[1]
Oskay, M.; Tamer, U.A.; Azeri, C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr. J. Biotechnol., 2004, 3, 441-446.
[2]
Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Marine actinobacterial metabolites: current status and future perspectives. Microbiol. Res., 2013, 168(6), 311-332.
[3]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo), 2005, 58(1), 1-26.
[4]
Miyadoh, S. Research on antibiotic screening in Japan over the last decade: A producing microorganisms approach. Actinomycetologca, 1993, 9, 100-106.
[5]
Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm., 2013, 4, 17-31.
[6]
Otto, H-H.; Schirmeister, T. Cysteine proteases and their inhibitors. Chem. Rev., 1997, 97(1), 133-172.
[7]
Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol., 2013, 58, 263-274.
[8]
Abdelmohsen, U.R.; Grkovic, T.; Balasubramanian, S.; Kamel, M.S.; Quinn, R.J.; Hentschel, U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv., 2015, 33(6 Pt 1), 798-811.
[9]
Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 2003, 206(Pt 24), 4393-4412.
[10]
Rast, D.M.; Baumgartner, D.; Mayer, C.; Hollenstein, G.O. Cell wall-associated enzymes in fungi. Phytochemistry, 2003, 64(2), 339-366.
[11]
Nishimoto, Y.; Sakuda, S.; Takayama, S.; Yamada, Y. Isolation and characterization of new allosamidins. J. Antibiot. (Tokyo), 1991, 44(7), 716-722.
[12]
Arai, N.; Shiomi, K.; Iwai, Y.; Omura, S. Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J. Antibiot. (Tokyo), 2000, 53(6), 609-614.
[13]
Arai, N.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Iwai, Y.; Turberg, A.; Kölbl, H.; Omura, S. Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem. Pharm. Bull. (Tokyo), 2000, 48(10), 1442-1446.
[14]
Andersen, O.A.; Dixon, M.J.; Eggleston, I.M.; van Aalten, D.M. Natural product family 18 chitinase inhibitors. Nat. Prod. Rep., 2005, 22(5), 563-579.
[15]
Sakuda, S.; Isogai, A.; Matsumoto, S. The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron Lett., 1986, 27, 2475-2478.
[16]
Tatsuta, K.; Ikeda, Y.; Miura, S. Synthesis and glycosidase inhibitory activities of nagstatin triazole analogs. J. Antibiot. (Tokyo), 1996, 49(8), 836-838.
[17]
Knapp, S.; Vocadlo, D.; Gao, Z. Kirk. B.; Lou, J.; Withers, S.G. NAG-thiazoline, an N-Acetyl-betahexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc., 1996, 118, 6804-6805.
[18]
Usuki, H.; Nitoda, T.; Ichikawa, M.; Yamaji, N.; Iwashita, T.; Komura, H.; Kanzaki, H. TMG-chitotriomycin, an enzyme inhibitor specific for insect and fungal beta-N-acetylglucosaminidases, produced by actinomycete Streptomyces anulatus NBRC 13369. J. Am. Chem. Soc., 2008, 130(12), 4146-4152.
[19]
Johnston, P.S.; Lebovitz, H.E.; Coniff, R.F.; Simonson, D.C.; Raskin, P.; Munera, C.L. Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J. Clin. Endocrinol. Metab., 1998, 83(5), 1515-1522.
[20]
Bischoff, H. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 3-10.
[21]
Truscheit, E.; Hillebrand, I.; Junge, B.; Miller, L.; Puls, W.; Schmidt, D. Microbial α-glucosidase inhibitors: chemistry, biochemistry and therapeutic potential. Prog. Clin. Biochem. Med., 1988, 7, 717-799.
[22]
Puls, W. Pharmacology of glucosidase inhibitorsOral Antidiabetics, Springer, Berlin; , 1996. 119, 497-525
[23]
Hillebrand, I.; Boehme, K.; Frank, G.; Fink, H.; Berchtold, P. The effects of the α-glucosidase inhibitor BAY g 5421 (Acarbose) on meal-stimulated elevations of circulating glucose, insulin, and triglyceride levels in man. Res. Exp. Med. (Berl.), 1979, 175(1), 81-86.
[24]
Krause, H.P.; Ahr, H.J. Pharmacokinetics and metabolism of glucosidase inhibitors.Oral Antidiabetics; Handbook of experimental pharmacology. , 1996, pp. 541-545.
[25]
Hanefeld, M.; Fischer, S.; Schulze, J.; Spengler, M.; Wargenau, M.; Schollberg, K.; Fücker, K. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care, 1991, 14(8), 732-737.
[26]
Baron, A.; Newmann, C. PROTECT interim results: a large multicenter study of patients with type 2 diabetes. Clin. Ther., 1997, 19, 282-295.
[27]
Segal, P.; Feig, P.U.; Schernthaner, G.; Ratzmann, K.P.; Rybka, J.; Petzinna, D.; Berlin, C. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care, 1997, 20(5), 687-691.
[28]
Chiasson, J.L.; Josse, R.G.; Hunt, J.A.; Palmason, C.; Rodger, N.W.; Ross, S.A.; Ryan, E.A.; Tan, M.H.; Wolever, T.M. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann. Intern. Med., 1994, 121(12), 928-935.
[29]
Kameda, Y.; Asano, N.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H. Valiolamine, a new α-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J. Antibiot. (Tokyo), 1984, 37(11), 1301-1307.
[30]
Kim, J.G.; Chang, H.B.; Kwon, Y.I.; Moon, S.K.; Chun, H.S.; Ahn, S.K.; Hong, C.I. Novel α-glucosidase inhibitors, CKD-711 and CKD-711a produced by Streptomyces sp. CK-4416. I. Taxonomy, fermentation and isolation. J. Antibiot. (Tokyo), 2002, 55(5), 457-461.
[31]
Sathiyaseelan, K.; Stella, D. Isolation and Screening of α-glucosidase Enzyme Inhibitor Producing Marine Actinobacteria Isolated from Pichavaram Mangrove. Int. J. Pharm. Biol. Sci. Arch., 2012, 3(5), 1142-1149.
[32]
Schwientek, P.; Szczepanowski, R.; Rückert, C.; Kalinowski, J.; Klein, A.; Selber, K.; Wehmeier, U.F.; Stoye, J.; Pühler, A. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics, 2012, 13, 112.
[33]
Suthindhiran, K.R.; Jayasri, M.A.; Kannabiran, K. α-glucosidase and α-amylase inhibitory activity of Micromonospora sp. VITSDK3 (EU551238). Int. J. Integr. Biol., 2009, 6, 115-120.
[34]
Lestari, Y.; Velina, Y.; Rahminiwati, M. Metabolites activity of endophytic Streptomyces sp. IPBCC. B.15.1539 from Tinospora Crispa L. Miers: α-glucosidase inhibitor and anti-hyperglycemic in mice. Int. J. Pharm. Pharm. Sci., 2015, 7, 235-239.
[35]
Nimal Christhudas, I.V.; Praveen Kumar, P.; Agastian, P. In vitro α-glucosidase inhibition and antioxidative potential of an endophyte species (Streptomyces sp. loyola UGC) isolated from Datura stramonium L. Curr. Microbiol., 2013, 67(1), 69-76.
[36]
Wang, L.; Hou, Y.; Peng, J.Q.I. X.; Zhang, Q.I.; Bai, F.; Bai, G. Bioactivity based HPLC tandem Q/TOF for alpha glucosidase inhibitors. Screening, identification and quantification from actinomycetes. Lat. Am. J. Pharm., 2012, 31, 693-698.
[37]
Chen, Z.; Hao, J.; Wang, L.; Wang, Y.; Kong, F.; Zhu, W. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434. Sci. Rep., 2016, 6, 20004.
[38]
Kim, S.D.; Nho, H.J. Isolation and characterization of α-glucosidase inhibitor from the fungus Ganoderma lucidum. J. Microbiol., 2004, 42(3), 223-227.
[39]
Sun, Z.; Lu, W.; Liu, P.; Wang, H.; Huang, Y.; Zhao, Y.; Kong, Y.; Cui, Z. Isolation and characterization of a proteinaceous α-amylase inhibitor AAI-CC5 from Streptomyces sp. CC5, and its gene cloning and expression. Antonie van Leeuwenhoek, 2015, 107(2), 345-356.
[41]
Suetsuna, K.; Nagatomo, K.; Doi, K. Structure of an alpha amylase inhibitor produced by marine actinomycete and its lowering effects in vivo of glucose and lipid in blood. J. Shimonoseki Univ. Fish., 1994, 42, 171-183.
