Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Actinomycetes as a Paramount Source of Biologically Important Enzyme Inhibitors – “A Boon to Mankind”

Author(s): Saket Siddharth and Ravishankar V. Rai*

Volume 15, Issue 1, 2019

Page: [19 - 30] Pages: 12

DOI: 10.2174/1573407213666170116161747

Price: $65

Abstract

Background: Bioactive compounds from microorganisms have been widely studied for several biological, therapeutic and pharmaceutical importances. Bacterial secondary metabolites have proven their worth as a prolific source of antibiotics, antifungal, antiviral, anticholesterol and immunosuppressant. The majority of inhibitors are secondary metabolites of varying chemical moieties produced by microorganisms among which actinomycetes are most important due to their tremendous diversity. Actinomycetes are most economically and commercially important prokaryotes known for their metabolic versatility. They have gained attention due to their ability to produce novel bioactive compounds with many applications. This review provides an overview on well-established actinobacterial bioactive compounds used as enzyme inhibitors for the treatment and management of diseases and their future perspectives.

Objective: We focused on actinobacterial bioactive compounds which were reported to possess enzyme inhibition activity. An extensive search on well-acknowledged enzyme inhibitors was done by referring to peer-reviewed research papers. The papers were screened on the basis of the significance of research work done.

Results: The research papers referred in this review article suggest the potential of bioactive compounds as therapeutically important enzyme inhibitors. The actinobacterial compounds were found to possess enzyme inhibition potential and could be developed into an antibacterial, antifungal, antimetastatic, antidiabetic and antihypertensive agent. These inhibitors were structurally elucidated and belonged to the class of peptides, proteins and pseudotrisaccharides.

Conclusion: The findings of this review paper highlight the enormous potential of actinomycetes and bioactive compounds as enzyme inhibitors of therapeutic and pharmaceutical importance.

Keywords: Actinomycetes, bioactive compounds, enzyme inhibitors, pharmacology, therapeutic agents, pharmacophores.

Graphical Abstract

[1]
Oskay, M.; Tamer, U.A.; Azeri, C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr. J. Biotechnol., 2004, 3, 441-446.
[2]
Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Marine actinobacterial metabolites: current status and future perspectives. Microbiol. Res., 2013, 168(6), 311-332.
[3]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo), 2005, 58(1), 1-26.
[4]
Miyadoh, S. Research on antibiotic screening in Japan over the last decade: A producing microorganisms approach. Actinomycetologca, 1993, 9, 100-106.
[5]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[6]
Otto, H-H.; Schirmeister, T. Cysteine proteases and their inhibitors. Chem. Rev., 1997, 97(1), 133-172.
[7]
Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol., 2013, 58, 263-274.
[8]
Abdelmohsen, U.R.; Grkovic, T.; Balasubramanian, S.; Kamel, M.S.; Quinn, R.J.; Hentschel, U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv., 2015, 33(6 Pt 1), 798-811.
[9]
Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 2003, 206(Pt 24), 4393-4412.
[10]
Rast, D.M.; Baumgartner, D.; Mayer, C.; Hollenstein, G.O. Cell wall-associated enzymes in fungi. Phytochemistry, 2003, 64(2), 339-366.
[11]
Nishimoto, Y.; Sakuda, S.; Takayama, S.; Yamada, Y. Isolation and characterization of new allosamidins. J. Antibiot. (Tokyo), 1991, 44(7), 716-722.
[12]
Arai, N.; Shiomi, K.; Iwai, Y.; Omura, S. Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J. Antibiot. (Tokyo), 2000, 53(6), 609-614.
[13]
Arai, N.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Iwai, Y.; Turberg, A.; Kölbl, H.; Omura, S. Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem. Pharm. Bull. (Tokyo), 2000, 48(10), 1442-1446.
[14]
Andersen, O.A.; Dixon, M.J.; Eggleston, I.M.; van Aalten, D.M. Natural product family 18 chitinase inhibitors. Nat. Prod. Rep., 2005, 22(5), 563-579.
[15]
Sakuda, S.; Isogai, A.; Matsumoto, S. The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron Lett., 1986, 27, 2475-2478.
[16]
Tatsuta, K.; Ikeda, Y.; Miura, S. Synthesis and glycosidase inhibitory activities of nagstatin triazole analogs. J. Antibiot. (Tokyo), 1996, 49(8), 836-838.
[17]
Knapp, S.; Vocadlo, D.; Gao, Z. Kirk. B.; Lou, J.; Withers, S.G. NAG-thiazoline, an N-Acetyl-betahexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc., 1996, 118, 6804-6805.
[18]
Usuki, H.; Nitoda, T.; Ichikawa, M.; Yamaji, N.; Iwashita, T.; Komura, H.; Kanzaki, H. TMG-chitotriomycin, an enzyme inhibitor specific for insect and fungal beta-N-acetylglucosaminidases, produced by actinomycete Streptomyces anulatus NBRC 13369. J. Am. Chem. Soc., 2008, 130(12), 4146-4152.
[19]
Johnston, P.S.; Lebovitz, H.E.; Coniff, R.F.; Simonson, D.C.; Raskin, P.; Munera, C.L. Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J. Clin. Endocrinol. Metab., 1998, 83(5), 1515-1522.
[20]
Bischoff, H. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 3-10.
[21]
Truscheit, E.; Hillebrand, I.; Junge, B.; Miller, L.; Puls, W.; Schmidt, D. Microbial α-glucosidase inhibitors: chemistry, biochemistry and therapeutic potential. Prog. Clin. Biochem. Med., 1988, 7, 717-799.
[22]
Puls, W. Pharmacology of glucosidase inhibitorsOral Antidiabetics, Springer, Berlin; , 1996. 119, 497-525
[23]
Hillebrand, I.; Boehme, K.; Frank, G.; Fink, H.; Berchtold, P. The effects of the α-glucosidase inhibitor BAY g 5421 (Acarbose) on meal-stimulated elevations of circulating glucose, insulin, and triglyceride levels in man. Res. Exp. Med. (Berl.), 1979, 175(1), 81-86.
[24]
Krause, H.P.; Ahr, H.J. Pharmacokinetics and metabolism of glucosidase inhibitors.Oral Antidiabetics; Handbook of experimental pharmacology. , 1996, pp. 541-545.
[25]
Hanefeld, M.; Fischer, S.; Schulze, J.; Spengler, M.; Wargenau, M.; Schollberg, K.; Fücker, K. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care, 1991, 14(8), 732-737.
[26]
Baron, A.; Newmann, C. PROTECT interim results: a large multicenter study of patients with type 2 diabetes. Clin. Ther., 1997, 19, 282-295.
[27]
Segal, P.; Feig, P.U.; Schernthaner, G.; Ratzmann, K.P.; Rybka, J.; Petzinna, D.; Berlin, C. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care, 1997, 20(5), 687-691.
[28]
Chiasson, J.L.; Josse, R.G.; Hunt, J.A.; Palmason, C.; Rodger, N.W.; Ross, S.A.; Ryan, E.A.; Tan, M.H.; Wolever, T.M. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann. Intern. Med., 1994, 121(12), 928-935.
[29]
Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H. Valiolamine, a new α-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J. Antibiot. (Tokyo), 1984, 37(11), 1301-1307.
[30]
Kim, J.G.; Chang, H.B.; Kwon, Y.I.; Moon, S.K.; Chun, H.S.; Ahn, S.K.; Hong, C.I. Novel α-glucosidase inhibitors, CKD-711 and CKD-711a produced by Streptomyces sp. CK-4416. I. Taxonomy, fermentation and isolation. J. Antibiot. (Tokyo), 2002, 55(5), 457-461.
[31]
Sathiyaseelan, K.; Stella, D. Isolation and Screening of α-glucosidase Enzyme Inhibitor Producing Marine Actinobacteria Isolated from Pichavaram Mangrove. Int. J. Pharm. Biol. Sci. Arch., 2012, 3(5), 1142-1149.
[32]
Schwientek, P.; Szczepanowski, R.; Rückert, C.; Kalinowski, J.; Klein, A.; Selber, K.; Wehmeier, U.F.; Stoye, J.; Pühler, A. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics, 2012, 13, 112.
[33]
Suthindhiran, K.R.; Jayasri, M.A.; Kannabiran, K. α-glucosidase and α-amylase inhibitory activity of Micromonospora sp. VITSDK3 (EU551238). Int. J. Integr. Biol., 2009, 6, 115-120.
[34]
Lestari, Y.; Velina, Y.; Rahminiwati, M. Metabolites activity of endophytic Streptomyces sp. IPBCC. B.15.1539 from Tinospora Crispa L. Miers: α-glucosidase inhibitor and anti-hyperglycemic in mice. Int. J. Pharm. Pharm. Sci., 2015, 7, 235-239.
[35]
Nimal Christhudas, I.V.; Praveen Kumar, P.; Agastian, P. In vitro α-glucosidase inhibition and antioxidative potential of an endophyte species (Streptomyces sp. loyola UGC) isolated from Datura stramonium L. Curr. Microbiol., 2013, 67(1), 69-76.
[36]
Wang, L.; Hou, Y.; Peng, J.Q.I. X.; Zhang, Q.I.; Bai, F.; Bai, G. Bioactivity based HPLC tandem Q/TOF for alpha glucosidase inhibitors. Screening, identification and quantification from actinomycetes. Lat. Am. J. Pharm., 2012, 31, 693-698.
[37]
Chen, Z.; Hao, J.; Wang, L.; Wang, Y.; Kong, F.; Zhu, W. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434. Sci. Rep., 2016, 6, 20004.
[38]
Kim, S.D.; Nho, H.J. Isolation and characterization of α-glucosidase inhibitor from the fungus Ganoderma lucidum. J. Microbiol., 2004, 42(3), 223-227.
[39]
Sun, Z.; Lu, W.; Liu, P.; Wang, H.; Huang, Y.; Zhao, Y.; Kong, Y.; Cui, Z. Isolation and characterization of a proteinaceous α-amylase inhibitor AAI-CC5 from Streptomyces sp. CC5, and its gene cloning and expression. Antonie van Leeuwenhoek, 2015, 107(2), 345-356.
[40]
Sharova, N.Iu. [Amylase inhibitors from Streptomyces lucensis VKPM Ac-1743 and Streptomyces violaceus VKPM Ac-1734]. Prikl. Biokhim. Mikrobiol., 2015, 51(1), 46-52.
[41]
Suetsuna, K.; Nagatomo, K.; Doi, K. Structure of an alpha amylase inhibitor produced by marine actinomycete and its lowering effects in vivo of glucose and lipid in blood. J. Shimonoseki Univ. Fish., 1994, 42, 171-183.
[42]
Geng, P.; Bai, G.; Shi, Q.; Zhang, L.; Gao, Z.; Zhang, Q. Taxonomy of the Streptomyces strain ZG0656 that produces acarviostatin alpha-amylase inhibitors and analysis of their effects on blood glucose levels in mammalian systems. J. Appl. Microbiol., 2009, 106(2), 525-533.
[43]
Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano, 2012, 6(6), 4864-4875.
[44]
Taguchi, S.; Kikuchi, H.; Suzuki, M.; Kojima, S.; Terabe, M.; Miura, K.; Nakase, T.; Momose, H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl. Environ. Microbiol., 1993, 59(12), 4338-4341.
[45]
Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. Evolutionary families of peptidase inhibitors. Biochem. J., 2004, 378(Pt 3), 705-716.
[46]
Saising, J.; Singdam, S.; Ongsakul, M.; Voravuthikunchai, S.P. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions. Biosci. Trends, 2012, 6(4), 160-164.
[47]
Hartley, B.S. Proteolytic enzymes. Annu. Rev. Biochem., 1960, 29, 45-72.
[48]
Farady, C.J.; Craik, C.S. Mechanisms of macromolecular protease inhibitors. ChemBioChem, 2010, 11(17), 2341-2346.
[49]
Shindo, T.; Van der Hoorn, R.A.L. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol., 2008, 9(1), 119-125.
[50]
Yongqing, T.; Potempa, J.; Pike, R.N.; Wijeyewickrema, L.C. The lysine-specific gingipain of Porphyromonas gingivalis: importance to pathogenicity and potential strategies for inhibition. Adv. Exp. Med. Biol., 2011, 712, 15-29.
[51]
Zindel, S.; Kaman, W.E.; Fröls, S.; Pfeifer, F.; Peters, A.; Hays, J.P.; Fuchsbauer, H.L. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth. Antimicrob. Agents Chemother., 2013, 57(7), 3388-3391.
[52]
Singh, J.P.; Tamang, S.; Rajamohanan, P.R.; Jima, N.C.; Chakraborty, G.; Kundu, G.C.; Gaikwad, S.M.; Khan, M.I. Isolation, structure, and functional elucidation of a modified pentapeptide, cysteine protease inhibitor (CPI-2081) from Streptomyces species 2081 that exhibit inhibitory effect on cancer cell migration. J. Med. Chem., 2010, 53(14), 5121-5128.
[53]
Suda, H.; Aoyagi, T.; Hamada, M.; Takeuchi, T.; Umezawa, H. Antipain, a new protease inhibitor isolated from actinomycetes. J. Antibiot. (Tokyo), 1972, 25(4), 263-266.
[54]
Kadowaki, T.; Kitano, S.; Baba, A.; Takii, R.; Hashimoto, M.; Katunuma, N.; Yamamoto, K. Isolation and characterization of a novel and potent inhibitor of Arg-gingipain from Streptomyces sp. strain FA-70. Biol. Chem., 2003, 384(6), 911-920.
[55]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972.
[56]
Kourteva, Y.; Boteva, R. A novel extracellular subtilisin inhibitor produced by a Streptomyces sp. FEBS Lett., 1989, 247(2), 468-470.
[57]
Angelova, L.; Dalgalarrondo, M.; Minkov, I.; Danova, S.; Kirilov, N.; Serkedjieva, J.; Chobert, J.M.; Haertlé, T.; Ivanova, I. Purification and characterisation of a protease inhibitor from Streptomyces chromofuscus 34-1 with an antiviral activity. Biochim. Biophys. Acta, 2006, 1760(8), 1210-1216.
[58]
Mohd-Yusoff, J.; Alias, Z.; Simarani, K. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl. Biochem. Microbiol., 2016, 52, 256-262.
[59]
Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, M.; Takeuchi, T. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J. Antibiot. (Tokyo), 1970, 23(5), 259-262.
