[1]
Yerra, V.G.; Negi, G.; Sharma, S.S.; Kumar, A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol., 2013, 1(1), 394-397.
[2]
Organization, W.H. Global report on diabetes; World Health Organization, 2016.
[3]
Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular risk factors: the Framingham study. Circulation, 1979, 59(1), 8-13.
[4]
Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, 2002, 287(18), 2414-2423.
[5]
Colhoun, H.M.; Betteridge, D.J.; Durrington, P.N.; Hitman, G.A.; Neil, H.A.W.; Livingstone, S.J.; Thomason, M.J.; Mackness, M.I.; Charlton-Menys, V.; Fuller, J.H. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): Multicentre randomised placebo-controlled trial. Lancet, 2004, 364(9435), 685-696.
[6]
Lindholm, L.H.; Ibsen, H.; Dahlöf, B.; Devereux, R.B.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Julius, S.; Kjeldsen, S.E.; Kristiansson, K. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet, 2002, 359(9311), 1004-1010.
[7]
Group, A.C. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2008, 2008(358), 2560-2572.
[8]
Yerra, V.G.; Kumar, A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Mol. Neurobiol., 2017, 54(3), 2301-2312.
[9]
Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 251.
[10]
Alonso, N.; Moliner, P.; Mauricio, D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv. Exp. Med. Biol., 2018, 1067, 197-217.
[11]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[12]
Sandireddy, R.; Yerra, V.G.; Areti, A.; Komirishetty, P.; Kumar, A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int. J. Endocrinol., 2014, 2014, 674987.
[13]
Negi, G.; Kumar, A.; Joshi, R.P.; Ruby, P.; Sharma, S.S. Oxidative stress and diabetic neuropathy: current status of antioxidants. Institute of Integrative Omics and Applied Biotechnology Journal, 2011, 2(6), 71-78.
[14]
Bidasee, K.R.; Nallani, K.; Yu, Y.; Cocklin, R.R.; Zhang, Y.; Wang, M.; Dincer, Ü.D.; Besch, H.R. Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/ calcium-release channels. Diabetes, 2003, 52(7), 1825-1836.
[15]
Cooper, M.E. Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. Am. J. Hypertens., 2004, 17(S3), 31S-38S.
[16]
Neely, J.; Rovetto, M.A.; Oram, J. Myocardial utilization of carbohydrate and lipids. Prog. Cardiovasc. Dis., 1972, 15(3), 289-329.
[17]
Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol., 2016, 12(3), 144.
[18]
du Toit, E.; Donner, D.G. Myocardial insulin resistance: An overview of its causes, effects, and potential therapy.Insulin Resistance; InTech, 2012.
[19]
Galadari, S.; Rahman, A.; Pallichankandy, S.; Galadari, A.; Thayyullathil, F. Role of ceramide in diabetes mellitus: Evidence and mechanisms. Lipids Health Dis., 2013, 12(1), 98.
[20]
Chong, Z.Z.; Maiese, K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc. Diabetol., 2012, 11(1), 45.
[21]
Wilson, A.J.; Gill, E.K.; Abudalo, R.A.; Edgar, K.S.; Watson, C.J.; Grieve, D.J. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting.Heart, 2017,
heartjnl-2017-311448,
[22]
Lebeche, D.; Davidoff, A.J.; Hajjar, R.J. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat. Rev. Cardiol., 2008, 5(11), 715.
[23]
Oliveira, S.M.J.; Ehtisham, J.; Redwood, C.S.; Ostman-Smith, I.; Blair, E.M.; Watkins, H. Mutation analysis of AMP-activated protein kinase subunits in inherited cardiomyopathies: implications for kinase function and disease pathogenesis. J. Mol. Cell. Cardiol., 2003, 35(10), 1251-1255.
[24]
Kewalramani, G.; Rodrigues, B. AMP-activated protein kinase in the heart: role in cardiac glucose and fatty acid metabolism. Clin. Lipidol., 2009, 4(5), 643-661.
[25]
Coort, S.L.; Bonen, A.; van der Vusse, G.J.; Glatz, J.F.; Luiken, J.J. Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol. Cell. Biochem., 2007, 299(1-2), 5-18.
[26]
Chan, A.Y.; Soltys, C-L.M.; Young, M.E.; Proud, C.G.; Dyck, J.R. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem., 2004, 279(31), 32771-32779.
[27]
Yerra, V.G.; Kalvala, A.K.; Kumar, A. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J. Nutr. Biochem., 2017, 47, 41-52.
[28]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132.
[29]
Gonzalez, C.D.; Lee, M-S.; Marchetti, P.; Pietropaolo, M.; Towns, R.; Vaccaro, M.I.; Watada, H.; Wiley, J.W. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 2011, 7(1), 2-11.
[30]
Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y-J. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab., 2011, 13(4), 376-388.
[31]
Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[32]
Mihaylova, M.M.; Shaw, R.J. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat. Cell Biol., 2011, 13(9), 1016.
[33]
Montgomery, M.K.; Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect., 2015, 4(1), R1-R15.
[34]
Ewart, M-A.; Kennedy, S. AMPK and vasculoprotection. Pharmacol. Ther., 2011, 131(2), 242-253.
[35]
Dong, Y.; Zhang, M.; Liang, B.; Xie, Z.; Zhao, Z.; Asfa, S.; Choi, H.C.; Zou, M-H. Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation, 2010, 121(6), 792-803.
[36]
Goodman, M.; Liu, Z.; Zhu, P.; Li, J. AMPK Activators as a drug
for diabetes, cancer and cardiovascular disease. Pharm. Regul.
Affairs: open access., 2014, 3(2), pii 118.
[37]
Cheng, Z.; Pang, T.; Gu, M.; Gao, A-H.; Xie, C-M.; Li, J-Y.; Nan, F-J.; Li, J. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochimica et Biophysica Acta (BBA)-. General Subjects, 2006, 1760(11), 1682-1689.
[38]
Chen, K.; Li, G.; Geng, F.; Zhang, Z.; Li, J.; Yang, M.; Dong, L.; Gao, F. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K–Akt signaling in diabetic rats. Apoptosis, 2014, 19(6), 946-957.
[39]
Wang, Y.; Huang, Y.; Lam, K.S.; Li, Y.; Wong, W.T.; Ye, H.; Lau, C-W.; Vanhoutte, P.M.; Xu, A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc. Res., 2009, 82(3), 484-492.
[40]
Wang, Q.; Zhang, M.; Liang, B.; Shirwany, N.; Zhu, Y.; Zou, M-H. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: The role of uncoupling protein 2. PLoS One, 2011, 6(9), e25436.
[41]
Kumar, A.; Negi, G.; Sharma, S. Neuroprotection by resveratrol in diabetic neuropathy: Concepts & mechanisms. Curr. Med. Chem., 2013, 20(36), 4640-4645.
[42]
Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13632-13637.
[43]
Chan, A.Y.; Dolinsky, V.W.; Soltys, C-L.M.; Viollet, B.; Baksh, S.; Light, P.E.; Dyck, J.R. Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J. Biol. Chem., 2008, 283(35), 24194-24201.
[44]
Um, J-H.; Park, S-J.; Kang, H.; Yang, S.; Foretz, M.; McBurney, M.W.; Kim, M.K.; Viollet, B.; Chung, J.H. AMP-activated protein kinase–deficient mice are resistant to the metabolic effects of resveratrol. Diabetes, 2010, 59(3), 554-563.
[45]
Meng, Z.; Jing, H.; Gan, L.; Li, H.; Luo, B. Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction: Role of AMPK, SIRT1, and mitochondrial function. Am. J. Transl. Res., 2016, 8(6), 2641.
[46]
Cheng, P.W.; Ho, W.Y.; Su, Y.T.; Lu, P.J.; Chen, B.Z.; Cheng, W.H.; Lu, W.H.; Sun, G.C.; Yeh, T.C.; Hsiao, M. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism. Br. J. Pharmacol., 2014, 171(11), 2739-2750.
[47]
Corton, J.M.; Gillespie, J.G.; Hawley, S.A.; Hardie, D.G. 5-Aminoimidazole-4-Carboxamide Ribonucleoside. FEBS J., 1995, 229(2), 558-565.
[48]
Chen, B-l.; Ma, Y-d.; Meng, R-S.; Xiong, Z-j.; Wang, H-n.; Zeng, J-y.; Liu, C.; Dong, Y-g. Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MuRF1 signaling pathway in vitro. Acta Pharmacol. Sin., 2010, 31(7), 798.
[49]
Bradley, E.A.; Eringa, E.C.; Stehouwer, C.D.; Korstjens, I.; van Nieuw Amerongen, G.P.; Musters, R.; Sipkema, P.; Clark, M.G.; Rattigan, S. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler. Thromb. Vasc. Biol., 2010, 30(6), 1137-1142.
[50]
Kristiansen, S.B.; Solskov, L.; Jessen, N.; Løfgren, B.; Schmitz, O.; Nielsen-Kudsk, J.E.; Nielsen, T.T.; Bøtker, H.E.; Lund, S. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases myocardial glucose uptake during reperfusion and induces late pre-conditioning: potential role of AMP-activated protein kinase. Basic Clin. Pharmacol. Toxicol., 2009, 105(1), 10-16.
[51]
Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J., 2000, 348(3), 607-614.
[52]
Group, U.P.D.S. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998, 352(9131), 854-865.
[53]
Calvert, J.W.; Gundewar, S.; Jha, S.; Greer, J.J.; Bestermann, W.H.; Tian, R.; Lefer, D.J. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS–mediated signaling. Diabetes, 2008, 57(3), 696-705.
[54]
Fu, Y-n.; Xiao, H.; Ma, X-w.; Jiang, S-y.; Xu, M.; Zhang, Y-y. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation. Acta Pharmacol. Sin., 2011, 32(7), 879.
[55]
Xie, Z.; Lau, K.; Eby, B.; Lozano, P.; He, C.; Pennington, B.; Li, H.; Rathi, S.; Dong, Y.; Tian, R. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 2011, 60(6), 1770-1778.
[56]
Wang, X.; Yang, L.; Kang, L.; Li, J.; Yang, L.; Zhang, J.; Liu, J.; Zhu, M.; Zhang, Q.; Shen, Y. Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS One, 2017, 12(8), e0182777.
[57]
Brunmair, B.; Staniek, K.; Gras, F.; Scharf, N.; Althaym, A.; Clara, R.; Roden, M.; Gnaiger, E.; Nohl, H.; Waldhäusl, W. Thiazolidinediones, like metformin, inhibit respiratory complex I. Diabetes, 2004, 53(4), 1052-1059.
[58]
Hu, Y.; Liu, H.B.; Simpson, R.W.; Dear, A.E. PPARγ-independent thiazolidinedione-mediated inhibition of NUR77 expression in vascular endothelial cells. J. Endocrinol., 2011, 208(1), R1-R7.
[59]
Boyle, J.G.; Logan, P.J.; Ewart, M-A.; Reihill, J.A.; Ritchie, S.A.; Connell, J.M.; Cleland, S.J.; Salt, I.P. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J. Biol. Chem., 2008, 283(17), 11210-11217.
[60]
Ceolotto, G.; Gallo, A.; Papparella, I.; Franco, L.; Murphy, E.; Iori, E.; Pagnin, E.; Fadini, G.P.; Albiero, M.; Semplicini, A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD (P) H oxidase via AMPK-dependent mechanism. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2627-2633.
[61]
Göransson, O.; McBride, A.; Hawley, S.A.; Ross, F.A.; Shpiro, N.; Foretz, M.; Viollet, B.; Hardie, D.G.; Sakamoto, K. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem., 2007, 282(45), 32549-32560.
[62]
Kim, A.S.; Miller, E.J.; Wright, T.M.; Li, J.; Qi, D.; Atsina, K.; Zaha, V.; Sakamoto, K.; Young, L.H. A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. J. Mol. Cell. Cardiol., 2011, 51(1), 24-32.
[63]
Timmermans, A.D.; Balteau, M.; Gélinas, R.; Renguet, E.; Ginion, A.; de Meester, C.; Sakamoto, K.; Balligand, J-L.; Bontemps, F.; Vanoverschelde, J-L. A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am. J. Physiol. Heart Circ. Physiol., 2014, 306(12), H1619-H1630.