Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Transition Metal Catalyzed Aerobic Asymmetric Coupling of 2-Naphthols

Author(s): Nikolay V. Tkachenko* and Konstantin P. Bryliakov*

Volume 16, Issue 4, 2019

Page: [392 - 398] Pages: 7

DOI: 10.2174/1570193X15666180418153713

Abstract

Optically pure 1,1′-bi-2-naphthol (BINOL) and its derivatives are among the most widely used chiral ligands and auxiliaries for asymmetric synthesis. These molecules also occur as scaffolds for various biologically active compounds. Direct oxidative coupling of 2-naphthols in the presence of chiral catalysts provides a powerful strategy for the synthesis of optically pure 1,1′-bi-2-naphthols (BINOLS). In 1978, Wynberg with co-workers discovered that a copper salt with chiral auxiliary mediates the oxidative coupling of 2-naphthols, which can be taken as the starting point for further progress in this area. Over the last decades, a number of efficient and stereoselective catalyst systems have been developed. This mini-review surveys the aerobic asymmetric oxidative coupling of 2-naphthols catalyzed by transition metal complexes reported since 1995.

Keywords: Asymmetric synthesis, 2-naphthol, BINOL, aerobic oxidative coupling, transition metals, mechanism.

Graphical Abstract

[1]
Cooke, A.S.; Harris, M.M. Ground-state strain and other factors influencing optical stability in the l,1′-binaphthyl series. J. Chem. Soc., 1963, 2365-2373.
[2]
Meca, L.; Reha, D.; Havlas, Z. Racemization barriers of 1,1′-binaphthyl and 1,1′-binaphthalene-2,2′-diol: A DFT study. J. Org. Chem., 2003, 68, 5677-5680.
[3]
Mikami, K.; Aikawa, K.; Yusa, Y.; Jodry, J.J.; Yamanaka, M. Tropos or atropos? That is the question! Synlett, 2002, 1561-1578.
[4]
Chen, Y.; Yekta, S.; Yudin, A.K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev., 2003, 103, 3155-3211.
[5]
Brunel, J.M. Update 1 of BINOL: A versatile chiral reagent. Chem. Rev., 2007, 107, PR1-PR45.
[6]
Pu, L. 1,1′-Binaphthyl dimers, oligomers, and polymers: Molecular recognition, asymmetric catalysis, and new materials. Chem. Rev., 1998, 98, 2405-2494.
[7]
Morgan, B.J.; Xie, X.; Phuan, P.W.; Kozlowski, M.C. Enantioselective synthesis of binaphthyl polymers using chiral asymmetric phenolic coupling catalysts: Oxidative coupling and tandem glaser/oxidative coupling. J. Org. Chem., 2007, 72, 6171-6182.
[8]
DiVirgilio, E.S.; Dugan, E.C.; Mulrooney, C.A.; Kozlowski, M.C. Asymmetric total synthesis of nigerone. Org. Lett., 2007, 9, 385-388.
[9]
Kobayashi, E.; Ando, K.; Nakano, H.; Iida, T.; Ohno, H.; Morimoto, M.; Tamaoki, T. Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. J. Antibiot., 1989, 10, 1470-1474.
[10]
Brunel, J.M.; Buono, G. A new and efficient method for the resolution of 1,1′-binaphtha1ene-2,2′-diol. J. Org. Chem., 1993, 58, 7313-7314.
[11]
Fabbri, D.; Delogu, G. A widely applicable method of resolution of binaphthyls: Preparation of enantiomerically pure 1,1′- binaphthalene-2,2′-diol, 1,1′-binaphthalene-2,2′-dithiol, 2′-mercapto-1,1′-binaphthalen-2-ol, and 1,1′-binaphthalene-8,8;-diol. J. Org. Chem., 1995, 60, 6599-6601.
[12]
Wang, M.; Liu, S.Z.; Liu, J.; Hu, B.F. Diastereoselective synthesis of 1,1′-binaphthy-2,2′-diol. J. Org. Chem., 1995, 60, 7364-7365.
[13]
Wu, S.H.; Zhang, L.Q.; Chen, C.S.; Girdaukas, G.; Sih, C.J. Bifunctional chiral synthons via biochemical methods.: VII. Optically-active 2,2′-dihydroxy-1,1′-binaphthyl. Tetrahedron Lett., 1985, 26, 4323-4326.
[14]
Kazlauskas, R.J. Resolution of binaphthols and spirobiindanols using cholesterol esterase. J. Am. Chem. Soc., 1989, 111, 4953-4959.
[15]
Lin, G.; Liu, S.H.; Chen, S.J.; Wu, F.C.; Sun, H.L. Triple enantioselection by an enzyme-catalyzed transacylation reaction. Tetrahedron Lett., 1993, 34, 6057-6058.
[16]
Feringa, B.; Wynberg, H. Biomimetic asymmetric oxidative coupling of phenols. Bioorg. Chem., 1978, 7, 397-408.
[17]
Brussee, J.; Groenendijk, J.L.G.; Koppele, J.M.; Jansen, A.C.A. On the mechanism of the formation of S(-)-(1,1′-binaphthalene)-2,2′-diol via Copper(II)amine complexes. Tetrahedron, 1985, 41, 3313-3319.
[18]
Smrčina, M.; Lorenc, M.; Hanuš, V.; Sedmera, P.; Kočovský, P. Synthesis of enantiomerically pure 2,2′-dihydroxy-1,1′-binaphthyl, 2,2′-diamino-1,1′-binaphthyl, and 2-amino-2′-hydroxy-1,1′-binaph-thyl. Comparison of processes operating as diastereoselective crystallization and as second-order asymmetric transformation. J. Org. Chem., 1992, 57, 1917-1920.
[19]
Smrčina, M.; Polakova, J.; Vyskočil, S.; Kočovský, P. Synthesis of enantiomerically pure binaphthyl derivatives mechanism of the enantioselective, oxidative coupling of naphthols and designing a catalytic cycle. J. Org. Chem., 1993, 58, 4534-4538.
[20]
Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S. Catalytic asymmetric synthesis of binaphthol derivatives by aerobic oxidative coupling of 3-hydroxy-2-naphthoates with chiral diamine-copper complex. Tetrahedron Lett., 1995, 52, 9519-9520.
[21]
Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S. Enantioselective synthesis of binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine-copper complexes. J. Org. Chem., 1999, 64, 2264-2271.
[22]
Prause, F.; Arensmeyer, B.; Fröhlich, B.; Breuning, M. In-depth structure-selectivity investigations on asymmetric, copper-catalyzed oxidative biaryl coupling in the presence of 5-cis-substituted prolinamines. Catal. Sci. Technol., 2015, 5, 2215-2226.
[23]
Li, X.; Yang, J.; Kozlowski, M.C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org. Lett., 2001, 3, 1137-1140.
[24]
Li, X.; Hewgley, B.; Mulrooney, C.A.; Yang, J.; Kozlowski, M.C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes: Efficient formation of chiral functionalized BINOL derivatives. J. Org. Chem., 2003, 68, 5500-5511.
[25]
Hewgley, J.B.; Stahl, S.S.; Kozlowski, M.C. Mechanistic study of asymmetric oxidative biaryl coupling: Evidence for self-processing of the copper catalyst to achieve control of oxidase vs. oxygenase activity. J. Am. Chem. Soc., 2008, 130, 12232-12233.
[26]
Caselli, A.; Giovenzana, G.B.; Palmisano, G.; Sisti, M.; Pilati, T. Synthesis of C2-symmetrical diamine based on (1R)-(+)-camphor and application to oxidative aryl coupling of naphthols. Tetrahedron Asymmetry, 2003, 14, 1451-1454.
[27]
Gao, J.; Reibenspies, J.H.; Martell, A.E. Structurally defined catalysts for enantioselective oxidative coupling reactions. Angew. Chem. Int. Ed., 2003, 42, 6008-6012.
[28]
Kim, K.H.; Lee, D.W.; Lee, Y.S.; Ko, D.H.; Ha, D.C. Enantioselective oxidative coupling of methyl 3-hydroxy-2-naphthoate using mono-N-alkylated octahydrobinaphthyl-2,2′-diamine ligand. Tetrahedron, 2004, 60, 9037-9042.
[29]
Alamsetti, S.K.; Poonguzhali, E.; Ganapathy, D.; Sekar, G. Enantioselective oxidative coupling of 2-naphthol derivatives by Copper-(R)-1,1′-Binaphthyl-2,2′-diamine-TEMPO catalyst. Adv. Synth. Catal., 2013, 355, 2803-2808.
[30]
Zhang, Q.; Cui, X.; Chen, L.; Lui, H.; Wu, Y. Syntheses of chiral ferrocenophanes and their application to asymmetric catalysis. Eur. J. Org. Chem., 2014, 7823-7829.
[31]
Adão, P.; Barroso, S.; Carvalho, M.F.N.N.; Teixeira, C.M.; Kuznetsov, M.L.; Pessoa, J.C. Amino acid derived Cu II compounds as catalysts for asymmetric oxidative coupling of 2-naphthol. Dalton Trans., 2015, 44, 1612-1626.
[32]
Temma, T.; Habaue, S. Highly selective oxidative cross-coupling of 2-naphthol derivatives with chiral copper(I)–bisoxazoline catalysts. Tetrahedron Lett., 2005, 46, 5655-5657.
[33]
Temma, T.; Hatano, B.; Habaue, S. Cu(I)-catalyzed asymmetric oxidative cross-coupling of 2-naphthol derivatives. Tetrahedron, 2006, 62, 8559-8563.
[34]
Temma, T.; Hatano, B.; Habaue, S. Copper(I) catalyzed asymmetric oxidative cross-coupling copolymerization leading to alternating copolymers. Polymer, 2006, 47, 1845-1851.
[35]
Yusa, Y.; Kaito, I.; Akiyama, K.; Mikami, K. Asymmetric catalysis of homo-coupling of 3-substituted naphthylamine and hetero-coupling with 3-substituted naphthol leading to 3,3′-dimethyl-2,2′-diaminobinaphthyl and -2-amino-2′-hydroxybinaphthyl. Chirality, 2010, 22, 224-228.
[36]
Chu, C.Y.; Hwang, D.R.; Wang, S.K.; Uang, B.J. Chiral oxovanadium complex catalyzed enantioselective oxidative coupling of 2-naphthols. Chem. Commun., 2001, 980-981.
[37]
Chu, C.Y.; Uang, B.J. Catalytic enantioselective coupling of 2-naphthols by new chiral oxovanadium complexes bearing a self accelerating functional group. Tetrahedron Asymmetry, 2003, 14, 53-55.
[38]
Hon, S.W.; Li, C.H.; Kuo, J.H.; Barhate, N.B.; Liu, Y.H.; Wang, Y.; Chen, C.T. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate Oxovanadium(IV) complexes. Org. Lett., 2001, 3, 869-972.
[39]
Barhate, N.B.; Chen, C.T. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates. Org. Lett., 2002, 4, 2529-2532.
[40]
Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Chem. Commun., 2002, 914-915.
[41]
Guo, Q.X.; Wu, Z.J.; Luo, Z.B.; Liu, Q.Z.; Ye, J.L.; Luo, S.W.; Cun, L.F.; Gong, L.Z. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant. J. Am. Chem. Soc., 2007, 129, 13927-13938.
[42]
Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Novel achiral biphenol-derived diastereomeric oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Angew. Chem. Int. Ed., 2002, 41, 4532-4535.
[43]
Somei, H.; Asano, Y.; Yoshida, T.; Takizawa, S.; Yamataka, H.; Sasai, H. Dual activation in a homolytic coupling reaction promoted by an enantioselective dinuclear vanadium(IV) catalyst. Tetrahedron Lett., 2004, 45, 1841-1844.
[44]
Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. One-pot preparation of chiral dinuclear vanadium(V) complex. Synlett, 2009, 10, 1667-1669.
[45]
Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron Asymmetry, 2015, 26, 613-616.
[46]
Irie, R.; Masutani, K.; Katsuki, T. Asymmetric aerobic oxidative coupling of 2-naphthol derivatives catalyzed by photo-activated chiral (NO)Ru(II)-salen complex. Synlett, 2000, 10, 1433-1436.
[47]
Tanaka, H.; Nishikawa, H.; Uchida, T.; Katsuki, T. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator. J. Am. Chem. Soc., 2010, 132, 12034-12041.
[48]
Irie, R.; Katsuki, T. Selective aerobic oxidation of hydroxy compounds catalyzed by photoactivated ruthenium-salen complexes (selective catalytic aerobic oxidation). Chem. Rec., 2004, 4, 96-109.
[49]
Egami, H.; Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: Oxidative coupling of 2-naphthols. J. Am. Chem. Soc., 2009, 131, 6082-6083.
[50]
Nature, S.; Parnes, R.; Toste, F.D.; Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc., 2016, 138, 16553-16560.
[51]
Tkachenko, N.V.; Lyakin, O.Y.; Samsonenko, D.G.; Talsi, E.P.; Bryliakov, K.P. Highly efficient asymmetric aerobic oxidative coupling of 2-naphthols in the presence of bioinspired iron aminopyridine complexes. Catal. Commun., 2018, 104, 112-117.
[52]
Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. Enantioenriched synthesis of C1-Symmetric BINOLs: Iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight. J. Am. Chem. Soc., 2010, 132, 13633-13635.
[53]
Matsumoto, K.; Egami, H.; Oguma, T.; Katsuki, T. What factors influence the catalytic activity of iron-salan complexes for aerobic oxidative coupling of 2-naphthols? Chem. Commun., 2012, 48, 5823-5825.
[54]
Morgan, B.J.; Dey, S.; Johnson, S.W.; Kozlowski, M.C. Design, synthesis, and investigation of protein kinase c inhibitors: Total syntheses of (+)-calphostin d, (+)-phleichrome, cercosporin, and new photoactive perylenequinones. J. Am. Chem. Soc., 2009, 131, 9413-9425.
[55]
Mulrooney, C.A.; Li, X.; Di Virgilio, E.S.; Kozlowski, M.C. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling. J. Am. Chem. Soc., 2003, 125, 6856-6857.
[56]
Bryliakov, K.P. Enantioselective aerobic oxidative coupling of 2- naphthols. In: Enviromentally sustainable catalytic asymmetric oxidations; CRC Press; Taylor & Francis Group: Boca Raton, 2014.
[57]
Wang, H. Recent advances in asymmetric oxidative coupling of 2-naphthol and its derivatives. Chirality, 2010, 22, 827-837.

© 2025 Bentham Science Publishers | Privacy Policy