Abstract
Objective: To investigate the inhibitory effects and the mechanism of NF-κB decoy oligodeoxynucleotides (ODN) on Kupffer cells (KCs) activation.
Methods: KCs were isolated and randomly divided into three groups: (1) a control group; (2) an LPS stimu1ation group and (3) an NF-κB decoy group, in which the KCs were transduced with an NF-κB decoy ODN prior to LPS stimulation. Following 6 hours of LPS stimulation, the NF-κB activity was assayed by an electrophoretic mobility shift assay (EMSA). The CD80 mRNA expression in the KCs was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the production of TNF-α and IL-6 in the supernatant was measured by an enzyme-linked immune sorbent assay (ELISA).
Results: The NF-κB decoy ODN could efficiently inhibit KCs activation by LPS stimulus. The NF-κB activity was significantly decreased to 0.53 fold as compared with the LPS group. The CD80 mRNA expression, TNF-α production, and IL-6 level were significantly decreased to 0.46, 0.37, and 0.60 fold, respectively.
Conclusion: The NF-κB decoy ODN could efficiently suppress transcription activity of NF-κB and inhibit co-stimulatory molecules and cytokines expression by KCs, which afford reliable experimental data for the in vivo application of NF-κB decoy ODN.
Keywords: Cytokines, Kupffer cells, LPS, NF-κB, oligodeoxynucleotides, TNF-α.
Current Signal Transduction Therapy
Title:NF-κB Decoy Oligodeoxynucleotides Inhibits Kupffer Cell Activation
Volume: 10 Issue: 1
Author(s): Chun Huang, Shan-mao Nie, Yi-ming Liu, Min Li, Jian-ping Gong and Meng-hao Wang
Affiliation:
Keywords: Cytokines, Kupffer cells, LPS, NF-κB, oligodeoxynucleotides, TNF-α.
Abstract: Objective: To investigate the inhibitory effects and the mechanism of NF-κB decoy oligodeoxynucleotides (ODN) on Kupffer cells (KCs) activation.
Methods: KCs were isolated and randomly divided into three groups: (1) a control group; (2) an LPS stimu1ation group and (3) an NF-κB decoy group, in which the KCs were transduced with an NF-κB decoy ODN prior to LPS stimulation. Following 6 hours of LPS stimulation, the NF-κB activity was assayed by an electrophoretic mobility shift assay (EMSA). The CD80 mRNA expression in the KCs was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the production of TNF-α and IL-6 in the supernatant was measured by an enzyme-linked immune sorbent assay (ELISA).
Results: The NF-κB decoy ODN could efficiently inhibit KCs activation by LPS stimulus. The NF-κB activity was significantly decreased to 0.53 fold as compared with the LPS group. The CD80 mRNA expression, TNF-α production, and IL-6 level were significantly decreased to 0.46, 0.37, and 0.60 fold, respectively.
Conclusion: The NF-κB decoy ODN could efficiently suppress transcription activity of NF-κB and inhibit co-stimulatory molecules and cytokines expression by KCs, which afford reliable experimental data for the in vivo application of NF-κB decoy ODN.
Export Options
About this article
Cite this article as:
Huang Chun, Nie Shan-mao, Liu Yi-ming, Li Min, Gong Jian-ping and Wang Meng-hao, NF-κB Decoy Oligodeoxynucleotides Inhibits Kupffer Cell Activation, Current Signal Transduction Therapy 2015; 10 (1) . https://dx.doi.org/10.2174/1573407211666150603201802
DOI https://dx.doi.org/10.2174/1573407211666150603201802 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Molecular Evidence of Cryptotanshinone for Treatment and Prevention of Human Cancer
Anti-Cancer Agents in Medicinal Chemistry DNAzyme Delivery Approaches in Biological Settings
Current Medicinal Chemistry Cardiac Adrenomedullin: Its Role in Cardiac Hypertrophy and Heart Failure
Current Medicinal Chemistry - Cardiovascular & Hematological Agents The Dialogue Between Endothelial Cells and Monocytes/Macrophages in Vascular Syndromes
Current Pharmaceutical Design Novel Applications for Invasive and Non-invasive Tools in the Era of Contemporary Percutaneous Coronary Revascularisation
Current Cardiology Reviews Redox Behavior of Ceria Nanoparticles
Recent Patents on Materials Science VIP in Neurological Diseases: More Than A Neuropeptide
Endocrine, Metabolic & Immune Disorders - Drug Targets Allergic Contact Dermatitis: Novel Mechanisms and Therapeutic Perspectives
Current Drug Metabolism Editorial (Thematic Issue: Linkage of Neurodegenerative Disorders with Other Health Issues – Volume II)
CNS & Neurological Disorders - Drug Targets Role of miRNAs in Muscle Stem Cell Biology: Proliferation, Differentiation and Death
Current Pharmaceutical Design Subretinal Transplantation of Rat MSCs and Erythropoietin Gene Modified Rat MSCs for Protecting and Rescuing Degenerative Retina in Rats
Current Molecular Medicine Regenerative Potential of Stem Cells Derived from Human Exfoliated Deciduous (SHED) Teeth during Engineering of Human Body Tissues
Current Stem Cell Research & Therapy Albumin Infusion Therapy in Stroke, Sepsis and the Critically Ill
Current Nutrition & Food Science Editorial (Hot Topic: Cell Penetrating Peptides as Delivery Vectors for Biomolecules)
Current Pharmaceutical Design Recent Advances in Sepsis Research: Novel Biomarkers and Therapeutic Targets
Current Medicinal Chemistry Pentraxins: CRP and PTX3 and Cardiovascular Disease
Inflammation & Allergy - Drug Targets (Discontinued) Lost in Translation: What is Limiting Cardiomyoplasty and Can Tissue Engineering Help?
Current Stem Cell Research & Therapy Pharmacological Perspectives of Ayurvedic Herbs <i>viz. Alstonia scholaris</i> L., <i>Picrorhiza kurroa, Swertia chirata</i> and <i>Caesalpinia crista</i> Against COVID- 19: A Mini-Review
Mini-Reviews in Organic Chemistry DNA Damage and Repair in the Brain After Cerebral Ischemia
Current Topics in Medicinal Chemistry Bergenin - A Biologically Active Scaffold: Nanotechnological Perspectives
Current Topics in Medicinal Chemistry