[1]
Oribayo, O.; Feng, X.; Rempel, G.L.; Pan, Q. Modification of formaldehyde-melamine-sodium bisulfite copolymer foam and its application as effective sorbents for clean up of oil spills. Chem. Eng. Sci., 2017, 160, 384-395.
[2]
Bilal, Y.; Ali, A.; Kaan, K.; Mevlut, A. Simple high‐performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4‐dinitrophenyl-hydrazine. J. Sep. Sci., 2016, 39, 2963-2969.
[3]
Wang, H.; Ding, J.; Du, X.B.; Sun, X.; Chen, L.G.; Zeng, Q.L.; Xu, Y.; Zhang, X.P.; Zhao, Q.; Ding, L. Determination of formaldehyde in fruit juice based on magnetic strong cation-exchange resin modified with 2,4-dinitrophenylhydrazine. Food Chem., 2012, 131, 380-385.
[4]
Yeh, T.S.; Lin, T.C.; Chen, C.C.; Wen, H.M. Analysis of free and bound formaldehyde in squid and squid products by gas chromatography-mass spectrometry. J. Food Drug Anal., 2013, 21, 190-197.
[5]
Shimomura, T.; Itoh, T.; Sumiya, T. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B , 2008, 135, 268-275.
[6]
Nau, P.; Koppmann, J.; Lackner, A.; Brockhinke, A. Detection of formaldehyde in flames using UV and MIR absorption spectroscopy. Z. Phys. Chem.(N F). , 2015, 229, 483-494.
[7]
Zeng, J.B.; Fan, S.G.; Zhao, C.Y. A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction. Chem. Commun. , 2014, 50, 8121-8123.
[8]
Ma, P.; Liang, F.; Wang, D.; Yang, Q.; Ding, Y.; Yu, Y.; Gao, D.; Song, D.; Wang, X. Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Mikrochim. Acta, 2015, 182, 863-869.
[9]
Gao, F.; Ma, S.Y.; Li, J.; Dai, K.; Xiao, X.C.; Zhao, D.; Gong, W.F. Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs. [J]. Carbon, 2017, 112, 131-141.
[10]
Zhang, J.; Yu, S.H. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale, 2014, 6, 4096-4101.
[11]
Zhou, C.H.; Mao, M.; Yuan, H.; Shen, H.B.; Wu, F.; Ma, L.; Li, L.S. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection. J. Nanopart. Res., 2013, 15, 1-11.
[12]
Zhao, D.; Chan, W.H.; He, Z.K.; Qiu, T. Quantum dot-ruthenium complex dyads: recognition of double-strand DNA through dual-color fluorescence detection. Anal. Chem., 2009, 81, 3537-3543.
[13]
Su, S.; Fan, J.W.; Xue, B.; Wang, L.H. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl. Mater. Interfaces, 2014, 6, 1152-1157.
[14]
Li, Y.; Ma, Q.; Liu, Z.P.; Su, X.G. A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle silica mesoporous microsphere for the detection of glucose. Anal. Chim. Acta, 2014, 840, 68-74.
[15]
Yan, P.P.; Zhang, J.; Tang, Q.H.; Li, J.G. A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine A using gold nanoparticles as substrates and electron transfer accelerators. Analyst , 2014, 139, 4365-4372.
[16]
Ma, Q.; Cui, H.L.; Su, X.G. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosens. Bioelectron., 2009, 25, 839-844.
[17]
Uchangi, S.A.; Praveena, B. Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity. Biosens. Bioelectron., 2016, 85, 240.
[18]
Uchangi, S.A.; Aaydha, C.V.; Munna, S.T. Quantum dots as nano plug-in’s for efficient NADH resonance energy routing. Biosens. Bioelectron., 2012, 38, 411-415.
[19]
Uchangi, S.A.; Praveena, B. Gold nanoparticle synthesis coupled to fluorescence turn-on for sensitive detection of formaldehyde using formaldehyde dehydrogenase. RSC Advances, 2016, 6, 54777-54784.
[20]
Ryu, J.K.; Cho, B.M.; Woo, H.G.; Cho, S.D.; Sohn, H. Fabrication and characterization of photoluminescent silicon nanoparticles for drug delivery applications. J. Nanosci. Nanotechnol., 2013, 13, 157-160.
[21]
Wu, S.C.; Zhong, Y.L.; Zhou, Y.F.; Song, B.; Chu, B.B.; Ji, X.Y.; Wu, Y.Y.; Su, Y.Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc., 2015, 137, 14726-14732.
[22]
Xu, X.L.; Ma, S.Y.; Hu, Y.; Zhao, D. The preparation of high-quality water-soluble silicon quantum dots and their application in the detection of formaldehyde. RSC Advances, 2016, 6, 98899-98907.
[23]
Guo, Y.M.; Zhang, L.M.; Cao, F.G.; Song, J.T. Hydrothermal synthesis of blue-emitting silicon quantum dots for fluorescent detection of hypochlorite in tap water. Anal. Methods-UK, 2016, 8, 2723-2728.
[24]
Yi, Y.L.; Zhu, G.B.; Liu, C.; Yao, S.Z. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal. Chem., 2013, 85, 11464-11470.