via persistent MAPK signaling. Sci. Rep., 2015, 5, 11541.
[24]
Fraser, S.P.; Diss, J.K.; Chioni, A.M.; Mycielska, M.E.; Pan, H.; Yamaci, R.F.; Pani, F.; Siwy, Z.; Krasowska, M.; Grzywna, Z.; Brackenbury, W.J.; Theodorou, D.; Koyutürk, M.; Kaya, H.; Battaloglu, E.; De Bella, M.T.; Slade, M.J.; Tolhurst, R.; Palmieri, C.; Jiang, J.; Latchman, D.S.; Coombes, R.C.; Djamgoz, M.B. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res., 2005, 11, 5381-5389.
[25]
El-Dayem, S.M.; Fouda, F.M.; Ali, E.H.; Motelp, B.A. The antitumor effects of tetrodotoxin and/or doxorubicin on Ehrlich ascites carcinoma-bearing female mice. Toxicol. Ind. Health, 2013, 29, 404-417.
[26]
Fouda, F.M. Anti-tumor activity of tetrodotoxin extracted from the masked puffer fish arothron diadematus. Egypt. J. Biol., 2005, 7, 1-13.
[27]
Cho, Y.E.; Lee, S.M.; Yoon, K.H.; Lim, J.S.; Lee, S.H.; Choi, D.Y.; Lee, J.D. The Antitumor mechanism and effects of tetrodotoxin. Acupunct., 2015, 32, 91-107.
[28]
Ku, B.; Shum, F.H.K. Analgesic composition and method. U.S. patent 6,780,866, February 05, 2002.
[29]
de Crevoisier, R.; Tucker, S.L.; Dong, L.; Mohan, R.; Cheung, R.; Cox, J.D.; Kuban, D.A. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2005, 62, 965-673.
[30]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46, 6387-6392.
[31]
Schwappach, D.L.B.; Wenrnli, W. Medication errors in chemotherapy: incidence, types and involvement of patients in prevention. Eur. J. Cancer Care , 2010, 19, 285-292.
[32]
Hamasaki, K.; Kogure, K.; Ohwada, K. A biological method for the quantitative measurement of tetrodotoxin (TTX): Tissue culture bioassay in combination with a water-soluble tetrazolium salt. Toxicon, 1996, 34, 490-495.
[33]
Campbell, K.; Vilariño, N.; Botana, L.M.; Elliott, C.T. A european perspective on progress in moving away from the mouse bioassay for marine-toxin analysis. Trends Analyt. Chem., 2011, 30, 239-253.
[34]
Reverté, L.; de la Iglesia, P.; del Río, V.; Campbell, K.; Elliott, C.T.; Kawatsu, K.; Katikou, P.; Diogène, J.; Campàs, M. Detection of tetrodotoxins in puffer fish by a self-assembled monolayer-based immunoassay and comparison with surface plasmon resonance, lc-ms/ms, and mouse bioassay. Anal. Chem., 2015, 87, 10839-10847.
[35]
Mishra, S.; Tripathi, R.M.; Bhalke, S.; Shukla, V.K.; Puranik, V.D. Determination of methylmercury and mercury(II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry. Anal. Chim. Acta, 2005, 551, 192-198.
[36]
Chen, C-Y.; Chou, H-N. Detection of tetrodotoxin by high performance liquid chromatography in lined-moon shell and puffer fish. Acta Zool. Taiwanica, 1998, 9, 41-48.
[37]
Colquhoun, D.; Henderson, R.; Ritchie, J.M. The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J. Physiol., 1972, 227, 95-126.
[38]
Mabbott, G.A. An introduction to cyclic voltammetry. J. Chem. Educ., 1983, 60, 697.
[39]
Ly, S.Y.; Jung, Y.S.; Kim, M.H.; Han, I. kwon; Jung, W.W.; Kim, H.S. Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry. Mikrochim. Acta, 2004, 146, 207-213.
[40]
Kao, C-Y.; Wu, B. Synthesis of specifically labeled tetrodotoxin. U.S. Patent 5,288,870, November 18 1991.
[41]
Hong, H.J.; Ly, S.Y. Modified synthesis of tetrodotoxin and novel toxicity diagnostic sensors. Sens. Lett., 2017, 15, 557-564.
[42]
Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of dna immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron., 2008, 23, 1291-1297.
[43]
Meric, B.; Kerman, K.; Ozkan, D.; Kara, P.; Erensoy, S.; Akarca, U.S.; Mascini, M.; Ozsoz, M. Electrochemical dna biosensor for the detection of tt and hepatitis b virus from pcr amplified real samples by using methylene blue. Talanta, 2002, 56, 837-846.
[44]
Maeda, M.; Mitsuhashi, Y.; Nakano, K.; Takagi, M. DNA-immobilized gold electrode for dna-binding drug sensor. Anal. Sci., 1992, 8, 83-84.
[45]
Ly, S.Y.; Yoo, H.S. Diagnostic assay of toxic zinc in an ex vivo cell using voltammetry. Toxicol. Res., 2012, 28, 123-127.
[46]
Ly, S.Y.; Pack, E.C.; Choi, D.W. Diagnosis of trace toxic uranium ions in organic liver cell. Toxicol. Res., 2014, 30, 117-120.
[47]
Lin, L.; Thongngamdee, S.; Wang, J.; Lin, Y.; Sadik, O.A.; Ly, S.Y. Adsorptive stripping voltammetric measurements of trace uranium at the bismuth film electrode. Anal. Chim. Acta, 2005, 535, 9-13.
[48]
Ly, S.Y.; Yoo, H.S.; Chun, S.K. Detection of trace metal in distilled alcoholic drinks. Food Chem., 2013, 137, 168-171.
[49]
Kuralay, F.; Erdem, A.; Abaci, S.; Özyörük, H.; Yildiz, A. Electrochemical biosensing of dna immobilized poly (vinylferrocenium) modified electrode. Electroanalysis, 2008, 20, 2563-2570.
[50]
Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Electrochemistry of dna at single-wall carbon nanotubes. Electroanalysis, 2004, 16, 140-144.
[51]
Qi, H.; Li, X.; Chen, P.; Zhang, C. Electrochemical detection of dna hybridization based on polypyrrole/ss-dna/multi-wall carbon nanotubes paste electrode. Talanta, 2007, 72, 1030-1035.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy