Abstract
Novel coxibs (i.e. etoricoxib, valdecoxib, parecoxib and lumiracoxib) with enhanced biochemical cyclooxygenase (COX)-2 selectivity over that of rofecoxib and celecoxib have been recently developed. They have the potential advantage to spare COX-1 activity, thus reducing gastrointestinal toxicity, even when administered at high doses to improve efficacy. They are characterized by different pharmacodynamic and pharmacokinetics features. The higher biochemical selectivity of valdecoxib than celecoxib, evidenced in vitro, may be clinically relevant leading to an improved gastrointestinal safety. Interestingly, parecoxib, a pro-drug of valdecoxib, is the only injectable coxib. Etoricoxib shows only a slightly improved COX-2 selectivity than rofecoxib, a highly selective COX-2 inhibitor that has been reported to halve the incidence of serious gastrointestinal toxicity compared to nonselective nonsteroidal antiinflammatory drugs (NSAIDs). Lumiracoxib, the most selective COX-2 inhibitor in vitro, is the only acidic coxib. The hypothesis that this chemical property may lead to an increased and persistent drug accumulation in inflammatory sites and consequently to an improved clinical efficacy, however, remains to be verified. Several randomized clinical studies suggest that the novel coxibs have comparable efficacy to nonselective NSAIDs in the treatment of osteoarthritis, rheumatoid arthritis and acute pain, but they share similar renal side-effects. The apparent dose-dependence of renal toxicity may limit the use of higher doses of the novel coxibs for improved efficacy. Large-size randomized clinical trials are ongoing to define the gastrointestinal and cardiovascular safety of the novel coxibs.
Keywords: valdecoxib, parecoxib, etoricoxib, lumiracoxib, cyclooxygenase, coxibs