[60]
Dash, C.; Kulkarni, A.; Dunn, B.; Rao, M. Aspartic peptidase inhibitors: implications in drug development. Crit. Rev. Biochem. Mol. Biol., 2003, 38(2), 89-119.
[61]
Sun, Y.; Takada, K.; Nogi, Y.; Okada, S.; Matsunaga, S. Lower homologues of ahpatinin, aspartic protease inhibitors, from a marine Streptomyces sp. J. Nat. Prod., 2014, 77(7), 1749-1752.
[62]
Menon, V.; Rao, M. Interactions of a low molecular weight inhibitor from Streptomyces sp. MBR04 with human cathepsin D: implications in mechanism of inactivation. Appl. Biochem. Biotechnol., 2014, 174(5), 1705-1723.
[63]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[64]
Foster-Schubert, K.E.; Cummings, D.E. Emerging therapeutic strategies for obesity. Endocr. Rev., 2006, 27(7), 779-793.
[65]
Weibel, E.K.; Hadvary, P.; Hochuli, E.; Kupfer, E.; Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1987, 40(8), 1081-1085.
[66]
Hochuli, E.; Kupfer, E.; Maurer, R.; Meister, W.; Mercadal, Y.; Schmidt, K. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. II. Chemistry and structure elucidation. J. Antibiot. (Tokyo), 1987, 40(8), 1086-1091.
[67]
Mutoh, M.; Nakada, N.; Matsukuma, S.; Ohshima, S.; Yoshinari, K.; Watanabe, J.; Arisawa, M. Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1994, 47(12), 1369-1375.
[68]
Kitahara, M.; Asano, M.; Naganawa, H.; Maeda, K.; Hamada, M.; Aoyagi, T.; Umezawa, H.; Iitaka, Y.; Nakamura, H. Valilactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1987, 40(11), 1647-1650.
[69]
Umezawa, H.; Aoyagi, T.; Hazato, T.; Uotani, K.; Kojima, F.; Hamada, M.; Takeuchi, T. Esterastin, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1978, 31(6), 639-641.
[70]
Umezawa, H.; Aoyagi, T.; Uotani, K.; Hamada, M.; Takeuchi, T.; Takahashi, S. Ebelactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1980, 33(12), 1594-1596.
[71]
Shamsiya, T.K.; Harohally, N.V.; Manonmani, H.K. Purification and production of a new inhibitor of pancreatic lipase and hormone sensitive lipase from soil actinomycetes. Int. J. Innov. Res. Sci. Eng. Technol., 2015, 4, 11600-11609.
[72]
Tokdar, P.; Ranadive, P.; Mascarenhas, M.; Patil, S.; George, S. A New Pancreatic Lipase Inhibitor Produced by a Streptomyces sp. MTCC 5219. International Conference on Life Science and Technology. Int. Proc. Chem. Biol. Environ. Eng., 2011, 3, 7-10.
[73]
Vértesy, L.; Beck, B.; Brönstrup, M.; Ehrlich, K.; Kurz, M.; Müller, G.; Schummer, D.; Seibert, G. Cyclipostins, novel hormone-sensitive lipase inhibitors from Streptomyces sp. DSM 13381. II. Isolation, structure elucidation and biological properties. J. Antibiot. (Tokyo), 2002, 55(5), 480-494.
[74]
Bhosale, H.; Bismile, P.; Kadam, T.; Shaheen, U. Antioxidant, enzyme inhibitory and antifungal activities of actinomycetes isolated from Curcuma longa rhizosphere. Int. J. Pharm. Pharm. Sci., 2016, 8, 307-311.
[75]
Oetting, W.S. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): A model for understanding the molecular biology of melanin formation. Pigment Cell Res., 2000, 13(5), 320-325.
[76]
Friedman, M. Food browning and its prevention: an overview. J. Agric. Food Chem., 1996, 44, 631-653.
[77]
Xu, Y.; Stokes, A.H.; Freeman, W.M.; Kumer, S.C.; Vogt, B.A.; Vrana, K.E. Tyrosinase mRNA is expressed in human substantia nigra. Brain Res. Mol. Brain Res., 1997, 45(1), 159-162.
[78]
Nakashima, T.; Anzai, K.; Kuwahara, N.; Komaki, H.; Miyadoh, S.; Harayama, S.; Tianero, M.D.B.; Tanaka, J.; Kanamoto, A.; Ando, K. Physicochemical characters of a tyrosinase inhibitor produced by Streptomyces roseolilacinus NBRC 12815. Biol. Pharm. Bull., 2009, 32(5), 832-836.
[79]
Chang, T.S.; Tseng, M. Preliminary screening of soil Actinomycetes for anti-tyrosinase activity. J. Mar. Sci. Technol., 2006, 14, 190-193.
[80]
Skeggs, L.T., Jr; Kahn, J.R.; Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med., 1956, 103(3), 295-299.
[81]
Fujita, H.; Yokoyama, K.; Yoshikawa, M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci., 2000, 65, 564-569.
[82]
Nakatsukasa, W.M.; Wilgus, R.M.; Thomas, D.N.; Mertz, F.P.; Boeck, L.D. Angiotensin converting enzyme inhibitors produced by Streptomyces chromofuscus. Discovery, taxonomy and fermentation. J. Antibiot. (Tokyo), 1985, 38(8), 997-1002.
[83]
Kodani, S.; Ohnishi, K.; Yoshida, M.; Ochi, K. A New Siderophore Isolated from Streptomyces sp. TM‐34 with Potent Inhibitory Activity Against Angiotensin‐Converting Enzyme. Eur. J. Org. Chem., 2011, 17, 3191-3196.
[84]
Huang, L.; Rowin, G.; Dunn, J.; Sykes, R.; Dobna, R.; Mayles, B.A.; Gross, D.M.; Burg, R.W. Discovery, purification and characterization of the angiotensin converting enzyme inhibitor, L-681,176, produced by Streptomyces sp. MA 5143a. J. Antibiot. (Tokyo), 1984, 37(5), 462-465.
[85]
Umezawa, H.; Aoyagi, T.; Ogawa, K.; Obata, T.; Iinuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T. Foroxymithine, a new inhibitor of angiotensin-converting enzyme, produced by actinomycetes. J. Antibiot. (Tokyo), 1985, 38(12), 1813-1815.
[86]
Mueller-Premru, M.; Zidar, N.; Spik, V.C.; Krope, A.; Kikelj, D. Benzoxazine series of histidine kinase inhibitors as potential antimicrobial agents with activity against enterococci. Chemotherapy, 2009, 55(6), 414-417.
[87]
Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A.T.; Goodfellow, M.; Zinecker, H.; Imhoff, J.F.; Nicholson, G.; Irran, E.; Süssmuth, R.D.; Fiedler, H.P. Benzoxacystol, a benzoxazine-type enzyme inhibitor from the deep-sea strain Streptomyces sp. NTK 935. J. Antibiot. (Tokyo), 2011, 64(6), 453-457.
[88]
Chen, Y.P.; Catbagan, C.C.; Bowler, J.T.; Gokey, T.; Goodwin, N.D.; Guliaev, A.B.; Wu, W.; Amagata, T. Evaluation of benzoic acid derivatives as sirtuin inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(1), 349-352.
[89]
Kimura, K.; Kanou, F.; Yamashita, Y.; Yoshimoto, T.; Yoshihama, M. Prolyl endopeptidase inhibitors derived from actinomycetes. Biosci. Biotechnol. Biochem., 1997, 61(10), 1754-1756.
[90]
Reading, C.; Cole, M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother., 1977, 11(5), 852-857.
[91]
Demain, A.L.; Vaishnav, P. Involvement of nitrogen-containing compounds in β-lactam biosynthesis and its control. Crit. Rev. Biotechnol., 2006, 26(2), 67-82.
[92]
Shanthi, J.; Senthil, A.; Gopikrishnan, V.; Balagurunathan, R. Characterization of a potential β-lactamase inhibitory metabolite from a marine Streptomyces sp. PM49 active against multidrug-resistant pathogens. Appl. Biochem. Biotechnol., 2015, 175(8), 3696-3708.
[93]
Solecka, J.; Rajnisz, A.; Laudy, A.E. A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part I: Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo), 2009, 62(10), 575-580.
[94]
Yang, N.; Sun, C. The inhibition and resistance mechanisms of Actinonin, isolated from marine Streptomyces sp. NHF165, against Vibrio anguillarum. Front. Microbiol., 2016, 7, 1467.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy