Abstract
Various types of cancers (including gliomas, melanomas, and esophageal, pancreas and non-small-cell lung cancers) display intrinsic resistance to pro-apoptotic stimuli, such as conventional chemotherapy and radiotherapy, and/or the activation of a multidrug resistance phenotype, which are major barriers to effective treatment and lead to poor patient prognosis. The DYRK1A kinase is directly implicated in the resistance of cancer cells to pro-apoptotic stimuli and drives several pathways that enhance proliferation, migration, and the reduction of cell death, leading to very aggressive biological behavior in cancer cell populations. The DYRK1A kinase is also implicated in neurological diseases and in neoangiogenic processes. Thus, the DYRK1A kinase is of great interest for both cancer and neuroscience research. During the last decade, numerous compounds that inhibit DYRK1A have been synthesized. The present review discusses the available molecules known to interfere with DYRK1A activity and the implications of DYRK1A in cancer and other diseases and serves as a rational analysis for researchers who aim to improve the anti-DYRK1A activity of currently available compounds.
Keywords: DYRK1A kinase, cancer, neurological diseases, anti-DYRK1A compounds, in silico, Quinazolinone, in vivo, Roscovitine, kinases, Anti-kinase
Mini-Reviews in Medicinal Chemistry
Title:DYRK1A Kinase Inhibitors with Emphasis on Cancer
Volume: 12 Issue: 13
Author(s): A. Ionescu, F. Dufrasne, M. Gelbcke, I. Jabin, R. Kiss and D. Lamoral-Theys
Affiliation:
Keywords: DYRK1A kinase, cancer, neurological diseases, anti-DYRK1A compounds, in silico, Quinazolinone, in vivo, Roscovitine, kinases, Anti-kinase
Abstract: Various types of cancers (including gliomas, melanomas, and esophageal, pancreas and non-small-cell lung cancers) display intrinsic resistance to pro-apoptotic stimuli, such as conventional chemotherapy and radiotherapy, and/or the activation of a multidrug resistance phenotype, which are major barriers to effective treatment and lead to poor patient prognosis. The DYRK1A kinase is directly implicated in the resistance of cancer cells to pro-apoptotic stimuli and drives several pathways that enhance proliferation, migration, and the reduction of cell death, leading to very aggressive biological behavior in cancer cell populations. The DYRK1A kinase is also implicated in neurological diseases and in neoangiogenic processes. Thus, the DYRK1A kinase is of great interest for both cancer and neuroscience research. During the last decade, numerous compounds that inhibit DYRK1A have been synthesized. The present review discusses the available molecules known to interfere with DYRK1A activity and the implications of DYRK1A in cancer and other diseases and serves as a rational analysis for researchers who aim to improve the anti-DYRK1A activity of currently available compounds.
Export Options
About this article
Cite this article as:
Ionescu A., Dufrasne F., Gelbcke M., Jabin I., Kiss R. and Lamoral-Theys D., DYRK1A Kinase Inhibitors with Emphasis on Cancer, Mini-Reviews in Medicinal Chemistry 2012; 12 (13) . https://dx.doi.org/10.2174/13895575112091315
DOI https://dx.doi.org/10.2174/13895575112091315 |
Print ISSN 1389-5575 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5607 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
The AMPAR Antagonist Perampanel Regulates Neuronal Necroptosis via Akt/GSK3β Signaling After Acute Traumatic Injury in Cortical Neurons
CNS & Neurological Disorders - Drug Targets The Crosstalk of RAS with the TGF-β Family During Carcinoma Progression and its Implications for Targeted Cancer Therapy
Current Cancer Drug Targets The Interest of Folic Acid in Targeted Photodynamic Therapy
Current Medicinal Chemistry 1,2,4-Triazine Analogs as Novel Class of Therapeutic Agents
Mini-Reviews in Medicinal Chemistry Riluzole Inhibits Proliferation, Migration and Cell Cycle Progression and Induces Apoptosis in Tumor Cells of Various Origins
Anti-Cancer Agents in Medicinal Chemistry Omega-3 Polyunsaturated Fatty Acids and Cancer
Anti-Cancer Agents in Medicinal Chemistry Restoring p53 Function in Cancer: Novel Therapeutic Approaches for Applying the Brakes to Tumorigenesis
Recent Patents on Anti-Cancer Drug Discovery Radiochemical Evaluation and <i>In Vitro</i> Assessment of the Targeting Ability of a Novel <sup>99m</sup>Tc-HYNIC-RGD for U87MG Human Brain Cancer Cells
Current Radiopharmaceuticals O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results
Current Radiopharmaceuticals Colloidal Supramolecular Aggregates for Therapeutic Application in Neuromedicine
Current Medicinal Chemistry Phosphoinositide 3-Kinases and Leukocyte Migration
Current Immunology Reviews (Discontinued) Anticancer Mechanisms of Bioactive Peptides
Protein & Peptide Letters Current Development of ROS-Modulating Agents as Novel Antitumor Therapy
Current Cancer Drug Targets Development of HIV Reservoir Targeted Long Acting Nanoformulated Antiretroviral Therapies
Current Medicinal Chemistry Potential Uses of MicroRNA in Lung Cancer Diagnosis, Prognosis, and Therapy
Current Cancer Drug Targets Targeting the Hedgehog Pathway: The development of Cyclopamine and the Development of Anti-Cancer Drugs Targeting the Hedgehog Pathway
Mini-Reviews in Medicinal Chemistry Impact of Hybrid-polar Histone Deacetylase Inhibitor m-Carboxycinnamic Acid bis-Hydroxyamide on Human Pancreatic Adenocarcinoma Cells
Anti-Cancer Agents in Medicinal Chemistry Metabotropic Glutamate Receptors in Central Nervous System Diseases
Current Drug Targets An Agathokakological Tale of Δ<sup>9</sup>-THC: Exploration of Possible Biological Targets
Current Drug Targets Angiotensin-I Converting Enzyme Inhibitors as Potential Anti-Angiogenic Agents for Cancer Therapy
Current Cancer Drug Targets