[42]
Geng, P.; Bai, G.; Shi, Q.; Zhang, L.; Gao, Z.; Zhang, Q. Taxonomy of the Streptomyces strain ZG0656 that produces acarviostatin alpha-amylase inhibitors and analysis of their effects on blood glucose levels in mammalian systems. J. Appl. Microbiol., 2009, 106(2), 525-533.
[43]
Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. ACS Nano, 2012, 6(6), 4864-4875.
[44]
Taguchi, S.; Kikuchi, H.; Suzuki, M.; Kojima, S.; Terabe, M.; Miura, K.; Nakase, T.; Momose, H. Streptomyces subtilisin inhibitor-like proteins are distributed widely in streptomycetes. Appl. Environ. Microbiol., 1993, 59(12), 4338-4341.
[45]
Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. Evolutionary families of peptidase inhibitors. Biochem. J., 2004, 378(Pt 3), 705-716.
[46]
Saising, J.; Singdam, S.; Ongsakul, M.; Voravuthikunchai, S.P. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions. Biosci. Trends, 2012, 6(4), 160-164.
[47]
Hartley, B.S. Proteolytic enzymes. Annu. Rev. Biochem., 1960, 29, 45-72.
[48]
Farady, C.J.; Craik, C.S. Mechanisms of macromolecular protease inhibitors. ChemBioChem, 2010, 11(17), 2341-2346.
[49]
Shindo, T.; Van der Hoorn, R.A.L. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol., 2008, 9(1), 119-125.
[50]
Yongqing, T.; Potempa, J.; Pike, R.N.; Wijeyewickrema, L.C. The lysine-specific gingipain of Porphyromonas gingivalis: importance to pathogenicity and potential strategies for inhibition. Adv. Exp. Med. Biol., 2011, 712, 15-29.
[51]
Zindel, S.; Kaman, W.E.; Fröls, S.; Pfeifer, F.; Peters, A.; Hays, J.P.; Fuchsbauer, H.L. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth. Antimicrob. Agents Chemother., 2013, 57(7), 3388-3391.
[52]
Singh, J.P.; Tamang, S.; Rajamohanan, P.R.; Jima, N.C.; Chakraborty, G.; Kundu, G.C.; Gaikwad, S.M.; Khan, M.I. Isolation, structure, and functional elucidation of a modified pentapeptide, cysteine protease inhibitor (CPI-2081) from Streptomyces species 2081 that exhibit inhibitory effect on cancer cell migration. J. Med. Chem., 2010, 53(14), 5121-5128.
[53]
Suda, H.; Aoyagi, T.; Hamada, M.; Takeuchi, T.; Umezawa, H. Antipain, a new protease inhibitor isolated from actinomycetes. J. Antibiot. (Tokyo), 1972, 25(4), 263-266.
[54]
Kadowaki, T.; Kitano, S.; Baba, A.; Takii, R.; Hashimoto, M.; Katunuma, N.; Yamamoto, K. Isolation and characterization of a novel and potent inhibitor of Arg-gingipain from Streptomyces sp. strain FA-70. Biol. Chem., 2003, 384(6), 911-920.
[55]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972.
[56]
Kourteva, Y.; Boteva, R. A novel extracellular subtilisin inhibitor produced by a Streptomyces sp. FEBS Lett., 1989, 247(2), 468-470.
[57]
Angelova, L.; Dalgalarrondo, M.; Minkov, I.; Danova, S.; Kirilov, N.; Serkedjieva, J.; Chobert, J.M.; Haertlé, T.; Ivanova, I. Purification and characterisation of a protease inhibitor from Streptomyces chromofuscus 34-1 with an antiviral activity. Biochim. Biophys. Acta, 2006, 1760(8), 1210-1216.
[58]
Mohd-Yusoff, J.; Alias, Z.; Simarani, K. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl. Biochem. Microbiol., 2016, 52, 256-262.
[59]
Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, M.; Takeuchi, T. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J. Antibiot. (Tokyo), 1970, 23(5), 259-262.
[60]
Dash, C.; Kulkarni, A.; Dunn, B.; Rao, M. Aspartic peptidase inhibitors: implications in drug development. Crit. Rev. Biochem. Mol. Biol., 2003, 38(2), 89-119.
[61]
Sun, Y.; Takada, K.; Nogi, Y.; Okada, S.; Matsunaga, S. Lower homologues of ahpatinin, aspartic protease inhibitors, from a marine Streptomyces sp. J. Nat. Prod., 2014, 77(7), 1749-1752.
[62]
Menon, V.; Rao, M. Interactions of a low molecular weight inhibitor from Streptomyces sp. MBR04 with human cathepsin D: implications in mechanism of inactivation. Appl. Biochem. Biotechnol., 2014, 174(5), 1705-1723.
[63]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[64]
Foster-Schubert, K.E.; Cummings, D.E. Emerging therapeutic strategies for obesity. Endocr. Rev., 2006, 27(7), 779-793.
[65]
Weibel, E.K.; Hadvary, P.; Hochuli, E.; Kupfer, E.; Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1987, 40(8), 1081-1085.
[66]
Hochuli, E.; Kupfer, E.; Maurer, R.; Meister, W.; Mercadal, Y.; Schmidt, K. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. II. Chemistry and structure elucidation. J. Antibiot. (Tokyo), 1987, 40(8), 1086-1091.
[67]
Mutoh, M.; Nakada, N.; Matsukuma, S.; Ohshima, S.; Yoshinari, K.; Watanabe, J.; Arisawa, M. Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. (Tokyo), 1994, 47(12), 1369-1375.
[68]
Kitahara, M.; Asano, M.; Naganawa, H.; Maeda, K.; Hamada, M.; Aoyagi, T.; Umezawa, H.; Iitaka, Y.; Nakamura, H. Valilactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1987, 40(11), 1647-1650.
[69]
Umezawa, H.; Aoyagi, T.; Hazato, T.; Uotani, K.; Kojima, F.; Hamada, M.; Takeuchi, T. Esterastin, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1978, 31(6), 639-641.
[70]
Umezawa, H.; Aoyagi, T.; Uotani, K.; Hamada, M.; Takeuchi, T.; Takahashi, S. Ebelactone, an inhibitor of esterase, produced by actinomycetes. J. Antibiot. (Tokyo), 1980, 33(12), 1594-1596.
[71]
Shamsiya, T.K.; Harohally, N.V.; Manonmani, H.K. Purification and production of a new inhibitor of pancreatic lipase and hormone sensitive lipase from soil actinomycetes. Int. J. Innov. Res. Sci. Eng. Technol., 2015, 4, 11600-11609.
[72]
Tokdar, P.; Ranadive, P.; Mascarenhas, M.; Patil, S.; George, S. A New Pancreatic Lipase Inhibitor Produced by a Streptomyces sp. MTCC 5219. International Conference on Life Science and Technology. Int. Proc. Chem. Biol. Environ. Eng., 2011, 3, 7-10.
[73]
Vértesy, L.; Beck, B.; Brönstrup, M.; Ehrlich, K.; Kurz, M.; Müller, G.; Schummer, D.; Seibert, G. Cyclipostins, novel hormone-sensitive lipase inhibitors from Streptomyces sp. DSM 13381. II. Isolation, structure elucidation and biological properties. J. Antibiot. (Tokyo), 2002, 55(5), 480-494.
[74]
Bhosale, H.; Bismile, P.; Kadam, T.; Shaheen, U. Antioxidant, enzyme inhibitory and antifungal activities of actinomycetes isolated from Curcuma longa rhizosphere. Int. J. Pharm. Pharm. Sci., 2016, 8, 307-311.
[75]
Oetting, W.S. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): A model for understanding the molecular biology of melanin formation. Pigment Cell Res., 2000, 13(5), 320-325.
[76]
Friedman, M. Food browning and its prevention: an overview. J. Agric. Food Chem., 1996, 44, 631-653.
[77]
Xu, Y.; Stokes, A.H.; Freeman, W.M.; Kumer, S.C.; Vogt, B.A.; Vrana, K.E. Tyrosinase mRNA is expressed in human substantia nigra. Brain Res. Mol. Brain Res., 1997, 45(1), 159-162.
[78]
Nakashima, T.; Anzai, K.; Kuwahara, N.; Komaki, H.; Miyadoh, S.; Harayama, S.; Tianero, M.D.B.; Tanaka, J.; Kanamoto, A.; Ando, K. Physicochemical characters of a tyrosinase inhibitor produced by Streptomyces roseolilacinus NBRC 12815. Biol. Pharm. Bull., 2009, 32(5), 832-836.
[79]
Chang, T.S.; Tseng, M. Preliminary screening of soil Actinomycetes for anti-tyrosinase activity. J. Mar. Sci. Technol., 2006, 14, 190-193.
[80]
Skeggs, L.T., Jr; Kahn, J.R.; Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med., 1956, 103(3), 295-299.
[81]
Fujita, H.; Yokoyama, K.; Yoshikawa, M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci., 2000, 65, 564-569.
[82]
Nakatsukasa, W.M.; Wilgus, R.M.; Thomas, D.N.; Mertz, F.P.; Boeck, L.D. Angiotensin converting enzyme inhibitors produced by Streptomyces chromofuscus. Discovery, taxonomy and fermentation. J. Antibiot. (Tokyo), 1985, 38(8), 997-1002.
[83]
Kodani, S.; Ohnishi, K.; Yoshida, M.; Ochi, K. A New Siderophore Isolated from Streptomyces sp. TM‐34 with Potent Inhibitory Activity Against Angiotensin‐Converting Enzyme. Eur. J. Org. Chem., 2011, 17, 3191-3196.
[84]
Huang, L.; Rowin, G.; Dunn, J.; Sykes, R.; Dobna, R.; Mayles, B.A.; Gross, D.M.; Burg, R.W. Discovery, purification and characterization of the angiotensin converting enzyme inhibitor, L-681,176, produced by Streptomyces sp. MA 5143a. J. Antibiot. (Tokyo), 1984, 37(5), 462-465.
[85]
Umezawa, H.; Aoyagi, T.; Ogawa, K.; Obata, T.; Iinuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T. Foroxymithine, a new inhibitor of angiotensin-converting enzyme, produced by actinomycetes. J. Antibiot. (Tokyo), 1985, 38(12), 1813-1815.
[86]
Mueller-Premru, M.; Zidar, N.; Spik, V.C.; Krope, A.; Kikelj, D. Benzoxazine series of histidine kinase inhibitors as potential antimicrobial agents with activity against enterococci. Chemotherapy, 2009, 55(6), 414-417.
[87]
Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A.T.; Goodfellow, M.; Zinecker, H.; Imhoff, J.F.; Nicholson, G.; Irran, E.; Süssmuth, R.D.; Fiedler, H.P. Benzoxacystol, a benzoxazine-type enzyme inhibitor from the deep-sea strain Streptomyces sp. NTK 935. J. Antibiot. (Tokyo), 2011, 64(6), 453-457.
[88]
Chen, Y.P.; Catbagan, C.C.; Bowler, J.T.; Gokey, T.; Goodwin, N.D.; Guliaev, A.B.; Wu, W.; Amagata, T. Evaluation of benzoic acid derivatives as sirtuin inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(1), 349-352.
[89]
Kimura, K.; Kanou, F.; Yamashita, Y.; Yoshimoto, T.; Yoshihama, M. Prolyl endopeptidase inhibitors derived from actinomycetes. Biosci. Biotechnol. Biochem., 1997, 61(10), 1754-1756.
[90]
Reading, C.; Cole, M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother., 1977, 11(5), 852-857.
[91]
Demain, A.L.; Vaishnav, P. Involvement of nitrogen-containing compounds in β-lactam biosynthesis and its control. Crit. Rev. Biotechnol., 2006, 26(2), 67-82.
[92]
Shanthi, J.; Senthil, A.; Gopikrishnan, V.; Balagurunathan, R. Characterization of a potential β-lactamase inhibitory metabolite from a marine Streptomyces sp. PM49 active against multidrug-resistant pathogens. Appl. Biochem. Biotechnol., 2015, 175(8), 3696-3708.
[93]
Solecka, J.; Rajnisz, A.; Laudy, A.E. A novel isoquinoline alkaloid, DD-carboxypeptidase inhibitor, with antibacterial activity isolated from Streptomyces sp. 8812. Part I: Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo), 2009, 62(10), 575-580.
[94]
Yang, N.; Sun, C. The inhibition and resistance mechanisms of Actinonin, isolated from marine Streptomyces sp. NHF165, against Vibrio anguillarum. Front. Microbiol., 2016, 7, 1467.