Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Targeting Mitochondrial Citrate Transport in Breast Cancer Cell Lines

Author(s): Ali Burak Ozkaya, Handan Ak, Sevcan Atay and Hikmet Hakan Aydin

Volume 15, Issue 3, 2015

Page: [374 - 381] Pages: 8

DOI: 10.2174/1871520615666141216150659

Price: $65

Abstract

Lipogenesis is considered to be a very important aspect of cancer metabolism and targeting de novo lipid synthesis or related pathways are among novel approaches to treat cancer. Many targets of the pathway including ATPcitrate lyase (ACLY), acetyl-CoA carboxylase and fatty acid synthase have been evaluated for their potential in cancer treatment. However the role of citrate transport protein (CTP), another important component of lipogenesis pathway, is not well known for cancer metabolism and cell survival.

Here we report that while chemical inhibition of CTP reduces cytoplasmic citrate levels and limits breast cancer cell viability effectively, siRNA based inhibition had little effect on both. We also compared the effects of CTP inhibition with ACLY and found that the inhibition of ACLY reduced cytoplasmic citrate levels and limited cell viability more effectively than CTP inhibition. Finally we have demonstrated that neither cell cycle arrest nor autophagy was induced in cells treated with CTP or ACLY siRNA. Inhibitions triggered apoptosis but only slightly. Growth inhibitory effects do not occur in normal mammary epithelial MCF-10A cell line.

Keywords: ATP-citrate lyase, cancer metabolism, citrate transport protein, histone acetylation, SLC25A1.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy