Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links

Author(s): Henri Wathieu, Naiem T. Issa, Manisha Mohandoss, Stephen W. Byers and Sivanesan Dakshanamurthy*

Volume 20, Issue 3, 2017

Page: [193 - 207] Pages: 15

DOI: 10.2174/1386207319666161214111254

Price: $65

Abstract

Background: Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. Objective: This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform).

Methods: Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database.

Results: Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations.

Conclusion: By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies.

Keywords: Biomarker, colorectal cancer, esophageal cancer, gene expression analysis, metabolomics, MSD-MAP, prostate cancer, systems biology.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy