摘要
棉酚是从棉花的种子,根和茎中提取的天然产物,最初用作男性避孕药,但随后被研究作为一种新型抗肿瘤剂。该综述描述了棉酚及其衍生物作为新型抗肿瘤剂的现状,并通过定量和结构分析介绍了它们的制备和特性,尤其是一些棉酚Schiff碱。棉酚及其衍生物的主要吸引靶位点是含有抗凋亡蛋白Bcl-2和Bcl-XL的Bcl-2家族蛋白。棉酚类似物的分子机制不仅涉及细胞凋亡,还涉及自噬,细胞周期停滞和其他异常细胞现象。棉酚及其衍生物在体外和体内对不同的癌症类型发挥抗肿瘤作用,并显示出与其他化学和放射治疗相比的协同作用。此外,已经设计了几种纳米载体来装载棉酚或其衍生物,以扩大其应用范围并评估它们与其他抗肿瘤剂的组合效果。该综述可作为合理应用棉酚类似物作为抗肿瘤剂的参考。
关键词: 抗肿瘤作用,细胞凋亡,自噬,Bcl-2家族蛋白,棉酚,纳米载体,协同作用。
[1]
Dowd, M.K.; Pelitire, S.M. Recovery of gossypol acetic acid from cottonseed soapstock. Ind. Crops Prod., 2001, 14(2), 113-123.
[2]
Jia, G.; Zhan, Y.; Wu, D.; Meng, Y.; Xu, L. An improved ultrasound-assisted extraction process of gossypol acetic acid from cottonseed soapstock. AIChE J., 2009, 55(3), 797-806.
[3]
Chamkasem, N. Gossypol analysis in cottonseed oil by HPLC. J. Am. Oil Chem. Soc., 1988, 65(10), 1601-1604.
[4]
Cai, F.; Zhang, H.; Zeng, Y.; Mo, J.; Bao, J.; Miao, C.; Bai, J.; Yan, F.; Chen, F. An optimized gossypol high-performance liquid chromatography assay and its application in evaluation of different gland genotypes of cotton. J. Biosci., 2004, 29(1), 67-71.
[5]
Lee, K.; Dabrowski, K. High-performance liquid chromatographic determination of gossypol and gossypolone enantiomers in fish tissues using simultaneous electrochemical and ultraviolet detectors. J. Chromatogr. B, 2002, 779(2), 313-319.
[6]
Meyer, R.; Vorster, S.; Dubery, I.A. Identification and quantification of gossypol in cotton by using packed micro-tips columns in combination with HPLC. Anal. Bioanal. Chem., 2004, 380(4), 719-724.
[7]
Hua, L.; Zhou, J.; Han, H. Direct electrochemiluminescence of CdTe quantum dots based on room temperature ionic liquid film and high sensitivity sensing of gossypol. Electrochim. Acta, 2010, 55(3), 1265-1271.
[8]
Zhao, C.; Wu, D. Rapid detection assay for the molecular imprinting of gossypol using a two-layer PMAA/SiO2 bulk structure with a piezoelectric imprinting sensor. Sens. Actuators B Chem., 2013, 181, 104-113.
[9]
Vshivkov, S.; Pshenichnov, E.; Golubenko, Z.; Akhunov, A.; Namazov, S.; Stipanovic, R.D. Capillary electrophoresis to quantitate gossypol enantiomers in cotton flower petals and seed. J. Chromatogr. B, 2012, 908(11), 94-97.
[10]
Cass, Q.B.; Oliveira, R.V.; De Pietro, A.C. Determination of gossypol enantiomer ratio in cotton plants by chiral higher-performance liquid chromatography. J. Agric. Food Chem., 2004, 52(19), 5822-5827.
[11]
Sampath, D.S.; Balaram, P. A rapid procedure for the resolution of racemic gossypol. J. Chem. Soc. Chem. Commun., 1986, 9(9), 649-650.
[12]
Matlin, S.A.; Zhou, R. Resolution of gossypol: analytical and preparative HPLC. J. High Resolut. Chromatogr., 1984, 7(11), 629-631.
[13]
Matlin, S.A.; Belenguer, A.; Tyson, R.G.; Tyson, B. Brookes, A. Resolution of gossypol: analytical and large-scale preparative HPLC on non-chiral phases. J. High Resol. Chromatogr. Commun., 1987, 10(2), 86-91.
[14]
Cass, Q.B.; Bassi, A.L.; Matlin, S.A. First direct resolution of gossypol enantiomers on a chiral high-performance liquid chromatography phase. Chirality, 1999, 11(1), 46-49.
[15]
Cass, Q.B.; Oliveira, R.V. Separation of milligram quantities of gossypol enantiomers on polysaccharide-based stationary phases. J. Chromatogr. Relat. Technol., 2002, 25(5), 819-829.
[16]
Dowd, M.K.; Pelitire, S.M. HPLC preparation of the chiral forms of 6-methoxy-gossypol and 6,6`-dimethoxy-gossypol. J. Chromatogr. B, 2008, 867(1), 69-77.
[17]
Jiang, H.; Cao, X.; Huang, H.; Jiang, B. An expedient route for the practical preparation of optically active (-)-gossypol. Tetrahedron Asymmetry, 2007, 18(20), 2437-2441.
[18]
Adams, R.; Geissman, T.; Edwards, J. Gossypol, a pigment of cottonseed. Chem. Rev., 1960, 60(6), 555-574.
[19]
Adams, R.; Morris, R.; Geissman, T.; Butterbaugh, D.; Kirkpatrick, E. Structure of gossypol. XV. 1 an interpretation of its reactions. J. Am. Chem. Soc., 1938, 60(9), 2193-2204.
[20]
Adams, R.; Geissman, T.; Morris, R. Structure of gossypol. XVI. reduction products of gossypolone tetramethyl ether and gossypolonic acid tetramethyl ether1. J. Am. Chem. Soc., 1938, 60(12), 2967-2970.
[21]
Adams, R.; Dial, W. Structure of gossypol. XXII. gossypol ethers and their reduction products. J. Am. Chem. Soc., 1939, 61(8), 2077-2082.
[22]
Clark, E. Studies on gossypol. V. the action of chromic acid upon some gossypol derivatives. J. Am. Chem. Soc., 1929, 51(5), 1475-1478.
[23]
Adams, R.; Morris, R.; Kirkpatrick, E. Structure of gossypol. IX. 1 oxidation and degradation of gossypol hexamethyl ether; gossic acid. J. Am. Chem. Soc., 1938, 60(9), 2170-2174.
[24]
Haas, R.H.; Shirley, D.A. The oxidation of gossypol. II. formation of gossypolone with ferric chloride. J. Org. Chem., 1965, 30(12), 4111-4113.
[25]
Scheiffele, E.W.; Shirley, D.A. The oxidation of gossypol. I. early stages in the reaction of gossypol and oxygen. J. Org. Chem., 1964, 29(12), 3617-3620.
[26]
Wei, J.; Rega, M.F.; Kitada, S.; Yuan, H.; Zhai, D.; Risbood, P.; Seltzman, H.H.; Twine, C.E.; Reed, J.C.; Pellecchia, M. Synthesis and evaluation of Apogossypol atropisomers as potential Bcl-XL antagonists. Cancer Lett., 2009, 273(1), 107-113.
[27]
Zhan, Y.; Jia, G.; Wu, D.; Xu, Y.; Xu, L. Design and synthesis of a gossypol derivative with improved antitumor activities. Arch. Pharm., 2009, 342(4), 223-229.
[28]
Przybylski, P.; Schilf, W.; Kamieński, B.; Brzezinski, B.; Bartl, F. 13C, 15N CP-MAS, FT-IR and PM5 studies of some Schiff bases of gossypol in solid. J. Mol. Struct., 2005, 748(1), 111-117.
[29]
Przybylski, P.; Schilf, W.; Brzezinski, B. 13C, 15N NMR and CP-MAS as well as FT-IR and PM5 studies of Schiff base of gossypol with l-phenylalanine methyl ester in solution and solid. J. Mol. Struct., 2005, 734(1), 123-128.
[30]
Przybylski, P.; Bejcar, G.; Schroeder, G.; Brzezinski, B. Complexes of Schiff base of gossypol with 5-hydroxy-3-oxapentylamine and some monovalent cations studied by ESI MS as well as PM5 semiempirical methods. J. Mol. Struct., 2003, 654(1), 245-252.
[31]
Przybylski, P.; Schroeder, G.; Pankiewicz, R.; Brzezinski, B.; Bartl, F. Complexes of Schiff base of gossypol with n-butylamine and some monovalent or bivalent cations studied by ESI MS, NMR, FT-IR as well as PM5 semiempirical methods. J. Mol. Struct., 2003, 658(3), 193-205.
[32]
That, Q.T.; Nguyen, K.P.P.; Hansen, P.E. Schiff bases of gossypol: an NMR and DFT study. Magn. Reson. Chem., 2005, 43(4), 302-308.
