Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Carboxylic Acids in the Synthesis of Chemicals for Addressing Flow Assurance Challenges in Offshore Petroleum Production

Author(s): Ronald W.P. Ortiz, Tatiana S.L. Maravilha, Allan Belati, Felipe J.S. Bispo, Evelin A. Manoel, Vinicius O. Oliveira Gonçalves, Vinicius Kartnaller and João Cajaiba*

Volume 28, Issue 14, 2024

Published on: 21 May, 2024

Page: [1102 - 1117] Pages: 16

DOI: 10.2174/0113852728305998240517074146

Price: $65

conference banner
Abstract

Flow assurance encompasses the technical challenges of transporting hydrocarbon mixtures from the reservoir to the platform and refineries. Challenges in flow assurance include gas hydrate plugs, deposition of paraffin wax, asphaltenes, naphthenates, scale, and corrosion. Managing these deposits incurs high costs due to production interruptions and remediation operations like pigging, solvent injection, acid dissolutions, and thermal treatments. Therefore, prevention methods, such as the use of chemicals that inhibit deposit formation, are preferred. This review consolidates scientific works highlighting the role of carboxylic acids in the synthesis of chemicals for addressing flow assurance challenges as starting materials or final products for direct use. These organic compounds are already employed for the mild remediation of scale and naphthenate deposits and inhibiting gas hydrate, paraffin wax, asphaltene, scale deposits, and corrosion. Moreover, they play a crucial role in developing green flow assurance challenges inhibitors, given that some, like fatty acids, amino acids, and aromatic carboxylic acids, can be derived from natural sources. The presence of the carboxylic acid group in polymers and biopolymers is also essential for the effectiveness of these products as inhibitors. The literature further suggests that carboxylic acids will play a key role in the future development of simultaneous gas hydrate, corrosion, and scale inhibitors.

Graphical Abstract

[1]
Theyab, M.A. Fluid flow assurance issues: Literature review. SciFed J. Pet, 2018, 2, 1-11.
[2]
Zhang, P. Review of synthesis and evaluation of inhibitor nanomaterials for oilfield mineral scale control. Front Chem., 2020, 8, 576055.
[http://dx.doi.org/10.3389/fchem.2020.576055] [PMID: 33330364]
[3]
Kumar, A. Perspectives of flow assurance problems in oil and gas production: A mini-review. Energy Fuels, 2023, 37(12), 8142-8159.
[http://dx.doi.org/10.1021/acs.energyfuels.3c00843]
[4]
Seyyedattar, M.; Zendehboudi, S.; Butt, S. Technical and non-technical challenges of development of offshore petroleum reservoirs: Characterization and production. Nat. Resour. Res., 2020, 29(3), 2147-2189.
[http://dx.doi.org/10.1007/s11053-019-09549-7]
[5]
Ayirala, S.C.C.; Yousef, A.A.A. A state-of-the-art review to develop injection-water-chemistry requirement guidelines for IOR/EOR projects. SPE Prod. Oper., 2015, 30(1), 26-42.
[http://dx.doi.org/10.2118/169048-PA]
[6]
Alimohammadi, S.; Zendehboudi, S.; James, L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel, 2019, 252, 753-791.
[http://dx.doi.org/10.1016/j.fuel.2019.03.016]
[7]
Gudmundsson, J.S. Flow Assurance Solids in Oil and Gas Production; CRC Press/Balkema, 2018.
[8]
Farhadian, A.; Varfolomeev, M.A.; Rezaeisadat, M.; Semenov, A.P.; Stoporev, A.S. Toward a bio-based hybrid inhibition of gas hydrate and corrosion for flow assurance. Energy, 2020, 210, 118549.
[http://dx.doi.org/10.1016/j.energy.2020.118549]
[9]
Farhadian, A.; Shadloo, A.; Zhao, X.; Pavelyev, R.S.; Peyvandi, K.; Qiu, Z.; Varfolomeev, M.A. Challenges and advantages of using environmentally friendly kinetic gas hydrate inhibitors for flow assurance application: A comprehensive review. Fuel, 2023, 336, 127055.
[http://dx.doi.org/10.1016/j.fuel.2022.127055]
[10]
Olajire, A.A. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors - A review. J. Mol. Liq., 2017, 248, 775-808.
[http://dx.doi.org/10.1016/j.molliq.2017.10.097]
[11]
Mazumder, J.M.A. A review of green scale inhibitors: Process, types, mechanism and properties. Coatings, 2020, 10(10), 928.
[http://dx.doi.org/10.3390/coatings10100928]
[12]
Bagby, M.O., Jr; Johnson, R.W.; Daniels, R.W. Carboxylic acids. In: Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, 2003; pp. 109-120.
[http://dx.doi.org/10.1002/0471238961.1921182202010702.a01.pub2]
[13]
Hassanpouryouzband, A.; Joonaki, E.; Farahani, V.M.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; Aman, Z.M.; Tohidi, B. Gas hydrates in sustainable chemistry. Chem. Soc. Rev., 2020, 49(15), 5225-5309.
[http://dx.doi.org/10.1039/C8CS00989A] [PMID: 32567615]
[14]
Qasim, A.; Khan, M.S.; Lal, B.; Shariff, A.M. A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. J. Petrol. Sci. Eng., 2019, 183, 106418.
[http://dx.doi.org/10.1016/j.petrol.2019.106418]
[15]
Farhadian, A.; Varfolomeev, M.A.; Kudbanov, A.; Rezaeisadat, M.; Nurgaliev, D.K. Waterborne polymers as kinetic/anti-agglomerant methane hydrate and corrosion inhibitors: A new and promising strategy for flow assurance. J. Nat. Gas Sci. Eng., 2020, 77, 103235.
[http://dx.doi.org/10.1016/j.jngse.2020.103235]
[16]
Zhang, Q.; Shen, X.; Zhou, X.; Liang, D. Inhibition effect study of carboxyl-terminated polyvinyl caprolactam on methane hydrate formation. Energy Fuels, 2017, 31(1), 839-846.
[http://dx.doi.org/10.1021/acs.energyfuels.6b02603]
[17]
Amin, M.A.; Hazzazi, O.A.; Kandemirli, F.; Saracoglu, M. Inhibition performance and adsorptive behavior of three amino acids on cold-rolled steel in 1.0 M HCl-chemical, electrochemical, and morphological studies. Corrosion, 2012, 68(8), 688-698.
[http://dx.doi.org/10.5006/0506]
[18]
Talaghat, M.R. Experimental investigation of gas consumption for simple gas hydrate formation in a recirculation flow mini-loop apparatus in the presence of modified starch as a kinetic inhibitor. J. Nat. Gas Sci. Eng., 2013, 14, 42-48.
[http://dx.doi.org/10.1016/j.jngse.2013.05.002]
[19]
Wang, Q.; Wang, C.; Ma, S. Amphiphilic optimization enables polyaspartamides with effective kinetic inhibition of tetrahydrofuran hydrate formation: Structure-property relationships amphiphilic optimization enables polyaspartamides with effective kinetic inhibition of tetrahydrofu. ACS Sustain. Chem. Eng., 2018, 6, 13523-13542.
[20]
Reyes, F.T.; Kelland, M.A.; Sun, L.; Dong, J. Kinetic hydrate inhibitors: Structure-activity relationship studies on a series of branched poly(ethylene citramide)s with varying lipophilic groups. Energy Fuels, 2015, 29(8), 4774-4782.
[http://dx.doi.org/10.1021/acs.energyfuels.5b00628]
[21]
Kelland, M.A.; Pomicpic, J.; Ghosh, R. Multi-functional oilfield production chemicals: Maleic-based polymers for gas hydrate and corrosion inhibition. IOP Conf. Ser. Mater. Sci. Eng., 2021, 1201(1), 012081.
[http://dx.doi.org/10.1088/1757-899X/1201/1/012081]
[22]
Haq, I.U.; Qasim, A.; Lal, B.; Zaini, D.B. Mini review on environmental issues concerning conventional gas hydrate inhibitors. Process Saf. Prog., 2022, 41(S1), S129-S134.
[http://dx.doi.org/10.1002/prs.12325]
[23]
Wan, L.; Zhang, N.; Liang, D.Q. Inhibition effects of polysaccharides for gas hydrate formation in methane-water system. J. Mol. Liq., 2019, 292, 111435.
[http://dx.doi.org/10.1016/j.molliq.2019.111435]
[24]
Silva, B.L.L.D.; Ferraz, I.L.; do Nascimento, D.F.; de Castro, J.A.; Vitorazi, L. Sodium alginate polymer as a kinetic inhibitor of methane hydrate formation. J. Mater. Res. Technol., 2021, 12, 1999-2010.
[http://dx.doi.org/10.1016/j.jmrt.2021.03.074]
[25]
Belati, A.; Cajaiba, J. Measurement of wax appearance temperature using RGB image analysis and FBRM. Fuel, 2018, 220, 264-269.
[http://dx.doi.org/10.1016/j.fuel.2018.01.110]
[26]
Belati, A.; Venancio, F.; Ortiz, R.W.P.; Gonçalves, V.O.O.; Kartnaller, V.; Cajaiba, J. Novel approach for evaluating the performance of wax deposition inhibitors under flowing conditions. J. Braz. Soc. Mech. Sci. Eng., 2023, 45(5), 249.
[http://dx.doi.org/10.1007/s40430-023-04155-4]
[27]
Wei, B. Recent advances on mitigating wax problem using polymeric wax crystal modifier. J. Pet. Explor. Prod. Technol., 2015, 5(4), 391-401.
[http://dx.doi.org/10.1007/s13202-014-0146-6]
[28]
Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A critical review of controlling paraffin deposition in production lines using chemicals. Energy Fuels, 2019, 33(4), 2797-2809.
[http://dx.doi.org/10.1021/acs.energyfuels.9b00316]
[29]
Li, N.; Mao, G.; Shi, X.; Tian, S.W.; Liu, Y. Advances in the research of polymeric pour point depressant for waxy crude oil. J. Dispers. Sci. Technol., 2018, 39(8), 1165-1171.
[http://dx.doi.org/10.1080/01932691.2017.1385484]
[30]
Kelland, M.A. Production Chemicals for the Oil and Gas Industry; CRC Press, Taylor & Francis Group: Boca Raton, USA, 2014.
[http://dx.doi.org/10.1201/b16648]
[31]
McKeen, L. Introduction to plastics and polymers. In: The Effect of Sterilization Methods on Plastics and Elastomers, 4th ed; Elsevier, 2018.
[http://dx.doi.org/10.1016/B978-0-12-814511-1.00002-0]
[32]
Ansari, F.; Shinde, S.B.; Paso, K.G.; Sjöblom, J.; Kumar, L. Chemical additives as flow improvers for waxy crude oil and model oil: A critical review analyzing structure-efficacy relationships. Energy Fuels, 2022, 36(7), 3372-3393.
[http://dx.doi.org/10.1021/acs.energyfuels.1c03747]
[33]
Wu, Y.; Ni, G.; Yang, F.; Li, C.; Dong, G. Modified maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energy Fuels, 2012, 26(2), 995-1001.
[http://dx.doi.org/10.1021/ef201444b]
[34]
Soni, H.P. Kiranbala; Bharambe, D.P. Performance-based designing of wax crystal growth inhibitors. Energy Fuels, 2008, 22(6), 3930-3938.
[http://dx.doi.org/10.1021/ef8002763]
[35]
Xu, J.; Xing, S.; Qian, H.; Chen, S.; Wei, X.; Zhang, R.; Li, L.; Guo, X. Effect of polar/nonpolar groups in comb-type copolymers on cold flowability and paraffin crystallization of waxy oils. Fuel, 2013, 103, 600-605.
[http://dx.doi.org/10.1016/j.fuel.2012.06.027]
[36]
Ghazawy, E.R.A.; Farag, R.K. Synthesis and characterization of novel pour point depressants based on maleic anhydride‐alkyl acrylates terpolymers. J. Appl. Polym. Sci., 2010, 115(1), 72-78.
[http://dx.doi.org/10.1002/app.30609]
[37]
Borthakur, A.; Chanda, D.; Choudhury, D.S.R.; Rao, K.V.; Subrahmanyam, B. Alkyl fumarate-vinyl acetate copolymer as flow improver for high waxy Indian crude oils. Energy Fuels, 1996, 10(3), 844-848.
[http://dx.doi.org/10.1021/ef950237u]
[38]
Akinyemi, O.P.; Udonne, J.D.; Efeovbokhan, V.E.; Ayoola, A.A. A study on the use of plant seed oils, triethanolamine and xylene as flow improvers of Nigerian waxy crude oil. J. Appl. Res. Technol., 2016, 14(3), 195-205.
[http://dx.doi.org/10.1016/j.jart.2016.04.006]
[39]
Eke, W.I.; Ituen, E.; Yuanhua, L.; Akaranta, O. Laboratory evaluation of modified cashew nut shell liquid as oilfield wax inhibitors and flow improvers for waxy crude oils. Upstream Oil Gas Technol., 2022, 8, 100068.
[http://dx.doi.org/10.1016/j.upstre.2022.100068]
[40]
Eke, W.I.; Achugasim, O.; Ajienka, J. Cashew nut shell liquid-ethylene glycol derivatives as pour point depressants for waxy crude oil. Petrol. Coal, 2020, 63, 224-233.
[41]
Gabayan, R.C.M.; Sulaimon, A.A.; Jufar, S.R. Application of bio-derived alternatives for the assured flow of waxy crude oil: A review. Energies, 2023, 16(9), 3652.
[http://dx.doi.org/10.3390/en16093652]
[42]
Mahmoud, T.; Betiha, M.A. Poly(octadecyl acrylate-co-vinyl neodecanoate)/oleic acid-modified nano-graphene oxide as a pour point depressant and an enhancer of waxy oil transportation. Energy Fuels, 2021, 35(7), 6101-6112.
[http://dx.doi.org/10.1021/acs.energyfuels.1c00034]
[43]
Senra, M.; Paracharoensawad, E.; Scholand, T.; Fogler, H.S. Role of a carboxylic acid on the crystallization, deposition, and gelation of long-chained n-alkanes in solution. Energy Fuels, 2009, 23(12), 6040-6047.
[http://dx.doi.org/10.1021/ef900763b]
[44]
Jing, G.; Ye, P.; Zhang, Y. The action mechanism of wax inhibitors (WI) on pour point and viscosity of mixed waxy oil. Petrol. Chem., 2017, 57(3), 293-298.
[http://dx.doi.org/10.1134/S0965544117020153]
[45]
Alpandi, A.H.; Husin, H.; Jeffri, S.I.; Sidek, A.; Mingyuan, L. Investigation on wax deposition reduction using natural plant-based additives for sustainable energy production from penara oil field Malaysia basin. ACS Omega, 2022, 7(35), 30730-30745.
[http://dx.doi.org/10.1021/acsomega.2c01333] [PMID: 36092559]
[46]
Ragunathan, T.; Wood, C.D.; Husin, H. Inhibiting wax deposition using palm oil additives. J. Pet. Explor. Prod. Technol., 2022, 12(1), 99-115.
[http://dx.doi.org/10.1007/s13202-021-01318-8]
[47]
Kraiwattanawong, K.; Fogler, H.S.; Gharfeh, S.G.; Singh, P.; Thomason, W.H.; Chavadej, S. Effect of asphaltene dispersants on aggregate size distribution and growth. Energy Fuels, 2009, 23(3), 1575-1582.
[http://dx.doi.org/10.1021/ef800706c]
[48]
Maravilha, T.S.L.; Spinelli, L.S. Polycardanol and poly(cardanol‐co‐styrene): Synthesis, characterization, and performance as asphaltene flocculant. Macromol. Symp., 2018, 381(1), 1800105.
[http://dx.doi.org/10.1002/masy.201800105]
[49]
Loureiro, T.S.; Palermo, L.C.M.; Spinelli, L.S. Influence of precipitation conditions (n-heptane or carbon dioxide gas) on the performance of asphaltene stabilizers. J. Petrol. Sci. Eng., 2015, 127, 109-114.
[http://dx.doi.org/10.1016/j.petrol.2015.01.023]
[50]
Tirjoo, A.; Bayati, B.; Rezaei, H.; Rahmati, M. Molecular dynamics simulation of the effect of ions in water on the asphaltene aggregation. J. Mol. Liq., 2019, 277, 40-48.
[http://dx.doi.org/10.1016/j.molliq.2018.12.067]
[51]
Ghloum, E.F.; Rashed, A.M.; Safa, M.A.; Sablit, R.C.; Al-Jouhar, S.M. Mitigation of asphaltenes precipitation phenomenon via chemical inhibitors. J. Petrol. Sci. Eng., 2019, 175, 495-507.
[http://dx.doi.org/10.1016/j.petrol.2018.12.071]
[52]
Hashmi, S.M.; Firoozabadi, A. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid. J. Colloid Interface Sci., 2013, 394, 115-123.
[http://dx.doi.org/10.1016/j.jcis.2012.11.069] [PMID: 23351475]
[53]
Karambeigi, M.A.; Nikazar, M.; Kharrat, R. Experimental evaluation of asphaltene inhibitors selection for standard and reservoir conditions. J. Petrol. Sci. Eng., 2016, 137, 74-86.
[http://dx.doi.org/10.1016/j.petrol.2015.11.013]
[54]
Madhi, M.; Kharrat, R.; Hamoule, T. Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study. Petroleum, 2018, 4(2), 168-177.
[http://dx.doi.org/10.1016/j.petlm.2017.08.001]
[55]
Carlos, L.; Junior, R.; Ferreira, M.S. Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles. J. Petrol. Sci. Eng., 2006, 51(1-2), 26-36.
[56]
Breen, P.J. Inhibition of asphaltene deposition in crude oil production systems. US Patent 6313367B1, 2001.
[57]
Bagherpour, S.; Riazi, M.; Riazi, M.; Cortés, F.B.; Mousavi, S.H. Investigating the performance of carboxylate-alumoxane nanoparticles as a novel chemically functionalized inhibitor on asphaltene precipitation. ACS Omega, 2020, 5(26), 16149-16164.
[http://dx.doi.org/10.1021/acsomega.0c01732] [PMID: 32656437]
[58]
Alrashidi, H.; Afra, S.; Din, N.E.H.A. Application of natural fatty acids as asphaltenes solvents with inhibition and dispersion effects: A mechanistic study. J. Petrol. Sci. Eng., 2019, 172, 724-730.
[http://dx.doi.org/10.1016/j.petrol.2018.08.066]
[59]
Moreira, L.F.B.; Lucas, E.F.; González, G. Stabilization of asphaltenes by phenolic compounds extracted from cashew-nut shell liquid. J. Appl. Polym. Sci., 1999, 73, 29-34.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19990705)73:1<29:AID-APP3>3.0.CO;2-O]
[60]
Kashefi, S.; Shahrabadi, A.; Jahangiri, S.; Lotfollahi, M.N.; Bagherzadeh, H. Investigation of the performance of several chemical additives on inhibition of asphaltene precipitation. Energ. Sourc. A Recovery Util. Environ. Effects, 2016, 38(24), 3647-3652.
[http://dx.doi.org/10.1080/15567036.2016.1198847]
[61]
Mpelwa, M.; Tang, S.F. State of the art of synthetic threshold scale inhibitors for mineral scaling in the petroleum industry: A review. Petrol. Sci., 2019, 16(4), 830-849.
[http://dx.doi.org/10.1007/s12182-019-0299-5]
[62]
Husna, U.Z.; Elraies, K.A.; Shuhili, J.A.B.M.; Elryes, A.A. A review: The utilization potency of biopolymer as an eco-friendly scale inhibitors. J. Pet. Explor. Prod. Technol., 2022, 12(4), 1075-1094.
[http://dx.doi.org/10.1007/s13202-021-01370-4]
[63]
Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy, 2014, 77, 963-982.
[http://dx.doi.org/10.1016/j.energy.2014.09.005]
[64]
Bisatto, R.; Picoli, V.M.; Petzhold, C.L. Evaluation of different polymeric scale inhibitors for oilfield application. J. Petrol. Sci. Eng., 2022, 213, 110331.
[http://dx.doi.org/10.1016/j.petrol.2022.110331]
[65]
Rabizadeh, T.; Peacock, C.L.; Benning, L.G. Carboxylic acids: Effective inhibitors for calcium sulfate precipitation? Mineral. Mag., 2014, 78(6), 1465-1472.
[http://dx.doi.org/10.1180/minmag.2014.078.6.13]
[66]
Wada, N.; Kanamura, K.; Umegaki, T. Effects of carboxylic acids on the crystallization of calcium carbonate. J. Colloid Interface Sci., 2001, 72, 65-72.
[67]
Kumar, S.; Naiya, T.K.; Kumar, T. Developments in oilfield scale handling towards green technology-A review. J. Petrol. Sci. Eng., 2018, 169, 428-444.
[http://dx.doi.org/10.1016/j.petrol.2018.05.068]
[68]
Zhang, P.; Wang, L.; Sun, W.; Yang, Z.; Gao, W.; Liu, G. Anti-scale performance degradation of carboxylic acid scale inhibitors under corrosion conditions. Corros. Sci., 2023, 222, 111423.
[http://dx.doi.org/10.1016/j.corsci.2023.111423]
[69]
Li, C.; Zhang, C.; Zhang, W. The inhibition effect mechanisms of four scale inhibitors on the formation and crystal growth of CaCO3 in solution. Sci. Rep., 2019, 9(1), 13366.
[http://dx.doi.org/10.1038/s41598-019-50012-7] [PMID: 31527705]
[70]
Davies, M.C; Dawkins, J.V; Hourston, D.J Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer, 2005, 46, 1739-1753.
[71]
Senthilmurugan, B.; Radhakrishnan, J.S.; Arana, V. High temperature kinetic scale inhibitor for flow assurance application. Int. J. Pet. Sci. Technol., 2019, 13, 21-38.
[72]
Reddy, M.M.; Hoch, A.R. Calcite crystal growth rate inhibition by polycarboxylic acids. J. Colloid. Interf. Sci., 2001, 370, 365-370.
[73]
Zhao, Y.; Jia, L.; Liu, K.; Gao, P.; Ge, H.; Fu, L. Inhibition of calcium sulfate scale by poly (citric acid). Desalination, 2016, 392, 1-7.
[http://dx.doi.org/10.1016/j.desal.2016.04.010]
[74]
Liu, D.; Dong, W.; Li, F.; Hui, F.; Lédion, J. Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods. Desalination, 2012, 304, 1-10.
[http://dx.doi.org/10.1016/j.desal.2012.07.032]
[75]
Yang, X.; Xu, G. The influence of xanthan on the crystallization of calcium carbonate. J. Cryst. Growth, 2011, 314(1), 231-238.
[http://dx.doi.org/10.1016/j.jcrysgro.2010.11.158]
[76]
Oliveira, J.; Ortiz, R.W.P.; Passos, N.S.; Venancio, F.; Gonçalves, V.O.O.; Cajaiba, J.; Santos, R.R.; Perrone, D.; Kartnaller, V. Evaluating starchy food effluents as potential green inhibitors of calcium carbonate scale in oil and gas production. Braz. J. Chem. Eng., 2023, 2023 Epub ahead of print
[http://dx.doi.org/10.1007/s43153-023-00404-0]
[77]
Farhadian, A.; Zhao, Y.; Naeiji, P.; Rahimi, A.; Berisha, A.; Zhang, L.; Rizi, Z.T.; Iravani, D.; Zhao, J. Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines. Energy, 2023, 269, 126797.
[http://dx.doi.org/10.1016/j.energy.2023.126797]
[78]
Askari, M.; Aliofkhazraei, M.; Ghaffari, S.; Hajizadeh, A. Film former corrosion inhibitors for oil and gas pipelines - A technical review. J. Nat. Gas Sci. Eng., 2018, 58, 92-114.
[http://dx.doi.org/10.1016/j.jngse.2018.07.025]
[79]
Umoren, S.A.; Solomon, M.M. Recent developments on the use of polymers as corrosion inhibitors - A review. Open Mater. Sci. J., 2014, 8(1), 39-54.
[http://dx.doi.org/10.2174/1874088X01408010039]
[80]
Fu, L.; Lv, J.; Zhou, L.; Li, Z.; Tang, M.; Li, J. Study on corrosion and scale inhibition mechanism of polyaspartic acid grafted β-cyclodextrin. Mater. Lett., 2020, 264, 127276.
[http://dx.doi.org/10.1016/j.matlet.2019.127276]
[81]
Umoren, SA; Pan, C.; Li, Y. Elucidation of mechanism of corrosion inhibition by polyacrylic acid and synergistic action with iodide ions by in-situ AFM. J. Adhes. Sci. Technol., 2014, 28(1), 31-37.
[http://dx.doi.org/10.1080/01694243.2013.816836]
[82]
Yaro, A.S.; Khadom, A.A.; Wael, R.K. Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid. Alex. Eng. J., 2013, 52(1), 129-135.
[http://dx.doi.org/10.1016/j.aej.2012.11.001]
[83]
Ferreira, E.S.; Giacomelli, C.; Giacomelli, F.C.; Spinelli, A. Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Mater. Chem. Phys., 2004, 83(1), 129-134.
[http://dx.doi.org/10.1016/j.matchemphys.2003.09.020]
[84]
Amin, M.A.; Abd Rehim, E.S.S.; Sherbini, E.E.E.F.; Bayoumi, R.S. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid. Electrochim. Acta, 2007, 52(11), 3588-3600.
[http://dx.doi.org/10.1016/j.electacta.2006.10.019]
[85]
Qiang, Y.; Guo, L.; Zhang, S. Synergistic effect of tartaric acid with 2, 6-diaminopyridine on the corrosion inhibition of mild steel in 0. 5 M HCl. Nat Publ Gr, 2016, 6, 1-14.
[86]
Liu, D.; Qiu, Y.B.; Tomoe, Y. Interaction of inhibitors with corrosion scale formed on N80 steel in CO2-saturated NaCl solution. Mater. Corros., 2011, 62(12), 1153-1158.
[87]
Quraishi, M.A.; Jamal, D. Development and testing of all organic volatile corrosion inhibitors. Corrosion, 2002, 58(5), 387-391.
[http://dx.doi.org/10.5006/1.3277627]
[88]
Kong, X.; Fan, W.; Liang, M.; Qian, C.; Luo, H.; Yao, Y. Study on the synthesis and corrosion inhibition performance of mannich-modified imidazoline. Kem. Ind., 2016, 65(7-8), 353-358.
[http://dx.doi.org/10.15255/KUI.2016.014]
[89]
Kuznetsov, Y.I.; Ibatullin, K.A. On the inhibition of the carbon dioxide corrosion of steel by carboxylic acids. Prot. Met., 2002, 38(5), 439-444.
[http://dx.doi.org/10.1023/A:1020342728236]
[90]
Rani, B.E.A.; Basu, B.B.J. Green inhibitors for corrosion protection of metals and alloys: An overview. Int. J. Corros., 2012, 2012, 1-15.
[http://dx.doi.org/10.1155/2012/380217]
[91]
Vrsalović, L.; Kliškić, M.; Gudić, S. Aplication of phenolic acids in the corrosion protection of Al-0.8Mg alloy in chloride solution. Int. J. Electrochem. Sci., 2009, 4(11), 1568-1582.
[http://dx.doi.org/10.1016/S1452-3981(23)15246-1]
[92]
Nichols, D.A.A.; Rosário, F.F.F.; Bezerra, M.C.M.C.M. Calcium naphthenates in complex production systems - Evaluation and chemical inhibition challenges. SPE J., 2014, 2014, 1-17.
[93]
Eke, W.I.; Oji, V.C.; Akaranta, O. Oilfield metal naphthenate formation and mitigation measures: A review. J. Pet. Explor. Prod. Technol., 2020, 10(2), 805-819.
[http://dx.doi.org/10.1007/s13202-019-00797-0]
[94]
Korzec, M.; Śliwa, S.A. Prevention and removal of naphthenate deposits in oil and gas production-historical background and novel attitude towards inhibition and solution. Energies, 2023, 16(20), 7104.
[http://dx.doi.org/10.3390/en16207104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy