Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Flavones and Their Analogues as Bioactive Compounds – An Overview

Author(s): B.S. Jayashree *, H. Venkatachalam and Sanchari Basu Mallik

Volume 16, Issue 4, 2019

Page: [377 - 391] Pages: 15

DOI: 10.2174/1570193X15666180418154510

Price: $65

Abstract

Flavonoids constitute a large group of polyphenolic compounds that are known to have antioxidant properties, through their free radical scavenging abilities. They possess a chromone (γ- benzopyrone) moiety, responsible for eliciting many pharmacological activities. Even though, natural flavonoids are highly potent, owing to their poor solubility, they are less used. Therefore, attempts have been made to improve their stability, solubility, efficacy and kinetics by introducing various substituents on the flavone ring. For nearly the last two decades, flavones were synthesized in our laboratory by simple, convenient and cost-effective methods, with the knowledge of both synthetic and semi-synthetic chemistry. In this direction, it was considered worthwhile to present an overview on the synthesized flavonoids. This review creates a platform for highlighting various modifications done on the flavone system along with their biological activity.

Keywords: Flavones, chalcones, aurones, anti-oxidant, anti-cancer, anti-bacterial activity.

Graphical Abstract

[1]
Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of mauritius. Pharm. Biol., 2005, 43(3), 237-242.
[2]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 2013, Article ID 162750.
[3]
(a)Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
(b)Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126(2), 485-493.
[4]
Allan, J.; Robinson, R. CCXC an accessible derivative of chromonol. J. Chem. Soc. Trans., 1924, 125, 2192-2195.
[5]
Baker, W. 322 Molecular rearrangement of some O-acyloxyacetophenones and the mechanism of the production of 3-acylchromones. J. Chem. Soc., 1933, 1381-1389.
[6]
Algar, J.; Flynn, J.P. In: A new method for the synthesis of flavonols; Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, JSTOR:, 1934; pp. 1-8.
[7]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[8]
Sahu, N.; Balbhadra, S.; Choudhary, J.; Kohli, D. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[9]
(a)Claisen, L.; Claparède, A. Condensationen von ketonen mit aldehyden. Eur. J. Inorg. Chem., 1881, 14(2), 2460-2468.
(b)Schmidt, J.G. Ueber die einwirkung von aceton auf furfurol und auf bittermandelöl bei gegenwart von alkalilauge. Eur. J. Inorg. Chem., 1881, 14(1), 1459-1461.
[10]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (e)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, 1979(19), 866-867.
[11]
Heck, R.F.; Nolley, J. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37(14), 2320-2322.
[12]
Bestmann, H.J.; Arnason, B. Reaktionen mit phosphine-alkylenen, ii. C‐acylierung von phosphine-alkylenen. Ein neuer weg zur synthese von ketonen. Eur. J. Inorg. Chem., 1962, 95(6), 1513-1527.
[13]
Shotter, R.; Johnston, K.; Jones, J. Reactions of unsaturated acid halides. IV. Competitive Friedel-Crafts acylations and alkylations of monohalobenzenes by the bifunctional cinnamoyl chloride. ChemInform, 1978, 9(31)
[http://dx.doi.org/10.002/chin.197831147]
[14]
Jayashree, B.; Kuppast, B.K.; Venugopala, K. Synthesis, characterization and antimicrobial, antioxidant properties of some benzopyrone derivatives. Asian J. Chem., 2007, 19(2), 1415.
[15]
Jayashree, B.; Noor, F.; Yogendra, N.; Kumar, D.V. Synthesis of substituted 3-hydroxy flavones for antioxidant and antimicrobial activity. Pharmacol. Online., 2008, 3, 586-595.
[16]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Preti, D.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N. Design, synthesis, and biological evaluation of thiophene analogues of chalcones. Bioorg. Med. Chem., 2008, 16(10), 5367-5376.
[17]
LeBlanc, R.; Dickson, J.; Brown, T.; Stewart, M.; Pati, H.N.; VanDerveer, D.; Arman, H.; Harris, J.; Pennington, W.; Holt, H.L. Synthesis and cytotoxicity of epoxide and pyrazole analogs of the combretastatins. Bioorg. Med. Chem., 2005, 13(21), 6025-6034.
[18]
Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H.; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-a4. Bioorg. Med. Chem. Lett., 2007, 17(21), 5897-5901.
[19]
Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg. Med. Chem. Lett., 2010, 20(13), 3916-3919.
[20]
Jayashree, B.; Arora, S.; Venugopala, K. Microwave assisted synthesis of substituted coumarinyl chalcones as reaction intermediates for biologically important coumarinyl heterocycles. Asian J. Chem., 2008, 20(1), 1-7.
[21]
Venkatachalam, H.; Jayashree, B.S.; Shetty, V. Synthesis of some coumarinyl chalcones of pharmacological interest. Asian J. Chem., 2009, 21(8), 5918-5922.
[22]
Venkatachalam, H.; Jayashree, B.S.; Shetty, V. Synthesis, characterisation and antibacterial activity of novel chalcones. Int. J. Chem. Environ. Biol. Sci., 2015, 3, 479-481.
[23]
(a)Jayashree, B.; Alam, A.; Nayak, Y.; Kumar, D.V. Synthesis of 3-methylflavones and their antioxidant and antibacterial activities. Med. Chem. Res., 2012, 21(8), 1991-1996.
(b)Alam, A.; Dhar, K.; Jayashree, B. Synhtesis, characterization and cytotoxic activity of analogues of 3-methyl flavone. J. Pharm. Sci., 2013, 3(3), 65-72.
[24]
Liu, X.; Go, M.L. Antiproliferative properties of piperidinylchalcones. Bioorg. Med. Chem., 2006, 14(1), 153-163.
[25]
Jayashree, B.; Patel, H.H.; Mathew, N.S.; Nayak, Y. Synthesis of newer piperidinyl chalcones and their anticancer activity in human cancer cell lines. Res. Chem. Intermed., 2016, 42(4), 3673-3688.
[26]
Nigam, S.; Jayashree, B. Limitation of algar-flynn-oyamada reaction using methoxy substituted chalcones as reactants and evaluation of the newly transformed aurones for their biological activities. Res. Chem. Intermed., 2017, 43(5), 2839-2864.
[27]
Pande, A.N.; Biswas, S.; Reddy, N.D.; Jayashree, B.; Kumar, N.; Rao, C.M. In vitro and in vivo anticancer studies of 2′-hydroxy chalcone derivatives exhibit apoptosis in colon cancer cells by hdac inhibition and cell cycle arrest. EXCLI J., 2017, 16, 448.
[28]
(a)Bhosale, R.; Sarda, S.; Giram, R.; Raut, D.; Parwe, S.; Ardhapure, S.; Pawar, R. Ionic liquid promoted expeditious synthesis of flavones. J. Iran. Chem. Soc., 2009, 6(3), 519-522.
(b)Menezes, M.; Manjrekar, S.; Pai, V.; Patre, R.; Tilve, S. A facile microwave assisted synthesis of flavones. Indian J. Chem. Section B-Org. ChemMedChem, 2009, 48(9), 1311-1314.
(c)Kabalka, G.W.; Mereddy, A.R. Microwave-assisted synthesis of functionalized flavones and chromones. Tetrahedron Lett., 2005, 46(37), 6315-6317.
(d)Sarda, S.R.; Pathan, M.Y.; Paike, V.V.; Pachmase, P.R.; Jadhav, W.N.; Pawar, R.P. A facile synthesis of flavones using recyclable ionic liquid under microwave irradiation. Arkivoc, 2006, 16(4), 43-48.
(e)Ares, J.J.; Outt, P.E.; Kakodkar, S.V.; Buss, R.C.; Geiger, J.C. A convenient large-scale synthesis of 5-methoxyflavone and its application to analog preparation. J. Org. Chem., 1993, 58(27), 7903-7905.
[29]
Cotelle, N.; Bernier, J.L.; Catteau, J.P.; Pommery, J.; Wallet, J.C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Rad. Biol. Med., 1996, 20(1), 35-43.
[30]
Finar, I. Organic chemistry; Longman Publishers: Singapore, 1975.
[31]
Palkar, R.; Master, H. Synthesis of some new 6-amino-3-methoxyflavones. Ind J. Chem., 2000, B39, 141-144.
[32]
Nayak, Y.; Venkatachalam, H.; Daroji, V.K.; Mathew, G.; Jayashree, B.; Unnikrishnan, M. Antidiabetic activity of 3-hydroxyflavone analogues in high fructose fed insulin resistant rats. EXCLI J., 2014, 13, 1055-1074.
[33]
Jayashree, B.; Thejaswini, J.; Nayak, Y.; Kumar, D.V. Synthesis of novel flavone acyl esters and correlation of log p value with antioxidant and antimicrobial activity. Asian J. Chem., 2010, 22, 1055-1066.
[34]
Mallik, S.B.; Pai, A.; Shenoy, R.R.; Jayashree, B. Novel flavonol analogues as potential inhibitors of JMJD3 histone demethylase-a study based on molecular modelling. J. Mol. Graph. Model., 2017, 72, 81-87.
[35]
Pai, A.; Jayashree, B.; Basu-Mallik, S.; Lobo, R. Extra precision docking studies of novel luteolin analogues for the inhibition of tankyrase II-A theoretical based approach towards novel cancer target. Thai J. Pharm. S., 2017, 41(4), 138-143.
[36]
Venkatachalam, H.; Jayashree, B.; Nigam, S. A preliminary cytotoxic study on the zinc complexes of flavonols. Ind J. Pharmaceut. Sci., 2017, 79(5), 838-844.
[37]
Jayashree, B.; Abhishekh, K.; Pai, A.; Nayak, Y. Sythesis, characterizatio and atimicrobial actvity of novel analogues of flavoes. Pharmacol. Online, 2011, 2, 963-973.
[38]
Mughal, E.U.; Ayaz, M.; Hussain, Z.; Hasan, A.; Sadiq, A.; Riaz, M.; Malik, A.; Hussain, S.; Choudhary, M.I. Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones. Bioorg. Med. Chem., 2006, 14(14), 4704-4711.
[39]
(a)Thippeswamy, G.; Vijaykumar, D.; Jayashree, B.; Sridhar, M.; Prasad, J.S. Synthesis and crystal structure of 1-(2-hydroxyphenyl)-3-(5-methylthiophen-2-yl) prop-2-en-1-one. Org. Chem. Ind. J., 2011, 7(2), 71-74.
(b)Thippeswamy, G.; Vijay Kumar, D.; Jayashree, B.; Sridhar, M.; Prasad, S.J. 1-(2-hydroxy-5-methylphenyl)-3-(3-methylthiophen-2-yl) prop-2-en-1-one. Acta Crystallograph. Section E Struct. Rep. Online, 2010, 66(6), o1385-o1385.
[40]
Jayashree, B.; Kawade, S.; Venkatachalam, H. Anticancer evaluation of some of the novel iminoflavones. Res. J. Chem. Environ., 2014, 18(1), 32-40.
[41]
Jayashree, B.; Gurushyam, S.; Pai, A. Synthesis, characterisation, antioxidant and anticancer evaluation of novel flavone-4-oximes. Indian Drug, 2017, 54(11), 7-14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy