[1]
Cooke, A.S.; Harris, M.M. Ground-state strain and other factors influencing optical stability in the l,1′-binaphthyl series. J. Chem. Soc., 1963, 2365-2373.
[2]
Meca, L.; Reha, D.; Havlas, Z. Racemization barriers of 1,1′-binaphthyl and 1,1′-binaphthalene-2,2′-diol: A DFT study. J. Org. Chem., 2003, 68, 5677-5680.
[3]
Mikami, K.; Aikawa, K.; Yusa, Y.; Jodry, J.J.; Yamanaka, M. Tropos or atropos? That is the question! Synlett, 2002, 1561-1578.
[4]
Chen, Y.; Yekta, S.; Yudin, A.K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev., 2003, 103, 3155-3211.
[5]
Brunel, J.M. Update 1 of BINOL: A versatile chiral reagent. Chem. Rev., 2007, 107, PR1-PR45.
[6]
Pu, L. 1,1′-Binaphthyl dimers, oligomers, and polymers: Molecular recognition, asymmetric catalysis, and new materials. Chem. Rev., 1998, 98, 2405-2494.
[7]
Morgan, B.J.; Xie, X.; Phuan, P.W.; Kozlowski, M.C. Enantioselective synthesis of binaphthyl polymers using chiral asymmetric phenolic coupling catalysts: Oxidative coupling and tandem glaser/oxidative coupling. J. Org. Chem., 2007, 72, 6171-6182.
[8]
DiVirgilio, E.S.; Dugan, E.C.; Mulrooney, C.A.; Kozlowski, M.C. Asymmetric total synthesis of nigerone. Org. Lett., 2007, 9, 385-388.
[9]
Kobayashi, E.; Ando, K.; Nakano, H.; Iida, T.; Ohno, H.; Morimoto, M.; Tamaoki, T. Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. J. Antibiot., 1989, 10, 1470-1474.
[10]
Brunel, J.M.; Buono, G. A new and efficient method for the resolution of 1,1′-binaphtha1ene-2,2′-diol. J. Org. Chem., 1993, 58, 7313-7314.
[11]
Fabbri, D.; Delogu, G. A widely applicable method of resolution of binaphthyls: Preparation of enantiomerically pure 1,1′- binaphthalene-2,2′-diol, 1,1′-binaphthalene-2,2′-dithiol, 2′-mercapto-1,1′-binaphthalen-2-ol, and 1,1′-binaphthalene-8,8;-diol. J. Org. Chem., 1995, 60, 6599-6601.
[12]
Wang, M.; Liu, S.Z.; Liu, J.; Hu, B.F. Diastereoselective synthesis of 1,1′-binaphthy-2,2′-diol. J. Org. Chem., 1995, 60, 7364-7365.
[13]
Wu, S.H.; Zhang, L.Q.; Chen, C.S.; Girdaukas, G.; Sih, C.J. Bifunctional chiral synthons via biochemical methods.: VII. Optically-active 2,2′-dihydroxy-1,1′-binaphthyl. Tetrahedron Lett., 1985, 26, 4323-4326.
[14]
Kazlauskas, R.J. Resolution of binaphthols and spirobiindanols using cholesterol esterase. J. Am. Chem. Soc., 1989, 111, 4953-4959.
[15]
Lin, G.; Liu, S.H.; Chen, S.J.; Wu, F.C.; Sun, H.L. Triple enantioselection by an enzyme-catalyzed transacylation reaction. Tetrahedron Lett., 1993, 34, 6057-6058.
[16]
Feringa, B.; Wynberg, H. Biomimetic asymmetric oxidative coupling of phenols. Bioorg. Chem., 1978, 7, 397-408.
[17]
Brussee, J.; Groenendijk, J.L.G.; Koppele, J.M.; Jansen, A.C.A. On the mechanism of the formation of S(-)-(1,1′-binaphthalene)-2,2′-diol via Copper(II)amine complexes. Tetrahedron, 1985, 41, 3313-3319.
[18]
Smrčina, M.; Lorenc, M.; Hanuš, V.; Sedmera, P.; Kočovský, P. Synthesis of enantiomerically pure 2,2′-dihydroxy-1,1′-binaphthyl, 2,2′-diamino-1,1′-binaphthyl, and 2-amino-2′-hydroxy-1,1′-binaph-thyl. Comparison of processes operating as diastereoselective crystallization and as second-order asymmetric transformation. J. Org. Chem., 1992, 57, 1917-1920.
[19]
Smrčina, M.; Polakova, J.; Vyskočil, S.; Kočovský, P. Synthesis of enantiomerically pure binaphthyl derivatives mechanism of the enantioselective, oxidative coupling of naphthols and designing a catalytic cycle. J. Org. Chem., 1993, 58, 4534-4538.
[20]
Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S. Catalytic asymmetric synthesis of binaphthol derivatives by aerobic oxidative coupling of 3-hydroxy-2-naphthoates with chiral diamine-copper complex. Tetrahedron Lett., 1995, 52, 9519-9520.
[21]
Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S. Enantioselective synthesis of binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine-copper complexes. J. Org. Chem., 1999, 64, 2264-2271.
[22]
Prause, F.; Arensmeyer, B.; Fröhlich, B.; Breuning, M. In-depth structure-selectivity investigations on asymmetric, copper-catalyzed oxidative biaryl coupling in the presence of 5-cis-substituted prolinamines. Catal. Sci. Technol., 2015, 5, 2215-2226.
[23]
Li, X.; Yang, J.; Kozlowski, M.C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org. Lett., 2001, 3, 1137-1140.
[24]
Li, X.; Hewgley, B.; Mulrooney, C.A.; Yang, J.; Kozlowski, M.C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes: Efficient formation of chiral functionalized BINOL derivatives. J. Org. Chem., 2003, 68, 5500-5511.
[25]
Hewgley, J.B.; Stahl, S.S.; Kozlowski, M.C. Mechanistic study of asymmetric oxidative biaryl coupling: Evidence for self-processing of the copper catalyst to achieve control of oxidase vs. oxygenase activity. J. Am. Chem. Soc., 2008, 130, 12232-12233.
[26]
Caselli, A.; Giovenzana, G.B.; Palmisano, G.; Sisti, M.; Pilati, T. Synthesis of C2-symmetrical diamine based on (1R)-(+)-camphor and application to oxidative aryl coupling of naphthols. Tetrahedron Asymmetry, 2003, 14, 1451-1454.
[27]
Gao, J.; Reibenspies, J.H.; Martell, A.E. Structurally defined catalysts for enantioselective oxidative coupling reactions. Angew. Chem. Int. Ed., 2003, 42, 6008-6012.
[28]
Kim, K.H.; Lee, D.W.; Lee, Y.S.; Ko, D.H.; Ha, D.C. Enantioselective oxidative coupling of methyl 3-hydroxy-2-naphthoate using mono-N-alkylated octahydrobinaphthyl-2,2′-diamine ligand. Tetrahedron, 2004, 60, 9037-9042.
[29]
Alamsetti, S.K.; Poonguzhali, E.; Ganapathy, D.; Sekar, G. Enantioselective oxidative coupling of 2-naphthol derivatives by Copper-(R)-1,1′-Binaphthyl-2,2′-diamine-TEMPO catalyst. Adv. Synth. Catal., 2013, 355, 2803-2808.
[30]
Zhang, Q.; Cui, X.; Chen, L.; Lui, H.; Wu, Y. Syntheses of chiral ferrocenophanes and their application to asymmetric catalysis. Eur. J. Org. Chem., 2014, 7823-7829.
[31]
Adão, P.; Barroso, S.; Carvalho, M.F.N.N.; Teixeira, C.M.; Kuznetsov, M.L.; Pessoa, J.C. Amino acid derived Cu II compounds as catalysts for asymmetric oxidative coupling of 2-naphthol. Dalton Trans., 2015, 44, 1612-1626.
[32]
Temma, T.; Habaue, S. Highly selective oxidative cross-coupling of 2-naphthol derivatives with chiral copper(I)–bisoxazoline catalysts. Tetrahedron Lett., 2005, 46, 5655-5657.
[33]
Temma, T.; Hatano, B.; Habaue, S. Cu(I)-catalyzed asymmetric oxidative cross-coupling of 2-naphthol derivatives. Tetrahedron, 2006, 62, 8559-8563.
[34]
Temma, T.; Hatano, B.; Habaue, S. Copper(I) catalyzed asymmetric oxidative cross-coupling copolymerization leading to alternating copolymers. Polymer, 2006, 47, 1845-1851.
[35]
Yusa, Y.; Kaito, I.; Akiyama, K.; Mikami, K. Asymmetric catalysis of homo-coupling of 3-substituted naphthylamine and hetero-coupling with 3-substituted naphthol leading to 3,3′-dimethyl-2,2′-diaminobinaphthyl and -2-amino-2′-hydroxybinaphthyl. Chirality, 2010, 22, 224-228.
[36]
Chu, C.Y.; Hwang, D.R.; Wang, S.K.; Uang, B.J. Chiral oxovanadium complex catalyzed enantioselective oxidative coupling of 2-naphthols. Chem. Commun., 2001, 980-981.
[37]
Chu, C.Y.; Uang, B.J. Catalytic enantioselective coupling of 2-naphthols by new chiral oxovanadium complexes bearing a self accelerating functional group. Tetrahedron Asymmetry, 2003, 14, 53-55.
[38]
Hon, S.W.; Li, C.H.; Kuo, J.H.; Barhate, N.B.; Liu, Y.H.; Wang, Y.; Chen, C.T. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate Oxovanadium(IV) complexes. Org. Lett., 2001, 3, 869-972.
[39]
Barhate, N.B.; Chen, C.T. Catalytic asymmetric oxidative couplings of 2-naphthols by tridentate N-ketopinidene-based vanadyl dicarboxylates. Org. Lett., 2002, 4, 2529-2532.
[40]
Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. The rational design of novel chiral oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Chem. Commun., 2002, 914-915.
[41]
Guo, Q.X.; Wu, Z.J.; Luo, Z.B.; Liu, Q.Z.; Ye, J.L.; Luo, S.W.; Cun, L.F.; Gong, L.Z. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant. J. Am. Chem. Soc., 2007, 129, 13927-13938.
[42]
Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Novel achiral biphenol-derived diastereomeric oxovanadium(IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Angew. Chem. Int. Ed., 2002, 41, 4532-4535.
[43]
Somei, H.; Asano, Y.; Yoshida, T.; Takizawa, S.; Yamataka, H.; Sasai, H. Dual activation in a homolytic coupling reaction promoted by an enantioselective dinuclear vanadium(IV) catalyst. Tetrahedron Lett., 2004, 45, 1841-1844.
[44]
Takizawa, S.; Rajesh, D.; Katayama, T.; Sasai, H. One-pot preparation of chiral dinuclear vanadium(V) complex. Synlett, 2009, 10, 1667-1669.
[45]
Sako, M.; Takizawa, S.; Yoshida, Y.; Sasai, H. Enantioselective and aerobic oxidative coupling of 2-naphthol derivatives using chiral dinuclear vanadium(V) complex in water. Tetrahedron Asymmetry, 2015, 26, 613-616.
[46]
Irie, R.; Masutani, K.; Katsuki, T. Asymmetric aerobic oxidative coupling of 2-naphthol derivatives catalyzed by photo-activated chiral (NO)Ru(II)-salen complex. Synlett, 2000, 10, 1433-1436.
[47]
Tanaka, H.; Nishikawa, H.; Uchida, T.; Katsuki, T. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator. J. Am. Chem. Soc., 2010, 132, 12034-12041.
[48]
Irie, R.; Katsuki, T. Selective aerobic oxidation of hydroxy compounds catalyzed by photoactivated ruthenium-salen complexes (selective catalytic aerobic oxidation). Chem. Rec., 2004, 4, 96-109.
[49]
Egami, H.; Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: Oxidative coupling of 2-naphthols. J. Am. Chem. Soc., 2009, 131, 6082-6083.
[50]
Nature, S.; Parnes, R.; Toste, F.D.; Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc., 2016, 138, 16553-16560.
[51]
Tkachenko, N.V.; Lyakin, O.Y.; Samsonenko, D.G.; Talsi, E.P.; Bryliakov, K.P. Highly efficient asymmetric aerobic oxidative coupling of 2-naphthols in the presence of bioinspired iron aminopyridine complexes. Catal. Commun., 2018, 104, 112-117.
[52]
Egami, H.; Matsumoto, K.; Oguma, T.; Kunisu, T.; Katsuki, T. Enantioenriched synthesis of C1-Symmetric BINOLs: Iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight. J. Am. Chem. Soc., 2010, 132, 13633-13635.
[53]
Matsumoto, K.; Egami, H.; Oguma, T.; Katsuki, T. What factors influence the catalytic activity of iron-salan complexes for aerobic oxidative coupling of 2-naphthols? Chem. Commun., 2012, 48, 5823-5825.
[54]
Morgan, B.J.; Dey, S.; Johnson, S.W.; Kozlowski, M.C. Design, synthesis, and investigation of protein kinase c inhibitors: Total syntheses of (+)-calphostin d, (+)-phleichrome, cercosporin, and new photoactive perylenequinones. J. Am. Chem. Soc., 2009, 131, 9413-9425.
[55]
Mulrooney, C.A.; Li, X.; Di Virgilio, E.S.; Kozlowski, M.C. General approach for the synthesis of chiral perylenequinones via catalytic enantioselective oxidative biaryl coupling. J. Am. Chem. Soc., 2003, 125, 6856-6857.
[56]
Bryliakov, K.P. Enantioselective aerobic oxidative coupling of 2- naphthols. In: Enviromentally sustainable catalytic asymmetric oxidations; CRC Press; Taylor & Francis Group: Boca Raton, 2014.
[57]
Wang, H. Recent advances in asymmetric oxidative coupling of 2-naphthol and its derivatives. Chirality, 2010, 22, 827-837.