Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biomarkers of Alcohol Consumption in Body Fluids - Possibilities and Limitations of Application in Toxicological Analysis

Author(s): Mateusz Kacper Woźniak*, Marek Wiergowski, Jacek Namieśnik and Marek Biziuk

Volume 26, Issue 1, 2019

Page: [177 - 196] Pages: 20

DOI: 10.2174/0929867324666171005111911

Price: $65

Abstract

Background: Ethyl alcohol is the most popular legal drug, but its excessive consumption causes social problems. Despite many public campaigns against alcohol use, car accidents, instances of aggressive behaviour, sexual assaults and deterioration in labor productivity caused by inebriated people is still commonplace. Fast and easy diagnosis of alcohol consumption is required in order to introduce proper and effective therapy, and is crucial in forensic toxicology analysis. The easiest method to prove alcohol intake is determination of ethanol in body fluids or in breath. However, since ethanol is rapidly metabolized in the human organism, only recent consumption can be detected using this method. Because of that, the determination of alcohol biomarkers was introduced for monitoring alcohol consumption over a wider range of time.

Objective: The objective of this study was to review published studies focusing on the sample preparation methods and chromatographic or biochemical techniques for the determination of alcohol biomarkers in whole blood, plasma, serum and urine.

Methods: An electronic literature search was performed to discuss possibilities and limitations of application of alcohol biomarkers in toxicological analysis.

Results: Authors described the markers of alcohol consumption such as: ethanol, its nonoxidative metabolites (ethyl glucuronide, ethyl sulfate, phosphatidylethanol, ethyl phosphate, fatty acid ethyl esters) and oxidative metabolites (acetaldehyde and acetaldehyde adducts). We also discussed issues concerning the detection window of these biomarkers, and possibilities and limitations of their use in routine analytical toxicology for monitoring alcohol consumption or sobriety during alcohol therapy.

Keywords: Alcohol, alcohol dependence, analytical methods, biological markers, ethanol metabolites, biochemical techniques.

[1]
World Health Organization (WHO). Alcohol, http://www.who.int/mediacentre/factsheets/fs349/en/ [Accessed January 7, 2016].
[2]
Geppert, B.; Teżyk, A.; Żaba, C. Biochemical markers for acute and chronic alcohol consumption. Przegl. Lek., 2012, 69(10), 1163-1167.
[3]
Musshoff, F. Chromatographic methods for the determination of markers of chronic and acute alcohol consumption. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 781(1-2), 457-480.
[4]
Waszkiewicz, N.; Konarzewska, B.; Waszkiewicz, M.; Popławska, R.; Szajda, S.D.; Zalewska, A.; Markowski, T.; Szulc, A. Biomarkery naduzywania alkoholu. Cześć I. Biomarkery tradycyjne i ich interpretacja. Psychiatr. Pol., 2010, 44(1), 127-136.
[5]
Alcohol Concern’s information and statistical digest. Women and alcohol – A cause for concern http://www.alcoholconcern.org.uk/wp-content/uploads/woocommerce_uploads/2014/12/Women-factsheet.pdf [Accessed January 7, 2016)].
[6]
Sharpe, P.C. Biochemical detection and monitoring of alcohol abuse and abstinence. Ann. Clin. Biochem., 2001, 38(Pt 6), 652-664.
[7]
De Martinis, B.S.; Martins Ruzzene, M.A.; Santos Martin, C.C. Determination of ethanol in human blood and urine by automated headspace solid-phase microextraction and capillary gas chromatography. Anal. Chim. Acta, 2004, 522(2), 163-168.
[8]
Pragst, F.; Yegles, M. Alcohol markers in hair. Analitycal and practical aspects of drug testing in hair, 2006, 287- 323.
[9]
Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS, 2010, 5(6), 463-466.
[10]
Kumar, M.; Sarin, S. Biomarkers of disease in medicine. Current trends in science: Platinum Jubilee Special, 2009, 103-117.
[11]
Czech, E.; Hartleb, M. Non-oxidative metabolism of ethanol and its influence on the metabolic pathway of serotonin and transferrin. Probl. Forensic Sci., 2002, 52, 37-51.
[12]
Niemelä, O.; Alatalo, P. Biomarkers of alcohol consumption and related liver disease. Scand. J. Clin. Lab. Invest., 2010, 70(5), 305-312.
[13]
Oberrauch, W.; Bergman, A.C.; Helander, A. HPLC and mass spectrometric characterization of a candidate reference material for the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clin. Chim. Acta, 2008, 395(1-2), 142-145.
[14]
Zakhari, S. Overview: how is alcohol metabolized by the body? Alcohol Res. Health, 2006, 29(4), 245-254.
[15]
Kriikku, P.; Wilhelm, L.; Jenckel, S.; Rintatalo, J.; Hurme, J.; Kramer, J.; Jones, A.W.; Ojanperä, I. Comparison of breath-alcohol screening test results with venous blood alcohol concentration in suspected drunken drivers. Forensic Sci. Int., 2014, 239, 57-61.
[16]
Kamei, T.; Tsuda, T.; Mibu, Y.; Kitagawa, S.; Wada, H.; Naitoh, K.; Nakashima, K. Novel instrumentation for determination of ethanol concentrations in human perspiration by gas chromatography and a good interrelationship between ethanol concentrations in sweat and blood. Anal. Chim. Acta, 1998, 365(1-3), 259-266.
[17]
Niemelä, O. Acetaldehyde adducts in circulation. Novartis Found. Symp., 2007, 285, 183-192.
[18]
Kater, R.M.H.; Carulli, N.; Iber, F.L. Differences in the rate of ethanol metabolism in recently drinking alcoholic and nondrinking subjects. Am. J. Clin. Nutr., 1969, 22(12), 1608-1617.
[19]
Lieber, C.S. Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta, 1997, 257(1), 59-84.
[20]
McManus, I.R.; Contag, A.O.; Olson, R.E. Characterization of endogenous ethanol in the mammal. Science, 1960, 131(3393), 102-103.
[21]
Blomstrand, R. Observations of the formation of ethanol in the intestinal tract in man. Life Sci. II., 1971, 10(10), 575-582.
[22]
Antoshechkin, A.G. On intracellular formation of ethanol and its possible role in energy metabolism. Alcohol Alcohol., 2001, 36(6), 608.
[23]
Geertinger, P.; Bodenhoff, J.; Helweg-Larsen, K.; Lund, A. Endogenous alcohol production by intestinal fermentation in sudden infant death. Z. Rechtsmed., 1982, 89(3), 167-172.
[24]
Ostrovsky, Y.M. Endogenous ethanol--its metabolic, behavioral and biomedical significance. Alcohol, 1986, 3(4), 239-247.
[25]
Behnoush, B.; Bazmi, E.; Akhgari, M.; Nazari, S.S.H.; Iravani, F.S. Evaluation of ethanol and n-propanol in victims. Iran. J. Toxicol., 2010, 3(3), 311-316.
[26]
Logan, B.K.; Jones, A.W. Endogenous ethanol ‘auto-brewery syndrome’ as a drunk-driving defence challenge. Med. Sci. Law, 2000, 40(3), 206-215.
[27]
Simic, M.; Ajdukovic, N.; Veselinovic, I.; Mitrovic, M.; Djurendic-Brenesel, M. Endogenous ethanol production in patients with diabetes mellitus as a medicolegal problem. Forensic Sci. Int., 2012, 216(1-3), 97-100.
[28]
Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 2013, 57(2), 601-609.
[29]
Musshoff, F. Alcohol and biological markers of alcohol abuse: Gas chromatography. In: Encyclopedia of separation science, 2000, 1921-1931.