[33]
Przybylski, P.; Ratajczak-Sitarz, M.; Katrusiak, A.; Schilf, W.; Wojciechowski, G.; Brzezinski, B. Crystal structure of Schiff base derivative of gossypol with 3, 6, 9-trioxa-decylamine. J. Mol. Struct., 2003, 655(2), 293-300.
[34]
Przybylski, P.; Włodarz, M.; Schroeder, G.; Pankiewicz, R.; Brzezinski, B.; Bartl, F. ESI MS and PM5 semiempirical studies of gossypol schiff base with (R)-tetrahydrofurfurylamine complexes and monovalent cations. J. Mol. Struct., 2004, 693(1), 95-102.
[35]
Przybylski, P.; Bejcar, G.; Huczyński, A.; Schroeder, G.; Brzezinski, B.; Bartl, F. 1H-and 13C-NMR, FTIR, UV-VIS, ESI-MS, and PM5 studies as well as emission properties of a new Schiff base of gossypol with 5-methoxytryptamine and a new hydrazone of gossypol with dansylhydrazine. Biopolymers, 2006, 82(5), 521-535.
[36]
Przybylski, P.; Małuszyńska, M.; Brzezinski, B. Spectroscopic and semiempirical studies of new Schiff base of gossypol with allylamine in solution. J. Mol. Struct., 2005, 750(1), 152-157.
[37]
Przybylski, P.; Brzezinski, B. Spectroscopic studies and PM3 semiempirical calculations of Schiff bases of gossypol with L-amino acid methyl esters. Biopolymers, 2002, 67(1), 61-69.
[38]
Przybylski, P.; Jasiński, K.; Brzezinski, B.; Bartl, F. Spectroscopic studies and PM5 semiempirical calculations of new Schiff bases of gossypol with amino derivatives of crown ethers. J. Mol. Struct., 2002, 611(1), 193-201.
[39]
Przybylski, P.; Włodarz, M.; Brzezinski, B.; Bartl, F. Spectroscopic studies and PM5 semiempirical calculations of tautomeric forms of gossypol schiff base with (R)-tetrahydrofurfurylamine. J. Mol. Struct., 2004, 691(1), 227-234.
[40]
Przybylski, P.; Pyta, K.; Wicher, B.; Gdaniec, M.; Brzezinski, B. Structure of a new Schiff base of gossypol with 1-(3-aminopropyl)-2-pyrrolidinone studied by the X-ray, FT-IR, NMR, ESI-MS and PM5 methods. J. Mol. Struct., 2008, 889(1), 332-343.
[41]
Przybylski, P.; Pyta, K.; Czupryniak, J.; Wicher, B.; Gdaniec, M.; Ossowski, T.; Brzezinski, B. The influence of protonation on molecular structure and physico-chemical properties of gossypol Schiff bases. Org. Biomol. Chem., 2010, 8(24), 5511-5518.
[42]
Li, L.; Li, Z.; Wang, K.; Zhao, S.; Feng, J.; Li, J.; Yang, P.; Liu, Y.; Wang, L.; Li, Y.; Shang, H.; Wang, Q. Design, synthesis, and biological activities of aromatic gossypol schiff base derivatives. J. Agric. Food Chem., 2014, 62(46), 11080-11088.
[43]
Leblanc, M.L.; Russo, J.; Kudelka, A.P.; Smith, J.A. An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol. Res., 2002, 46(6), 551-555.
[44]
Huang, Y.; Wang, L.; Dowd, M.K.; Wan, P.; Lin, Y. (-)-Gossypol reduces invasiveness in metastatic prostate cancer cells. Anticancer Res., 2009, 29(6), 2179-2188.
[45]
Wolter, K.G.; Wang, S.; Henson, B.S.; Wang, S.; Griffith, K.A.; Kumar, B.; Chen, J.; Carey, T.E.; Bradford, C.R.; D’Silva, N.J. (-)-Gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma in vivo. Neoplasia, 2006, 8(3), 163-172.
[46]
Bauer, J.A.; Trask, D.K.; Kumar, B.; Los, G.; Castro, J.; Lee, J.S.; Chen, J.; Wang, S.; Bradford, C.R.; Carey, T.E. Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-XL. Mol. Cancer Ther., 2005, 4(7), 1096-1104.
[47]
Adams, J.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[48]
Cory, S.; Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[49]
Meng, Y.; Tang, W.; Dai, Y.; Wu, X.; Liu, M.; Ji, Q.; Ji, M.; Pienta, K.; Lawrence, T.; Xu, L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-XL inhibition accompanied by increase of Puma and Noxa. Mol. Cancer Ther., 2008, 7(7), 2192-2202.
[50]
Oliver, C.L.; Miranda, M.B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D.E. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2-and Bcl-XL-mediated apoptosis resistance. Mol. Cancer Ther., 2005, 4(1), 23-31.
[51]
Zhang, M.; Liu, H.; Tian, Z.; Griffith, B.N.; Ji, M.; Li, Q. Gossypol induces apoptosis in human PC-3 prostate cancer cells by modulating caspase-dependent and caspase-independent cell death pathways. Life Sci., 2007, 80(8), 767-774.
[52]
Etxebarria, A.; Landeta, O.; Antonsson, B.; Basañez, G. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems. Biochem. Pharmacol., 2008, 76(11), 1563-1576.
[53]
Kline, M.P.; Rajkumar, S.V.; Timm, M.M.; Kimlinger, T.K.; Haug, J.L.; Lust, J.A.R. -(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Exp. Hematol., 2008, 36(5), 568-576.
[54]
Oliver, C.L.; Bauer, J.A.; Wolter, K.G.; Ubell, M.L.; Narayan, A.; O’Connell, K.M.; Fisher, S.G.; Wang, S.; Wu, X.; Ji, M.; Carey, T.E.; Bradford, C.R. In vitro effects of the BH3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin. Cancer Res., 2004, 10(22), 7757-7763.
[55]
Lei, X.; Chen, Y.; Du, G.; Yu, W.; Wang, X.; Qu, H.; Xia, B.; He, H.; Mao, J.; Zong, W.; Liao, X.; Mehrpour, M.; Hao, X.; Chen, Q. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J., 2006, 20(12), 2147-2149.
[56]
Zhang, M.; Liu, H.; Guo, R.; Ling, Y.; Wu, X.; Li, B.H.; Roller, P.P.; Wang, S.; Yang, D. Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochem. Pharmacol., 2003, 66(1), 93-103.
[57]
Huang, Y.; Wang, L.; Chang, H.; Ye, W.; Dowd, M.K.; Wan, P.; Lin, Y. Molecular mechanisms of (-)-gossypol-induced apoptosis in human prostate cancer cells. Anticancer Res., 2006, 26(3A), 1925-1933.
[58]
Mohammad, R.M.; Wang, S.; Aboukameel, A.; Chen, B.; Wu, X.; Chen, J.; Al-Katib, A. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL [(−)-gossypol] against diffuse large cell lymphoma. Mol. Cancer Ther., 2005, 4(1), 13-21.
[59]
Macoska, J.A.; Adsule, S.; Tantivejkul, K.; Wang, S.; Pienta, K.J.; Lee, C.T. -(-) Gossypol promotes the apoptosis of bladder cancer cells in vitro. Pharmacol. Res., 2008, 58(5), 323-331.
[60]
Soderquist, R.S.; Danilov, A.V.; Eastman, A. Gossypol increases expression of the pro-apoptotic BH3-only protein NOXA through a novel mechanism involving phospholipase A2, cytoplasmic calcium, and endoplasmic reticulum stress. J. Biol. Chem., 2014, 289(23), 16190-16199.
[61]
Kaza, N.; Kohli, L.; Graham, C.D.; Klocke, B.J.; Carroll, S.L.; Roth, K.A. BNIP3 regulates AT101 [(−)-gossypol] induced death in malignant peripheral nerve sheath tumor cells. PLoS One, 2014, 9(5)e96733
[62]
Hou, D.; Uto, T.; Tong, X.; Takeshita, T.; Tanigawa, S.; Imamura, I.; Ose, T.; Fujii, M. Involvement of reactive oxygen species-independent mitochondrial pathway in gossypol-induced apoptosis. Arch. Biochem. Biophys., 2004, 428(2), 179-187.
[63]
Loberg, R.D.; McGregor, N.; Ying, C.; Sargent, E.; Pienta, K.J. In vivo evaluation of AT-101 (R-(−)-gossypol acetic acid) in androgen-independent growth of VCaP prostate cancer cells in combination with surgical castration. Neoplasia, 2007, 9(12), 1030-1037.
[64]
Balakrishnan, K.; Wierda, W.G.; Keating, M.J.; Gandhi, V. Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood, 2008, 112(5), 1971-1980.
[65]
Zhang, X.; Huang, X.; Mu, S.; An, Q.; Xia, A.; Chen, R.; Wu, D. Inhibition of proliferation of prostate cancer cell line, PC-3, in vitro and in vivo using (−)-gossypol. Asian J. Androl., 2010, 12(3), 390-399.
[66]
Paoluzzi, L.; Gonen, M.; Gardner, J.R.; Mastrella, J.; Yang, D.; Holmlund, J.; Sorensen, M.; Leopold, L.; Manova, K.; Marcucci, G.; Heaney, M.L.; O’Connor, O.A. Targeting Bcl-2 family members with the BH3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and in vivo models of B-cell lymphoma. Blood, 2008, 111(11), 5350-5358.
[67]
Wang, J.; Jin, L.; Li, X.; Deng, H.; Chen, Y.; Lian, Q.; Ge, R.; Deng, H. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol. Biosyst., 2013, 9(6), 1489-1497.
[68]
Huang, Y.; Wang, L.; Chang, H.; Ye, W.; Sugimoto, Y.; Dowd, M.K.; Wan, P.; Lin, Y. Effects of serum on (−)-gossypol-suppressed growth in human prostate cancer cells. Anticancer Res., 2006, 26(5A), 3613-3620.
[69]
Jiang, J.; Sugimoto, Y.; Liu, S.; Chang, H.; Park, K.Y.; Kulp, S.K.; Lin, Y. The inhibitory effects of gossypol on human prostate cancer cells-PC3 are associated with transforming growth factor beta1 (TGFβ1) signal transduction pathway. Anticancer Res., 2004, 24(1), 91-100.
[70]
Van Poznak, C.; Seidman, A.D.; Reidenberg, M.M.; Moasser, M.M.; Sklarin, N.; Van Zee, K.; Borgen, P.; Gollub, M.; Bacotti, D.; Yao, T.J.; Bloch, R.; Ligueros, M.; Sonenbergm, M.; Norton, L.; Hudis, C. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res. Treat., 2001, 66(3), 239-248.
[71]
Jang, G.; Lee, M. BH3-mimetic gossypol-induced autophagic cell death in mutant BRAF melanoma cells with high expression of p21 Cip1. Life Sci., 2014, 102(1), 41-48.
[72]
Carruthers, N.J.; Dowd, M.K.; Stemmer, P.M. Gossypol inhibits calcineurin phosphatase activity at multiple sites. Eur. J. Pharmacol., 2007, 555(2), 106-114.
[73]
Moon, D.O.; Kim, M.O.; Lee, J.D.; Kim, G.Y. Gossypol suppresses NF-κB activity and NF-κB-related gene expression in human leukemia U937 cells. Cancer Lett., 2008, 264(2), 192-200.
[74]
Pang, X.; Wu, Y.; Wu, Y.; Lu, B.; Chen, J.; Wang, J.; Yi, Z.; Qu, W.; Liu, M. (−)-Gossypol suppresses the growth of human prostate cancer xenografts via modulating VEGF signaling-mediated angiogenesis. Mol. Cancer Ther., 2011, 10(5), 795-805.
[75]
Lian, J.; Karnak, D.; Xu, L. The Bcl-2-Beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy, 2010, 6, 1201-1203.
[76]
Gao, P.; Bauvy, C.; Souquère, S.; Tonelli, G.; Liu, L.; Zhu, Y.; Qiao, Z.; Bakula, D.; Cezanne, T.P.; Pierron, G.; Codogno, P.; Chen, Q.; Mehrpour, M. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J. Biol. Chem., 2010, 285(33), 25570-25581.
[77]
Wang, B.; Chen, L.; Ni, Z.; Dai, X.; Qin, L.; Wu, Y.; Li, X.; Xu, L.; Lian, J.; He, F. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (−)-gossypol by suppressing ERK-mediated protective autophagy and McL-1 accumulation in hepatocellular carcinoma cells. Exp. Cell Res., 2014, 328(2), 379-387.
[78]
Ni, Z.; Dai, X.; Wang, B.; Ding, W.; Cheng, P.; Xu, L. Natural Bcl-2 inhibitor (−)–gossypol induces protective autophagy via reactive oxygen species-high mobility group box 1 pathway in Burkitt lymphoma. Leuk. Lymphoma, 2013, 54(10), 2263-2268.
[79]
Keller, P.A.; Birch, C.; Leach, S.P.; Tyssen, D.; Griffith, R. Novel pharmacophore-based methods reveal gossypol as a reverse transcriptase inhibitor. J. Mol. Graph. Model., 2003, 21(5), 365-373.
[80]
Mego, M. Telomerase inhibitors in anticancer therapy gossypol as a potential telomerase inhibitor. Bratisl. Lek Listy, 2002, 103(10), 378-381.
[81]
Moon, D.O.; Kim, M.O.; Choi, Y.H.; Lee, H.G.; Kim, N.D.; Kim, G.Y. Gossypol suppresses telomerase activity in human leukemia cells via regulating hTERT. FEBS Lett., 2008, 582(23-24), 3367-3373.
[82]
Wang, X.; Wang, J.; Wong, S.; Chow, L.S.; Nicholls, J.M.; Wong, Y.; Liu, Y.; Kwong, D.L.W.; Sham, J.S.T.; Tsao, S.W. Cytotoxic effect of gossypol on colon carcinoma cells. Life Sci., 2000, 67(22), 2663-2671.
[83]
Quintana, P.J.; de Peyster, A.; Klatzke, S.; Park, H.J. Gossypol-induced DNA breaks in rat lymphocytes are secondary to cytotoxicity. Toxicol. Lett., 2000, 117(1), 85-94.
[84]
Kisim, A.; Atmaca, H.; Cakar, B.; Karabulut, B.; Sezgin, C.; Uzunoglu, S.; Uslu, R.; Karaca, B. Pretreatment with AT-101 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of breast cancer cells by inducing death receptors 4 and 5 protein levels. J. Cancer Res. Clin. Oncol., 2012, 138(7), 1155-1163.
[85]
Qian, C.; Li, M.; Sui, J.; Ren, T.; Li, Z.; Zhang, L.; Zhou, L.; Cheng, Y.; Wang, D. Identification of a novel potential antitumor activity of gossypol as an APE1/Ref-1 inhibitor. Drug Des. Devel. Ther., 2014, 8, 485-496.
[86]
Chien, C.C.; Ko, C.H.; Shen, S.; Yang, L.; Chen, Y. The role of COX-2/PGE2 in gossypol-induced apoptosis of colorectal carcinoma cells. J. Cell. Physiol., 2012, 227(8), 3128-3137.
[87]
Lan, L.; Appelman, C.; Smith, A.R.; Yu, J.; Larsen, S.; Marquez, R.T.; Liu, H.; Wu, X.; Gao, P.; Roy, A.; Anbanandam, A.; Gowthaman, R.; Karanicolas, J.; De Guzman, R.N.; Rogers, S.; Aubé, J.; Ji, M.; Cohen, R.S.; Neufeld, K.L.; Xu, L. Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1. Mol. Oncol., 2015, 9(7), 1406-1420.
[88]
Kitada, S.; Kress, C.L.; Krajewska, M.; Jia, L.; Pellecchia, M.; Reed, J.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood, 2008, 111(6), 3211-3219.
[89]
Xin, J.; Zhan, Y.; Xia, L.; Zhu, H.; Nie, Y.; Liang, J.; Tian, J. ApoG2 as the most potent gossypol derivatives inhibits cell growth and induces apoptosis on gastric cancer cells. Biomed. Pharmacother., 2013, 67(1), 88-95.
[90]
Hu, Z.; Sun, J.; Zhu, X.; Yang, D.; Zeng, Y. ApoG2 induces cell cycle arrest of nasopharyngeal carcinoma cells by suppressing the c-Myc signaling pathway. J. Transl. Med., 2009, 7(1), 1-11.
[91]
Hu, Z.; Zhu, X.; Zhong, Z.; Sun, J.; Wang, J.; Yang, D. ApoG2, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces apoptosis and suppresses tumor growth in nasopharyngeal carcinoma xenografts. Int. J. Cancer, 2008, 123(10), 2418-2429.
[92]
Xin, J.; Zhan, Y.; Liu, M.; Hu, H.; Xia, L.; Nie, Y.; Wu, K.; Liang, J.; Tian, J. ApoG2 induces ER stress-dependent apoptosis in gastric cancer cells in vitro and its real-time evaluation by bioluminescence imaging in vivo. Cancer Lett., 2013, 336(2), 260-269.
[93]
Zhang, X.; Huang, X.; Mu, S.; Chen, R.; An, Q.; Xia, A.; Wu, D. Inhibitory effect of a new gossypol derivative apogossypolone (ApoG2) on xenograft of human prostate cancer cell line PC-3. J. Med. Coll. PLA, 2009, 24(5), 274-282.
[94]
Arnold, A.A.; Aboukameel, A.; Chen, J.; Yang, D.; Wang, S.; Al-Katib, A.; Mohammad, R.M. Preclinical studies of apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and McL-1 proteins in follicular small cleaved cell lymphoma model. Mol. Cancer, 2008, 7(1), 1-10.
[95]
Niu, X.; Li, S.; Wei, F.; Huang, J.; Wu, G.; Xu, L.; Xu, D.; Wang, S. Apogossypolone induces autophagy and apoptosis in breast cancer MCF-7 cells in vitro and in vivo. Breast Cancer, 2014, 21(2), 223-230.
[96]
Zhang, X.; Huang, X.; Hu, X.; Zhan, Y.; An, Q.; Yang, S.; Xia, A.; Yi, J.; Chen, R.; Mu, S.; Wu, D. Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells in vitro. Asian J. Androl., 2010, 12(5), 697-708.
[97]
Cheng, P.; Ni, Z.; Dai, X.; Wang, B.; Ding, W.; Smith, A.R.; Xu, L.; Wu, D.; He, F.; Lian, J. The novel BH-3 mimetic apogossypolone induces Beclin-1-and ROS-mediated autophagy in human hepatocellular carcinoma cells. Cell Death Dis., 2013, 4(2)e489
[98]
Mi, J.; Wang, G.; Wang, H.; Sun, X.; Ni, X.; Zhang, X. Synergistic antitumoral activity and induction of apoptosis by novel pan Bcl-2 proteins inhibitor apogossypolone with adriamycin in human hepatocellular carcinoma. Acta Pharmacol. Sin., 2008, 29(12), 1467-1477.
[99]
Becattini, B.; Kitada, S.; Leone, M.; Monosov, E.; Chandler, S.; Zhai, D.; Kipps, T.J.; Reed, J.C.; Pellecchia, M. Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-XL. Chem. Biol., 2004, 11(3), 389-395.
[100]
Zubair, H.; Khan, H.Y.; Ullah, M.; Ahmad, A.; Wu, D.; Hadi, S. Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage. Eur. J. Pharm. Sci., 2012, 47(1), 280-286.
[101]
Zubair, H.; Azim, S.; Khan, H.Y.; Ullah, M.F.; Wu, D.; Singh, A.P.; Hadi, S.M.; Ahmad, A. Mobilization of intracellular copper by gossypol and apogossypolone leads to reactive oxygen species-mediated cell death: putative anticancer mechanism. Int. J. Mol. Sci., 2016, 17(6), 973-985.
[102]
Wei, J.; Stebbins, J.L.; Kitada, S.; Dash, R.; Placzek, W.; Rega, M.F.; Wu, B.; Cellitti, J.; Zhai, D.; Yang, L.; Dahl, R.; Fisher, P.B.; Reed, J.C.; Pellecchia, M. BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins. J. Med. Chem., 2010, 53(10), 4166-4176.
[103]
Yan, F.; Cao, X.; Jiang, H.; Zhao, X.; Wang, J.; Lin, Y.; Liu, Q.; Zhang, C.; Liang, B.; Guo, F. A novel water-soluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer. J. Med. Chem., 2010, 53(15), 5502-5510.
[104]
Dao, V.; Gaspard, C.; Mayer, M.; Werner, G.H.; Nguyen, S.N.; Michelot, R.J. Synthesis and cytotoxicity of gossypol related compounds. Eur. J. Med. Chem., 2000, 35(9), 805-813.
[105]
Dao, V.; Dowd, M.K.; Martin, M.T.; Gaspard, C.; Mayer, M.; Michelot, R.J. Cytotoxicity of enantiomers of gossypol Schiff’s bases and optical stability of gossypolone. Eur. J. Med. Chem., 2004, 39(7), 619-624.
[106]
Zhang, L.; Jiang, H.; Cao, X.; Zhao, H.; Wang, F.; Cui, Y.; Jiang, B. Chiral gossypol derivatives: evaluation of their anticancer activity and molecular modeling. Eur. J. Med. Chem., 2009, 44(10), 3961-3972.
[107]
Dao, V.; Dowd, M.K.; Gaspard, C.; Martin, M.T.; Hémez, J.; Laprévote, O.; Mayer, M.; Michelot, R.J. New thioderivatives of gossypol and gossypolone, as prodrugs of cytotoxic agents. Bioorg. Med. Chem., 2003, 11(9), 2001-2006.
[108]
Yin, J.; Jin, L.; Chen, F.; Wang, X.; Kitaygorodskiy, A.; Jiang, Y. Novel O-glycosidic gossypol isomers and their bioactivities. Carbohydr. Res., 2011, 346(14), 2070-2074.
[109]
Wong, F.; Liem, N.; Xie, C.; Yan, F.; Wong, W.; Wang, L.; Yong, W. Combination therapy with gossypol reveals synergism against gemcitabine resistance in cancer cells with high BCL-2 expression. PLoS One, 2012, 7(12)e50786
[110]
Yuan, Y.; Tang, A.; Castoreno, A.; Kuo, S.; Wang, Q.; Kuballa, P.; Xavier, R.; Shamji, A.F.; Schreiber, S.L.; Wagner, B.K. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis., 2013, 4(6)e690
[111]
Lian, J.; Ni, Z.; Dai, X.; Su, C.; Smith, A.R.; Xu, L.; He, F. Sorafenib sensitizes (−)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via McL-1 inhibition and Bak activation. Mol. Cancer Ther., 2012, 11(2), 416-426.
[112]
Xu, L.; Yang, D.; Wang, S.; Tang, W.; Liu, M.; Davis, M.; Chen, J.; Rae, J.M.; Lawrence, T.; Lippman, M.E. (−)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Mol. Cancer Ther., 2005, 4(2), 197-205.
[113]
Li, H.; Piao, L.; Xu, P.; Ye, W.; Zhong, S.; Lin, S.; Kulp, S.K.; Mao, Y.; Cho, Y.; Lee, L.; Lee, R.; Lin, Y. Liposomes containing (−)-gossypol-enriched cottonseed oil suppress Bcl-2 and Bcl-XL expression in breast cancer cells. Pharm. Res., 2011, 28(12), 3256-3264.
[114]
Zhai, G.; Wu, J.; Zhao, X.; Yu, B.; Li, H.; Lu, Y.; Ye, W.; Lin, Y.C.; Lee, R. A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Res., 2008, 28(5A), 2801-2805.
[115]
Shen, Y.; Yang, S.; Wu, L.; Ma, X. Study on structure and characterization of inclusion complex of gossypol/beta cyclodextrin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(6), 1025-1028.
[116]
Ignatova, M.; Manolova, N.; Toshkova, R.; Rashkov, I.; Gardeva, E.; Yossifova, L.; Alexandrov, M. Quaternized chitosan-coated nanofibrous materials containing gossypol: preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. Int. J. Pharm., 2012, 436(1), 10-24.
[117]
Ionov, M.; Gordiyenko, N.V.; Zukowska, I.; Tokhtaeva, E.; Mareninova, O.A.; Baram, N.; Ziyaev, K.; Rezhepov, K.; Zamaraeva, M. Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone. Int. J. Biol. Macromol., 2012, 51(5), 908-914.
[118]
Ionov, M.; Gordiyenko, N.; Olchowik, E.; Baram, N.; Zijaev, K.; Salakhutdinov, B.; Bryszewaka, M.; Zamaraeva, M. The immobilization of gossypol derivative on N-polyvinylpyrrolidone increases its water solubility and modifies membrane-active properties. J. Med. Chem., 2009, 52(14), 4119-4125.
[119]
Liu, H.; Li, K.; Lan, L.; Ma, J.; Zeng, Y.; Xu, L.; Wu, D. Double-layered hyaluronic acid/stearic acid-modified polyethyleneimine nanoparticles encapsulating (−)-gossypol: a nanocarrier for chiral anticancer drugs. J. Mater. Chem. B, 2014, 2(32), 5238-5248.
[120]
Jin, C.; Chen, M.; Wang, Y.; Kang, X.; Han, G.; Xu, S. Preparation of novel (−)-gossypol nanoparticles and the effect on growth inhibition in human prostate cancer PC-3 cells in vitro. Exp. Ther. Med., 2015, 9(3), 675-678.
[121]
Ye, W.; Chang, H.; Wang, L.; Huang, Y.; Shu, S.; Dowd, M.K.; Wan, P.; Sugimoto, Y.; Lin, Y. Modulation of multidrug resistance gene expression in human breast cancer cells by (−)-gossypol-enriched cottonseed oil. Anticancer Res., 2007, 27(1A), 107-116.
[122]
Cho, H.; Lai, T.; Kwon, G.S. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J. Control. Release, 2013, 166(1), 1-9.
[123]
Heleg-Shabtai, V.; Aizen, R.; Orbach, R.; Aleman-Garcia, M.A.; Willner, I. Gossypol-cross-linked boronic acid-modified hydrogels: a functional matrix for the controlled release of an anticancer drug. Langmuir, 2015, 31(7), 2237-2242.
[124]
Heleg Shabtai, V.; Aizen, R.; Sharon, E.; Sohn, Y.S.; Trifonov, A.; Enkin, N.; Freage, L.; Nechushtai, R.; Willner, I. Gossypol-capped mitoxantrone-loaded mesoporous SiO2 NPs for the cooperative controlled release of two anti-cancer drugs. ACS Appl. Mater. Interfaces, 2016, 8(23), 14414-14422.
[125]
Li, K.; Liu, H.; Gao, W.; Chen, M.; Zeng, Y.; Liu, J.; Xu, L.; Wu, D. Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials, 2015, 39, 131-144.