[30]
Pontes, H.; Guedes de Pinho, P.; Casal, S.; Carmo, H.; Santos, A.; Magalhães, T.; Remião, F.; Carvalho, F.; Lourdes Bastos, M. GC determination of acetone, acetaldehyde, ethanol, and methanol in biological matrices and cell culture. J. Chromatogr. Sci., 2009, 47(4), 272-278.
[31]
Jones, A.W.; Mårdh, G.; Anggård, E. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry. Pharmacol. Biochem. Behav., 1983, 18(Suppl. 1), 267-272.
[32]
Penton, Z. Headspace measurement of ethanol in blood by gas chromatography with a modified autosampler. Clin. Chem., 1985, 31(3), 439-441.
[33]
Senkowski, C.M.; Thompson, K.A. The accuracy of blood alcohol analysis using headspace gas chromatography when performed on clotted samples. J. Forensic Sci., 1990, 35(1), 176-180.
[34]
Watanabe-Suzuki, K.; Seno, H.; Ishii, A.; Kumazawa, T.; Suzuki, O. Ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography with cryogenic oven trapping. J. Chromatogr. B Biomed. Sci. Appl., 1999, 727(1-2), 89-94.
[35]
Ertaş, H.; Öztürk, P.; Erdem, A.; Akpolat, O.; Akgür, S.A.; Ertaş, F.N. Gas chromatographic analysis of alcohols in blood with a chemometric approach. Anal. Methods, 2013, 5(19), 5172.
[36]
Furton, K.G.; Wang, J.; Hsu, Y.L.; Walton, J.; Almirall, J.R. The use of solid-phase microextraction-gas chromatography in forensic analysis. J. Chromatogr. Sci., 2000, 38(7), 297-306.
[37]
De Martinis, B.S.; Martin, C.C.S. Automated headspace solid-phase microextraction and capillary gas chromatography analysis of ethanol in postmortem specimens. Forensic Sci. Int., 2002, 128(3), 115-119.
[38]
Westland, J.L.; Dorman, F.L. Comparison of SPME and static headspace analysis of blood alcohol concentration utilizing two novel chromatographic stationary phases. Forensic Sci. Int., 2013, 231(1-3), e50-e56.
[39]
Kristoffersen, L.; Skuterud, B.; Larssen, B.R.; Skurtveit, S.; Smith-Kielland, A. Fast quantification of ethanol in whole blood specimens by the enzymatic alcohol dehydrogenase method. Optimization by experimental design. J. Anal. Toxicol., 2005, 29(1), 66-70.
[40]
Kristoffersen, L.; Smith-Kielland, A. An automated alcohol dehydrogenase method for ethanol quantification in urine and whole blood. J. Anal. Toxicol., 2005, 29(5), 387-389.
[41]
Biwasaka, H.; Tokuta, T.; Sasaki, Y.; Niitsu, H.; Kumagai, R.; Aoki, Y. [Application of Q.E.D. and Alco-Screen test kits to measurements of ethanol in forensic samples]. Nippon Hoigaku Zasshi, 2000, 54(2), 233-240.
[42]
Biwasaka, H.; Tokuta, T.; Sasaki, Y.; Niitsu, H.; Kumagai, R.; Aoki, Y. Application of quantitative ethanol detector (QED) test kit to measure ethanol concentration in blood samples. Forensic Sci. Int., 2001, 124(2-3), 124-129.
[43]
Gamella, M.; Campuzano, S.; Manso, J.; González de Rivera, G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta, 2014, 806, 1-7.
[44]
Schmitt, G.; Aderjan, R.; Keller, T.; Wu, M. Ethyl glucuronide: an unusual ethanol metabolite in humans. Synthesis, analytical data, and determination in serum and urine. J. Anal. Toxicol., 1995, 19(2), 91-94.
[45]
Kugelberg, F.C.; Jones, A.W. Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci. Int., 2007, 165(1), 10-29.
[46]
Foti, R.S.; Fisher, M.B. Assessment of UDP-glucuronosyltransferase catalyzed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs. Forensic Sci. Int., 2005, 153(2-3), 109-116.
[47]
Goll, M.; Schmitt, G.; Ganssmann, B.; Aderjan, R.E. Excretion profiles of ethyl glucuronide in human urine after internal dilution. J. Anal. Toxicol., 2002, 26(5), 262-266.
[48]
Høiseth, G.; Bernard, J.P.; Karinen, R.; Johnsen, L.; Helander, A.; Christophersen, A.S.; Mørland, J. A pharmacokinetic study of ethyl glucuronide in blood and urine: applications to forensic toxicology. Forensic Sci. Int., 2007, 172(2-3), 119-124.
[49]
Wurst, F.M.; Metzger, J.; Jachau, K.; Seid, S.; Pridzun, L.; Janda, I.; Alt, A. The direct ethanol metabolite ethyl glucuronide: A specific marker of recent alcohol consumption. New and upcoming markers of alcohol consumption, 2001, pp. 62-74.
[50]
Rosano, T.G.; Lin, J. Ethyl glucuronide excretion in humans following oral administration of and dermal exposure to ethanol. J. Anal. Toxicol., 2008, 32(8), 594-600.
[51]
Dasgupta, A. Alcohol and Its Biomarkers: Clinical Aspects and Laboratory Determination. 2015.
[52]
Sundström, M.; Jones, A.W.; Ojanperä, I. Utility of urinary ethyl glucuronide analysis in post-mortem toxicology when investigating alcohol-related deaths. Forensic Sci. Int., 2014, 241, 178-182.
[53]
Skipper, G.E.; Weinmann, W.; Thierauf, A.; Schaefer, P.; Wiesbeck, G.; Allen, J.P.; Miller, M.; Wurst, F.M. Ethyl glucuronide: a biomarker to identify alcohol use by health professionals recovering from substance use disorders. Alcohol Alcohol., 2004, 39(5), 445-449.
[54]
Bergström, J.; Helander, A.; Jones, A.W. Ethyl glucuronide concentrations in two successive urinary voids from drinking drivers: relationship to creatinine content and blood and urine ethanol concentrations. Forensic Sci. Int., 2003, 133(1-2), 86-94.
[55]
Bicker, W.; Lämmerhofer, M.; Keller, T.; Schuhmacher, R.; Krska, R.; Lindner, W. Validated method for the determination of the ethanol consumption markers ethyl glucuronide, ethyl phosphate, and ethyl sulfate in human urine by reversed-phase/weak anion exchange liquid chromatography-tandem mass spectrometry. Anal. Chem., 2006, 78(16), 5884-5892.
[56]
Kummer, N.; Wille, S.; Di Fazio, V.; Lambert, W.; Samyn, N. A fully validated method for the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC-ESI-MS/MS applied in a prospective alcohol self-monitoring study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 929, 149-154.
[57]
Kaushik, R.; LaCourse, W.R.; Levine, B. Determination of ethyl glucuronide in urine using reversed-phase HPLC and pulsed electrochemical detection (Part II). Anal. Chim. Acta, 2006, 556(2), 267-274.
[58]
Janda, I.; Alt, A. Improvement of ethyl glucuronide determination in human urine and serum samples by solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl., 2001, 758(2), 229-234.
[59]
Freire, I.A.; Barrera, A.M.B.; Silva, P.C.; Duque, M.J.T.; Gómez, P.F.; Eijo, P.L. Microwave assisted extraction for the determination of ethyl glucuronide in urine by gas chromatography-mass spectrometry. J. Appl. Toxicol., 2008, 28(6), 773-778.
[60]
Sharma, P.; Bharat, V.; Murthy, P. Quantitation of ethyl glucuronide in serum & urine by gas chromatography - mass spectrometry. Indian J. Med. Res., 2015, 141(1), 75-80.
[61]
Böttcher, M.; Beck, O.; Helander, A. Evaluation of a new immunoassay for urinary ethyl glucuronide testing. Alcohol Alcohol., 2008, 43(1), 46-48.
[62]
Zimmer, H.; Schmitt, G.; Aderjan, R. Preliminary immunochemical test for the determination of ethyl glucuronide in serum and urine: comparison of screening method results with gas chromatography-mass spectrometry. J. Anal. Toxicol., 2002, 26(1), 11-16.
[63]
Winkler, M.; Kaufmann, E.; Thoma, D.; Thierauf, A.; Weinmann, W.; Skopp, G.; Alt, A. Detection of ethyl glucuronide in blood spotted on different surfaces. Forensic Sci. Int., 2011, 210(1-3), 243-246.
[64]
Krivánková, L.; Caslavska, J.; Malásková, H.; Gebauer, P.; Thormann, W. Analysis of ethyl glucuronide in human serum by capillary electrophoresis with sample self-stacking and indirect detection. J. Chromatogr. A, 2005, 1081(1), 2-8.
[65]
Nováková, M.; Krivánková, L. Determination of ethyl glucuronide in human serum by hyphenation of capillary isotachophoresis and zone electrophoresis. Electrophoresis, 2008, 29(8), 1694-1700.
[66]
Maenhout, T.M.; De Buyzere, M.L.; Delanghe, J.R. Non-oxidative ethanol metabolites as a measure of alcohol intake. Clin. Chim. Acta, 2013, 415, 322-329.
[67]
Vestermark, A.; Bostrom, H. Studies on ester sulfates. V. On the enzymatic formation of ester sulfates of primary aliphatic alcohols. Exp. Cell Res., 1959, 18, 174-177.
[68]
Carlini, E.J.; Raftogianis, R.B.; Wood, T.C.; Jin, F.; Zheng, W.; Rebbeck, T.R.; Weinshilboum, R.M. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics, 2001, 11(1), 57-68.
[69]
Wurst, F.M.; Dresen, S.; Allen, J.P.; Wiesbeck, G.; Graf, M.; Weinmann, W. Ethyl sulphate: a direct ethanol metabolite reflecting recent alcohol consumption. Addiction, 2006, 101(2), 204-211.
[70]
Halter, C.C.; Dresen, S.; Auwaerter, V.; Wurst, F.M.; Weinmann, W. Kinetics in serum and urinary excretion of ethyl sulfate and ethyl glucuronide after medium dose ethanol intake. Int. J. Legal Med., 2008, 122(2), 123-128.
[71]
Helander, A.; Beck, O. Mass spectrometric identification of ethyl sulfate as an ethanol metabolite in humans. Clin. Chem., 2004, 50(5), 936-937.
[72]
Thierauf, A.; Wohlfarth, A.; Auwärter, V.; Perdekamp, M.G.; Wurst, F.M.; Weinmann, W. Urine tested positive for ethyl glucuronide and ethyl sulfate after the consumption of yeast and sugar. Forensic Sci. Int., 2010, 202(1-3), e45-e47.
[73]
Esteve-Turrillas, F.A.; Bicker, W.; Lämmerhofer, M.; Keller, T.; Lindner, W. Determination of ethyl sulfate--a marker for recent ethanol consumption--in human urine by CE with indirect UV detection. Electrophoresis, 2006, 27(23), 4763-4771.
[74]
Jung, B.; Caslavska, J.; Thormann, W. Determination of ethyl sulfate in human serum and urine by capillary zone electrophoresis. J. Chromatogr. A, 2008, 1206(1), 26-32.
[75]
Albermann, M.E.; Musshoff, F.; Madea, B. A high-performance liquid chromatographic-tandem mass spectrometric method for the determination of ethyl glucuronide and ethyl sulfate in urine validated according to forensic guidelines. J. Chromatogr. Sci., 2012, 50(1), 51-56.
[76]
Morini, L.; Politi, L.; Zucchella, A.; Polettini, A. Ethyl glucuronide and ethyl sulphate determination in serum by liquid chromatography-electrospray tandem mass spectrometry. Clin. Chim. Acta, 2007, 376(1-2), 213-219.
[77]
Tomaszewski, M.; Buchowicz, J. Alcoholysis of the endogenous phosphate esters in rats treated with large doses of ethanol. Biochem. J., 1972, 129(1), 183-186.
[78]
Halter, C.; Dresen, S.; Lauer, J.; Wurst, F.M.; Weinmann, W. Proceedings of XIV GTFCH-SYMPOSIUM, Mosbach, GermanyApril 14-16, 2005Weller, J.P.
[79]
Alling, C.; Gustavsson, L.; Anggård, E. An abnormal phospholipid in rat organs after ethanol treatment. FEBS Lett., 1983, 152(1), 24-28.
[80]
Alling, C.; Gustavsson, L.; Månsson, J.-E.; Benthin, G.; Änggård, E. Phosphatidylethanol formation in rat organs after ethanol treatment Biochim. Biophys. Acta - Lipids Lipid Metab, 1984, 793(1), 119-122.
[81]
Helander, A.; Zheng, Y. Molecular species of the alcohol biomarker phosphatidylethanol in human blood measured by LC-MS. Clin. Chem., 2009, 55(7), 1395-1405.
[82]
Gustavsson, L. ESBRA 1994 Award Lecture. Phosphatidylethanol formation: specific effects of ethanol mediated via phospholipase D. Alcohol Alcohol., 1995, 30(4), 391-406.
[83]
Holbrook, P.G.; Pannell, L.K.; Murata, Y.; Daly, J.W. Molecular species analysis of a product of phospholipase D activation. Phosphatidylethanol is formed from phosphatidylcholine in phorbol ester- and bradykinin-stimulated PC12 cells. J. Biol. Chem., 1992, 267(24), 16834-16840.
[84]
Aradottir, S.; Olsson, B.L. Methodological modifications on quantification of phosphatidylethanol in blood from humans abusing alcohol, using high-performance liquid chromatography and evaporative light scattering detection. BMC Biochem., 2005, 6, 18.
[85]
Wurst, F.M.; Thon, N.; Aradottir, S.; Hartmann, S.; Wiesbeck, G.A.; Lesch, O.; Skala, K.; Wolfersdorf, M.; Weinmann, W.; Alling, C. Phosphatidylethanol: normalization during detoxification, gender aspects and correlation with other biomarkers and self-reports. Addict. Biol., 2010, 15(1), 88-95.
[86]
Hansson, P.; Caron, M.; Johnson, G.; Gustavsson, L.; Alling, C. Blood phosphatidylethanol as a marker of alcohol abuse: levels in alcoholic males during withdrawal. Alcohol. Clin. Exp. Res., 1997, 21(1), 108-110.
[87]
Varga, A.; Hansson, P.; Lundqvist, C.; Alling, C. Phosphatidylethanol in blood as a marker of ethanol consumption in healthy volunteers: comparison with other markers. Alcohol. Clin. Exp. Res., 1998, 22(8), 1832-1837.
[88]
Wurst, F.M.; Thon, N.; Weinmann, W.; Tippetts, S.; Marques, P.; Hahn, J.A.; Alling, C.; Aradottir, S.; Hartmann, S.; Lakshman, R. Characterization of sialic acid index of plasma apolipoprotein J and phosphatidylethanol during alcohol detoxification--a pilot study. Alcohol. Clin. Exp. Res., 2012, 36(2), 251-257.
[89]
Aradóttir, S.; Seidl, S.; Wurst, F.M.; Jönsson, B.A.G.; Alling, C. Phosphatidylethanol in human organs and blood: a study on autopsy material and influences by storage conditions. Alcohol. Clin. Exp. Res., 2004, 28(11), 1718-1723.
[90]
Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 1978, 90(1), 420-426.
[91]
Cabarcos, P.; Ángel Cocho, J.; Moreda, A.; Míguez, M.; Jesús Tabernero, M.; Fernández, P.; María Bermejo, A. Application of dispersive liquid-liquid microextraction for the determination of phosphatidylethanol in blood by liquid chromatography tandem mass spectrometry. Talanta, 2013, 111, 189-195.
[92]
Nissinen, A.E.; Mäkelä, S.M.; Vuoristo, J.T.; Liisanantti, M.K.; Hannuksela, M.L.; Hörkkö, S.; Savolainen, M.J. Immunological detection of in vitro formed phosphatidylethanol--an alcohol biomarker-with monoclonal antibodies. Alcohol. Clin. Exp. Res., 2008, 32(6), 921-928.
[93]
Nissinen, A.E.; Laitinen, L.M.; Kakko, S.; Helander, A.; Savolainen, M.J.; Hörkkö, S. Low plasma antibodies specific for phosphatidylethanol in alcohol abusers and patients with alcoholic pancreatitis. Addict. Biol., 2012, 17(6), 1057-1067.
[94]
Varga, A.; Nilsson, S. Nonaqueous capillary electrophoresis for analysis of the ethanol consumption biomarker phosphatidylethanol. Electrophoresis, 2008, 29(8), 1667-1671.
[95]
Nalesso, A.; Viel, G.; Cecchetto, G.; Frison, G.; Ferrara, S.D. Analysis of the alcohol biomarker phosphatidylethanol by NACE with on-line ESI-MS. Electrophoresis, 2010, 31(7), 1227-1233.
[96]
Nalesso, A.; Viel, G.; Cecchetto, G.; Mioni, D.; Pessa, G.; Favretto, D.; Ferrara, S.D. Quantitative profiling of phosphatidylethanol molecular species in human blood by liquid chromatography high resolution mass spectrometry. J. Chromatogr. A, 2011, 1218(46), 8423-8431.
[97]
Tolonen, A.; Lehto, T.M.; Hannuksela, M.L.; Savolainen, M.J. A method for determination of phosphatidylethanol from high density lipoproteins by reversed-phase HPLC with TOF-MS detection. Anal. Biochem., 2005, 341(1), 83-88.
[98]
Chang, W.; Waltenbaugh, C.; Borensztajn, J. Fatty acid ethyl ester synthesis by the isolated perfused rat heart. Metabolism, 1997, 46(8), 926-929.
[99]
Doyle, K.M.; Bird, D.A.; al-Salihi, S.; Hallaq, Y.; Cluette-Brown, J.E.; Goss, K.A.; Laposata, M. Fatty acid ethyl esters are present in human serum after ethanol ingestion. J. Lipid Res., 1994, 35(3), 428-437.
[100]
Laposata, E.A.; Lange, L.G. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science, 1986, 231(4737), 497-499.
[101]
Salem, R.O.; Cluette-Brown, J.E.; Laposata, M. Fatty acid ethyl esters, nonoxidative ethanol metabolites, synthesis, uptake, and hydrolysis by human platelets. Biochim. Biophys. Acta, 2005, 1738(1-3), 99-104.
[102]
Doyle, K.M.; Cluette-Brown, J.E.; Dube, D.M.; Bernhardt, T.G.; Morse, C.R.; Laposata, M. Fatty acid ethyl esters in the blood as markers for ethanol intake. JAMA, 1996, 276(14), 1152-1156.
[103]
Saghir, M.; Blodget, E.; Laposata, M. The hydrolysis of fatty acid ethyl esters in low-density lipoproteins by red blood cells, white blood cells and platelets. Alcohol, 1999, 19(2), 163-168.
[104]
Borucki, K.; Dierkes, J.; Wartberg, J.; Westphal, S.; Genz, A.; Luley, C. In heavy drinkers, fatty acid ethyl esters remain elevated for up to 99 hours. Alcohol. Clin. Exp. Res., 2007, 31(3), 423-427.
[105]
Laposata, M. Fatty acid ethyl esters: short-term and long-term serum markers of ethanol intake. Clin. Chem., 1997, 43(8 Pt 2), 1527-1534.
[106]
Kaphalia, B.S.; Cai, P.; Khan, M.F.; Okorodudu, A.O.; Ansari, G.A.S. Fatty acid ethyl esters: markers of alcohol abuse and alcoholism. Alcohol, 2004, 34(2-3), 151-158.
[107]
Bernhardt, T.G.; Cannistraro, P.A.; Bird, D.A.; Doyle, K.M.; Laposata, M. Purification of fatty acid ethyl esters by solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl., 1996, 675(2), 189-196.
[108]
Kulig, C.C.; Beresford, T.P.; Everson, G.T. Rapid, accurate, and sensitive fatty acid ethyl ester determination by gas chromatography-mass spectrometry. J. Lab. Clin. Med., 2006, 147(3), 133-138.
[109]
Jelski, W.; Szmitkowski, M. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin. Chim. Acta, 2008, 395(1-2), 1-5.
[110]
Plapp, B.V.; Leidal, K.G.; Murch, B.P.; Green, D.W. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats. Chem. Biol. Interact., 2015, 234, 85-95.
[111]
Otsuka, M.; Harada, N.; Itabashi, T.; Ohmori, S. Blood and urinary levels of ethanol, acetaldehyde, and C4 compounds such as diacetyl, acetoin, and 2,3-butanediol in normal male students after ethanol ingestion. Alcohol, 1999, 17(2), 119-124.
[112]
Ramdzan, A.N.; Mornane, P.J.; McCullough, M.J.; Mazurek, W.; Kolev, S.D. Determination of acetaldehyde in saliva by gas-diffusion flow injection analysis. Anal. Chim. Acta, 2013, 786, 70-77.
[113]
Park, H.M.; Eo, Y.W.; Cha, K.S.; Kim, Y.M.; Lee, K.B. Determination of free acetaldehyde in total blood for investigating the effect of aspartate on metabolism of alcohol in mice. J. Chromatogr. B Biomed. Sci. Appl., 1998, 719(1-2), 217-221.
[114]
Niemelä, O. Biomarkers in alcoholism. Clin. Chim. Acta, 2007, 377(1-2), 39-49.
[115]
Bean, P.; Harasymiw, J.; Peterson, C.M.; Javors, M. Innovative technologies for the diagnosis of alcohol abuse and monitoring abstinence. Alcohol. Clin. Exp. Res., 2001, 25(2), 309-316.
[116]
Halvorson, M.R.; Noffsinger, J.K.; Peterson, C.M. Studies of whole blood-associated acetaldehyde levels in teetotalers. Alcohol, 1993, 10(5), 409-413.
[117]
Salaspuro, V.; Salaspuro, M. Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int. J. Cancer, 2004, 111(4), 480-483.
[118]
McLaughlin, S.D.; Scott, B.K.; Peterson, C.M. The effect of cigarette smoking on breath and whole blood-associated acetaldehyde. Alcohol, 1990, 7(4), 285-287.
[119]
Orywal, K.; Jelski, W.; Werel, T.; Szmitkowski, M. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in renal cell carcinoma. Exp. Mol. Pathol., 2015, 98(3), 403-406.
[120]
Jelski, W.; Kutylowska, E.; Laniewska-Dunaj, M.; Orywal, K.; Laszewicz, W.; Szmitkowski, M. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with acute and chronic pancreatitis. Exp. Mol. Pathol., 2011, 91(2), 631-635.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy