Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Description of Some Methodologies for the Synthesis of 1,4-Naphthoquinone Derivatives and Examples of their Biological Activity: A Review

Author(s): Silvia E. Loredo-Carrillo, Elisa Leyva*, Lluvia Itzel López-López, Gabriela Navarro-Tovar, Denisse de Loera and Sarai Vega-Rodríguez

Volume 28, Issue 14, 2024

Published on: 02 May, 2024

Page: [1118 - 1141] Pages: 24

DOI: 10.2174/0113852728299375240405053207

Price: $65

conference banner
Abstract

An alternative to finding new drugs for the treatment of various diseases is the chemical modification of the structure of compounds of natural origin. Among them, naphthoquinones are very interesting candidates, as they are antibacterial, antifungal, antiparasitic, and anticancer agents. Naphthoquinones are redox compounds that can accept one or two electrons, generating reactive oxygen species in the cell and producing cell apoptosis. Naphthoquinones are unsaturated compounds containing a dicarbonyl sequence in the para position, which is highly reactive. Several studies of the chemical modification of naphthoquinones, either of natural origin (such as lapachol or juglone) or synthetic origin, have demonstrated the great importance and versatility of this type of compound. Polyhydroxylated derivatives, amino, thioethers, and conjugated heterosystems (indole or pyrrole groups) have been synthesized. Depending on the type of derivative, their specific use against certain types of microorganisms or cancer cell lines has been demonstrated.

« Previous
Graphical Abstract

[1]
Martin, S.F. Natural products and their mimics as target of opportunity for discovery. J. Org. Chem., 2017, 82(20), 10757-10794.
[http://dx.doi.org/10.1021/acs.joc.7b01368] [PMID: 28738152]
[2]
Kollef, M.H.; Golan, Y.; Micek, S.T.; Shorr, A.F.; Restrepo, M.I. Appraising contemporary strategies to combat multidrug resistant gram-negative bacterial infections-proceedings and data from the gram-negative resistance summit. Clin. Infect. Dis., 2011, 53(Suppl. 2), S33-S55.
[http://dx.doi.org/10.1093/cid/cir475] [PMID: 21868447]
[3]
Hughes, L.M.; Lanteri, C.A.; O’Neil, M.T.; Johnson, J.D.; Gribble, G.W.; Trumpower, B.L. Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Mol. Biochem. Parasitol., 2011, 177(1), 12-19.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.002] [PMID: 21251932]
[4]
Kosmidis, C.; Schindler, B.D.; Jacinto, P.L.; Patel, D.; Bains, K.; Seo, S.M.; Kaatz, G.W. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents, 2012, 40(3), 204-209.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.014] [PMID: 22766161]
[5]
Kempker, R.R.; Rabin, A.S.; Nikolaishvili, K.; Kalandadze, I.; Gogishvili, S.; Blumberg, H.M.; Vashakidze, S.; Vashakidze, S. Additional drug resistance in Mycobacterium tuberculosis isolates from resected cavities among patients with multidrug-resistant or extensively drug-resistant pulmonary tuberculosis. Clin. Infect. Dis., 2012, 54(6), e51-e54.
[http://dx.doi.org/10.1093/cid/cir904] [PMID: 22198790]
[6]
Patra, A. An overview of antimicrobial properties of different classes of phytochemicals. In: Dietary Phytochemicals and Microbes; Springer: New York, USA, 2012; pp. 1-32.
[7]
Sharma, U.; Katoch, U.D.; Sood, S.; Kumar, N.; Singh, B.; Thakur, A.; Gulati, S.A. Synthesis, antibacterial and antifungal activity of 2-amino-1,4-naphthoquinone using silica-supported perchloric acid (HClO4-SiO2) as a mild recyclable and highly efficient heterogeneous catalyst. Indian J. Chem., 2013, 52B, 1131-1140.
[http://dx.doi.org/10.1002/chin.201411101]
[8]
Nasiri, H.R.; Madej, M.G.; Panisch, R.; Lafontaine, M.; Bats, J.W.; Lancaster, C.R.D.; Schwalbe, H. Design, synthesis, and biological testing of novel naphthoquinones as substrate-based inhibitors of the quinol/fumarate reductase from Wolinella succinogenes. J. Med. Chem., 2013, 56(23), 9530-9541.
[http://dx.doi.org/10.1021/jm400978u] [PMID: 24251984]
[9]
Sritrairat, N.; Nukul, N.; Inthasame, P.; Sansuk, A.; Prasirt, J.; Leewatthanakorn, T.; Piamsawad, U.; Dejrudee, A.; Panichayupakaranant, P.; Pangsomboon, K.; Chanowanna, N.; Hintao, J.; Teanpaisan, R.; Chaethong, W.; Yongstar, P.; Pruphetkaew, N.; Chongsuvivatwong, V.; Nittayananta, W. Antifungal activity of lawsone methyl ether in comparison with chlorhexidine. J. Oral Pathol. Med., 2011, 40(1), 90-96.
[http://dx.doi.org/10.1111/j.1600-0714.2010.00921.x] [PMID: 20738748]
[10]
Nittayananta, W.; Pangsomboon, K.; Panichayupakaranant, P.; Chanowanna, N.; Chelae, S.; Vuddhakul, V.; Sukhumungoon, P.; Pruphetkaew, N. Effects of lawsone methyl ether mouthwash on oral Candida in HIV ‐infected subjects and subjects with denture stomatitis. J. Oral Pathol. Med., 2013, 42(9), 698-704.
[http://dx.doi.org/10.1111/jop.12060] [PMID: 23586936]
[11]
Ibis, C.; Tuyun, A.F.; Bahar, H.; Ayla, S.S.; Stasevych, M.V.; Musyanovych, R.Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Nucleophilic substitution reactions of 1,4-naphthoquinone and biologic properties of novel S-, S,S-, N-, and N,S-substituted 1,4-naphthoquinone derivatives. Med. Chem. Res., 2014, 23(4), 2140-2149.
[http://dx.doi.org/10.1007/s00044-013-0806-y]
[12]
Mahapatra, A.; Tshikalange, T.E.; Meyer, J.J.M.; Lall, N. Synthesis and HIV-1 reverse transcriptase inhibition activity of 1,4-naphthoquinone derivatives. Chem. Nat. Compd., 2012, 47(6), 883-887.
[http://dx.doi.org/10.1007/s10600-012-0094-7]
[13]
Kapadia, G.; Rao, G.; Sridhar, R.; Ichiishi, E.; Takasaki, M.; Suzuki, N.; Konoshima, T.; Iida, A.; Tokuda, H. Chemoprevention of skin cancer: Effect of Lawsonia inermis L. (Henna) leaf powder and its pigment artifact, lawsone in the Epstein- Barr virus early antigen activation assay and in two-stage mouse skin carcinogenesis models. Anticancer. Agents Med. Chem., 2013, 13(10), 1500-1507.
[http://dx.doi.org/10.2174/18715206113139990096] [PMID: 23848207]
[14]
Pérez-Sacau, E.; Díaz-Peñate, R.G.; Estévez-Braun, A.; Ravelo, A.G.; García-Castellano, J.M.; Pardo, L.; Campillo, M. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J. Med. Chem., 2007, 50(4), 696-706.
[http://dx.doi.org/10.1021/jm060849b] [PMID: 17249647]
[15]
Jiménez-Alonso, S.; Orellana, H.C.; Estévez-Braun, A.; Ravelo, A.G.; Pérez-Sacau, E.; Machín, F. Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase II catalytic inhibitors. J. Med. Chem., 2008, 51(21), 6761-6772.
[http://dx.doi.org/10.1021/jm800499x] [PMID: 18816045]
[16]
Klaus, V.; Hartmann, T.; Gambini, J.; Graf, P.; Stahl, W.; Hartwig, A.; Klotz, L.O. 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch. Biochem. Biophys., 2010, 496(2), 93-100.
[http://dx.doi.org/10.1016/j.abb.2010.02.002] [PMID: 20153715]
[17]
Bhasin, D.; Chettiar, S.N.; Etter, J.P.; Mok, M.; Li, P.K. Anticancer activity and SAR studies of substituted 1,4-naphthoquinones. Bioorg. Med. Chem., 2013, 21(15), 4662-4669.
[http://dx.doi.org/10.1016/j.bmc.2013.05.017] [PMID: 23791367]
[18]
Bustamante, F.L.S.; Metello, J.M.; de Castro, F.A.V.; Pinheiro, C.B.; Pereira, M.D.; Lanznaster, M. Lawsone dimerization in cobalt(III) complexes toward the design of new prototypes of bioreductive prodrugs. Inorg. Chem., 2013, 52(3), 1167-1169.
[http://dx.doi.org/10.1021/ic302175t] [PMID: 23343393]
[19]
Oramas-Royo, S.; Torrejón, C.; Cuadrado, I.; Hernández-Molina, R.; Hortelano, S.; Estévez-Braun, A.; de las Heras, B. Synthesis and cytotoxic activity of metallic complexes of lawsone. Bioorg. Med. Chem., 2013, 21(9), 2471-2477.
[http://dx.doi.org/10.1016/j.bmc.2013.03.002] [PMID: 23545136]
[20]
Sharma, A.; Santos, I.O.; Gaur, P.; Ferreira, V.F.; Garcia, C.R.S.; da Rocha, D.R. Addition of thiols to o-quinone methide: New 2-hydroxy-3-phenylsulfanylmethyl[1,4]naphthoquinones and their activity against the human malaria parasite Plasmodium falciparum (3D7). Eur. J. Med. Chem., 2013, 59, 48-53.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.052] [PMID: 23202850]
[21]
Schuck, D.C.; Ferreira, S.B.; Cruz, L.N.; da Rocha, D.R.; Moraes, M.S.; Nakabashi, M.; Rosenthal, P.J.; Ferreira, V.F.; Garcia, C.R.S. Biological evaluation of hydroxynaphthoquinones as anti-malarials. Malar. J., 2013, 12(1), 234.
[http://dx.doi.org/10.1186/1475-2875-12-234] [PMID: 23841934]
[22]
García-Barrantes, P.M.; Lamoureux, G.V.; Pérez, A.L.; García-Sánchez, R.N.; Martínez, A.R.; San Feliciano, A. Synthesis and biological evaluation of novel ferrocene–naphthoquinones as antiplasmodial agents. Eur. J. Med. Chem., 2013, 70, 548-557.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.011] [PMID: 24211630]
[23]
Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 221-247.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134517] [PMID: 21942631]
[24]
El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev., 2011, 10(3), 353-370.
[http://dx.doi.org/10.1007/s11101-011-9209-1]
[25]
Silva, M.N.; Ferreira, V.F.; Souza, M.C.B.V. A current overview of the chemistry and pharmacology of naphthoquinones, with emphasis on β-lapachone and derivatives. Quim. Nova, 2003, 26(3), 407-416.
[http://dx.doi.org/10.1590/S0100-40422003000300019]
[26]
López, L.I.; Leyva, E.; García de la Cruz, R.F. Naphthoquinones: More than natural pigments. Rev. Mex. Cienc. Farm., 2011, 42(1), 6-17.
[27]
Leyva, E.; Loredo-Carrillo, S.E.; López, L.I.; Escobedo-Avellaneda, E.G.; Navarro-Tovar, G. Chemical and biological importance of naphthoquinones. Rev. Bibliogr. Afinidad, 2017, 577(74), 36-50.
[28]
Leyva, E.; López, L.I.; Loredo-Carrillo, S.E.; Rodríguez-Kessler, M.; Montes-Rojas, A. Synthesis, spectral and electrochemical characterization of novel 2-(fluoroanilino)-1,4-naphthoquinones. J. Fluor. Chem., 2011, 132(2), 94-101.
[http://dx.doi.org/10.1016/j.jfluchem.2010.12.001]
[29]
Vega-Rodríguez, S.; Jiménez-Cataño, R.; Leyva, E.; Loredo-Carrillo, S.E. Intramolecular hydrogen bonds in fluorinated, methoxylated, or unsubstituted 2-(anilino)-1,4-naphthoquinones. A theoretical study. J. Fluor. Chem., 2013, 145, 58-62.
[http://dx.doi.org/10.1016/j.jfluchem.2012.10.001]
[30]
Leyva, E.; Schmidtke Sobeck, S.J.; Loredo-Carrillo, S.E.; Magaldi-Lara, D.A. Spectral and structural characterization of 2-(fluorophenylamino)- and 2-(nitrophenylamino)-1,4-naphthoquinone derivatives. J. Mol. Struct., 2014, 1068, 1-7.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.044]
[31]
Leyva, E.; Baines, K.M.; Espinosa-González, C.G. 2-(Fluoro) and 2-(metoxyanilino)-1,4-naphthoquinones. Synthesis and mechanism and effect of fluorine substitution on redox reactivity and NMR. J. Fluor. Chem., 2015, 180, 152-160.
[http://dx.doi.org/10.1016/j.jfluchem.2015.08.016]
[32]
Leyva, E.; Baines, K.M.; Espinosa-González, C.G.; López, L.I.; Magaldi-Lara, D.A.; Leyva, S. Synthesis of novel 2-(fluoroanilino)-3-(2,4-dinitroanilino) derivatives of 1,4-naphthoquinone. Tetrahedron Lett., 2015, 56(37), 5248-5251.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.046]
[33]
Cárdenas-Chaparro, A.; Leyva, E.; Loredo-Carrillo, S.E.; Vladimir, C. Síntesis de derivados de 2-anilino-3-cloro-1,4-naftoquinona promovida por microondas y ultrasonido. Afinidad, 2017, 74(580), 302-306.
[34]
Cárdenas-Chaparro, A.; Leyva, E.; Loredo-Carrillo, S.E.; López, L.I. Ultrasound-assisted reaction of 1,4-naphthoquinone with anilines through an EDA complex. Mol. Divers., 2018, 22, 281-290.
[http://dx.doi.org/10.1007/s11030-018-9820-9]
[35]
Magaldi Lara, D.A.; Leyva, E.; Loredo-Carrillo, S.E.; Espinosa-González, C.G. Synthesis and characterization of aniline and dianilino-naphthoquinones; AcademicI Spanish: Mauritius, 2017.
[36]
Rodríguez-Domínguez, M.; Leyva, E.; Montes-Rojas, A.; Loredo-Carrillo, S.E. Synthesis, characterization and electrochemical study of F-naphthoquinones; Publicia: Germany, 2016.
[37]
Loredo-Carrillo, S.E.; Leyva, E. Naphthoquinones: Synthesis methodologies and photophysical properties; Publicia: Germany, 2015.
[38]
Saeed, S.M.G.; Sayeed, S.A.; Ashraf, S.; Naz, S.; Siddiqi, R.; Ali, R.; Mesaik, M.A. A new method for the isolation and purification of lawsone from Lawsonia inermis and its ROS inhibitory activity. Pak. J. Bot., 2013, 45(4), 1431-1436.
[39]
Polonik, S. G.; Krylova, N. V.; Kompanets, G. G.; Iunikhina, O. V.; Sabutski, Y. E. Synthesis and screening of anti-HSV-1 activity of thioglucoside derivatives of natural polyhydroxy-1, 4-naphthoquinones. Nat. Prod. Commun, 2019, 14(6), 1934578X19860672.
[http://dx.doi.org/10.1177/1934578X19860672]
[40]
Tandon, V.K.; Yadav, D.B.; Singh, R.V.; Vaish, M.; Chaturvedi, A.K.; Shukla, P.K. Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg. Med. Chem. Lett., 2005, 15(14), 3463-3466.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.075] [PMID: 15950468]
[41]
Tandon, V.K.; Chhor, R.B.; Singh, R.V.; Rai, S.; Yadav, D.B. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg. Med. Chem. Lett., 2004, 14(5), 1079-1083.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.002] [PMID: 14980639]
[42]
Ryu, C-K.; Shim, J-Y.; Chae, M.J.; Choi, I.H.; Han, J-Y.; Jung, O. Synthesis and antifungal activity of 2/3-arylthio-and 2.3-bis(arylthio)-5-hydroxy-/5-methoxy-1,4-naphthoquinones. Eur. J. Med. Chem., 2005, 40(5), 438-444.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.004] [PMID: 15893017]
[43]
Verweij, J.; Pinedo, H.M. Mitomycin C mechanism of action, usefulness and limitations. Anticancer Drugs, 1990, 1(1), 5-14.
[http://dx.doi.org/10.1097/00001813-199010000-00002] [PMID: 2131038]
[44]
Vedejs, E.; Monahan, S.D. Competing pathways in the azomethine ylide route to indoloquinones: an improved procedure for the generation of a transient 4-oxazoline from the oxazolium salt. J. Org. Chem., 1997, 62(14), 4763-4769.
[http://dx.doi.org/10.1021/jo9702195]
[45]
Knölker, H.J.; O’Sullivan, N. Indoloquinones-3. Palladium-promoted synthesis of hydroxy-substituted 5-Cyano-5H-benzo[b]carbazole-6, 11-diones. Tetrahedron, 1994, 50(37), 10893-10908.
[http://dx.doi.org/10.1016/S0040-4020(01)85701-X]
[46]
Xing, C.; Wu, P.; Skibo, E.B.; Dorr, R.T. Design of cancer-specific antitumor agents based on aziridinylcyclopent[b]indoloquinones. J. Med. Chem., 2000, 43(3), 457-466.
[http://dx.doi.org/10.1021/jm990466w] [PMID: 10669573]
[47]
Wang, Z.; Jimenez, L.S. Synthesis of an aziridinomitosene analog. J. Org. Chem., 1996, 61(2), 816-818.
[http://dx.doi.org/10.1021/jo9511509] [PMID: 11667016]
[48]
Tapia, R.A.; Prieto, Y.; Pautet, F.; Domard, M.; Sarciron, M.E.; Walchshofer, N.; Fillion, H. Synthesis and antileishmanial activity of indoloquinones containing a fused benzothiazole ring. Eur. J. Org. Chem., 2002, 2002(23), 4005-4010.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:23<4005:AID-EJOC4005>3.0.CO;2-L]
[49]
Shvartsberg, M.S.; Kolodina, E.A.; Lebedeva, N.I.; Fedenok, L.G. Synthesis of benz [f] indole-4,9-diones via acetylenic derivatives of 1,4-naphthoquinone. Tetrahedron Lett., 2009, 50(49), 6769-6771.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.110]
[50]
Zheng, Z.; Touve, M.; Barnes, J.; Reich, N.; Zhang, L. Synthesis-enabled probing of mitosene structural space leads to improved IC50 over mitomycin C. Angew. Chem. Int. Ed., 2014, 53(35), 9302-9305.
[http://dx.doi.org/10.1002/anie.201402268] [PMID: 25044229]
[51]
Corey, E.J.; Czakó, B.; László, K. Molecules and Medicine; John Wiley & Sons: New Jersey, 2007, p. 272.
[52]
Prasanna Kumari, S.; Philip Anthony, S.; Selva Ganesan, S. One-pot synthesis of indole-fused nitrogen heterocycles via the direct C(sp2)–H functionalization of naphthoquinones; Accessibility for deep red emitting materials. New J. Chem., 2022, 46(35), 16874-16879.
[http://dx.doi.org/10.1039/D2NJ02024F]
[53]
Ramesh, D.; Sarkar, D.; Joji, A.; Singh, M.; Mohanty, A.K.G.; G. Vijayakumar, B. Chatterjee, M.; Sriram, D.; Muthuvel, S.K.; Kannan, T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch. Pharm., 2022, 355(4), e2100440.
[http://dx.doi.org/10.1002/ardp.202100440] [PMID: 35106845]
[54]
Navarro-Tovar, G.; Vega-Rodríguez, S.; Leyva, E.; Loredo-Carrillo, S.; de Loera, D.; López-López, L.I. The relevance and insights on 1,4-naphthoquinones as antimicrobial and antitumoral molecules: A systematic review. Pharmaceuticals, 2023, 16(4), 496.
[http://dx.doi.org/10.3390/ph16040496] [PMID: 37111253]
[55]
Gomes, M.; Correia, E.; Gomes, M.; dos Santos, C.; Barros, C.; de Abreu, F.; Antunes, L.; Ferreira, V.; Gonçalves, M.; de Resende, G.; Gonzaga, D.; Pinto, C.; Paixão, I.; da Silva, F. Antibacterial profile in vitro and in vivo of new 1,4-naphthoquinones tethered to 1,2,3-1h-triazoles against the planktonic growth of Streptococcus mutans. J. Braz. Chem. Soc., 2022, 33, 1028-1040.
[http://dx.doi.org/10.21577/0103-5053.20220014]
[56]
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and antimicrobial activity of 4-substituted 1, 2, 3-triazole-coumarin derivatives. Molecules, 2018, 23(1), 199.
[http://dx.doi.org/10.3390/molecules23010199] [PMID: 29346325]
[57]
de Carvalho da Silva, F.; Cardoso, M. F. D. C.; Ferreira, P. G.; Ferreira, V. F. Biological properties of 1 H-1, 2, 3-and 2 H-1, 2, 3-triazoles. Chemistry of 1, 2, 3-triazoles, 2015, 117-165.
[58]
Martin, S.F. Natural products and their mimics as targets of opportunity for discovery. J. Org. Chem., 2017, 82(20), 10757-10794.
[http://dx.doi.org/10.1021/acs.joc.7b01368] [PMID: 28738152]
[59]
Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem., 2014, 84, 247-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.024] [PMID: 25019480]
[60]
López López, L.I.; Nery Flores, S.D.; Silva Belmares, S.Y.; Sáenz Galindo, A. Naphthoquinones: Biological properties and synthesis of lawsone and derivates - A structured review. Vitae, 2014, 21(3), 248-258.
[http://dx.doi.org/10.17533/udea.vitae.17322]
[61]
Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, 2002.
[62]
Sarko, C.R.; Tierney, J.P.; Lidström, P. Eds.; Microwave Assisted Organic Synthesis; Oxford: Blackwell, 2005.
[63]
McGowan, C.; Leadbeater, N.E. Clean, Fast Organic Chemistry: Microwave-Assisted Laboratory Experiments, CEM; Matthews, 2006.
[64]
Bogdal, D. Microwave-Assisted Organic Synthesis. One Hundred Reaction Procedures; Elsevier: Oxford, 2005.
[65]
Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists-Strategies, Instruments and Protocols; Wiley-VCH: Weinheim, 2009.
[66]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[67]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[68]
Leyva, E.; Loredo-Carrillo, S.E.; López, L.I. Catalytic, ultrasonic, and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and intramolecular N-arylation reactions. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2021; pp. 231-264.
[69]
Leadbeater, N.E. Fast, easy, clean chemistry by using water as a solvent and microwave heating: The Suzuki coupling as an illustration. Chem. Commun., 2005, (23), 2881-2902.
[http://dx.doi.org/10.1039/b500952a] [PMID: 15957019]
[70]
Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd., 2010, 494(1-2), 175-189.
[http://dx.doi.org/10.1016/j.jallcom.2010.01.068]
[71]
Mingos, D.M.P.; Baghurst, D.R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev., 1991, 20(1), 1-47.
[http://dx.doi.org/10.1039/cs9912000001]
[72]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27(3), 213-223.
[http://dx.doi.org/10.1039/a827213z]
[73]
Gronnow, M.J.; White, R.J.; Clark, J.H.; Macquarrie, D.J. Energy efficiency in chemical reactions: A comparative study of different reaction techniques. Org. Process Res. Dev., 2005, 9(4), 516-518.
[http://dx.doi.org/10.1021/op0498060]
[74]
Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: Myth or reality? Angew. Chem. Int. Ed., 2013, 52(4), 1088-1094.
[http://dx.doi.org/10.1002/anie.201204103] [PMID: 23225754]
[75]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[76]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[77]
Strauss, C.R.; Trainor, R.W. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[78]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X]
[79]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[80]
Porcheddu, A.; Ruda, G.F.; Sega, A.; Taddei, M. A new, rapid, general procedure for the synthesis of organic molecules supported on methoxy-polyethylene glycol (MeOPEG) under microwave irradiation conditions. Eur. J. Org. Chem., 2003, 2003(5), 907-912.
[http://dx.doi.org/10.1002/ejoc.200390138]
[81]
Stadler, A.; Kappe, C.O. Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation. J. Comb. Chem., 2001, 3(6), 624-630.
[http://dx.doi.org/10.1021/cc010044j] [PMID: 11703160]
[82]
Larhed, M.; Hallberg, A. Microwave-assisted high-speed chemistry: A new technique in drug discovery. Drug Discov. Today, 2001, 6(8), 406-416.
[http://dx.doi.org/10.1016/S1359-6446(01)01735-4] [PMID: 11301285]
[83]
Kappe, C.O.; Stadler, A. Building dihydropyrimidine libraries via microwave-assisted Biginelli multicomponent reactions. Methods Enzymol., 2003, 369, 197-223.
[http://dx.doi.org/10.1016/S0076-6879(03)69011-7] [PMID: 14722955]
[84]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type-A literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[85]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[http://dx.doi.org/10.1021/ar000048h] [PMID: 11123887]
[86]
Tye, H. Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov. Today, 2004, 9(11), 485-491.
[http://dx.doi.org/10.1016/S1359-6446(04)03086-7] [PMID: 15149624]
[87]
Evans, M.D.; Ring, J.; Schoen, A.; Bell, A.; Edwards, P.; Berthelot, D.; Nicewonger, R.; Baldino, C.M. The accelerated development of an optimized synthesis of 1,2,4-oxadiazoles: application of microwave irradiation and statistical design of experiments. Tetrahedron Lett., 2003, 44(52), 9337-9341.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.055]
[88]
Cotterill, I.C.; Usyatinsky, A.Y.; Arnold, J.M.; Clark, D.S.; Dordick, J.S.; Michels, P.C.; Khmelnitsky, Y.L. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett., 1998, 39(10), 1117-1120.
[http://dx.doi.org/10.1016/S0040-4039(97)10796-1]
[89]
Nüchter, M.; Ondruschka, B. Tools for microwave-assisted parallel syntheses and combinatorial chemistry. Mol. Divers., 2003, 7(2-4), 253-264.
[http://dx.doi.org/10.1023/B:MODI.0000006916.69862.3d] [PMID: 14870856]
[90]
Chatel, G. Sonochemistry. New Opportunities for Green Chemistry; World Scientific: London, 2017, p. 188.
[http://dx.doi.org/10.1142/q0037]
[91]
Luche, J-L. Uses of power ultrasound in chemistry. Synthetic Organic Sonochemistry; Plenum Press; New York, 1998, pp. i-xxiii.
[http://dx.doi.org/10.1007/978-1-4899-1910-6]
[92]
Mason, T.J. Uses of power ultrasound in chemistry and processing. Applied Sonochemistry; Wiley-VCH: Weinheim, 2002.
[http://dx.doi.org/10.1002/352760054X]
[93]
Mason, T.J. Sonochemistry: The Uses of Ultrasound in Chemistry; Royal Society of Chemistry: Cambridge, 1990.
[94]
Mason, T.J. Practical Sonochemistry: User’s Guide to Applications in Chemistry and Chemical Engineering; Ellis Horwood: New York, 1992.
[95]
Price, G.J.; Current Trends, G.J. Current Trends in Sonochemistry; Royal Society of Chemistry: Cambridge, 1993.
[96]
Baig, R.B.N.; Varma, R.S. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[97]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[98]
Leong, T.; Ashokkumar, M.; Kentish, S. The fundamentals of power ultrasound. A review. Acoust. Aust., 2011, 39(2), 54-63.
[99]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis. A green approach. Curr. Org. Chem., 2013, 17(16), 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[100]
Cella, R.; Stefani, H.A. Ultrasound in heterocycles chemistry. Tetrahedron, 2009, 65(13), 2619-2641.
[http://dx.doi.org/10.1016/j.tet.2008.12.027]
[101]
Wang, J-Y.; Chen, X-L.; Dong, Y.; He, S.; Zhang, R.; Zhang, H.; Tang, L.; Zhang, X-M. A one-pot approach to 2-(N-substituted amino)-1, 4- naphthoquinones with use of nitro compounds and 1, 4-naphthoquinones in water. Synlett, 2019, 30(5), 615-619.
[http://dx.doi.org/10.1055/s-0037-1610689]
[102]
Kurban, S.; Deniz, N. G.; Sayil, C.; Ozyurek, M.; Guclu, K.; Stasevych, M.; Novikov, V. Synthesis, antimicrobial properties, and inhibition of catalase activity of 1, 4-naphtho-and benzoquinone derivatives containing N-, S-, O-substituted. Heteroat. Chem, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/1658417]
[103]
Kacmaz, A.; Deniz, N.G.; Aydinli, S.G.; Sayil, C.; Onay-Ucar, E.; Mertoglu, E.; Arda, N. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells. Open Chem., 2019, 17(1), 337-345.
[http://dx.doi.org/10.1515/chem-2019-0030]
[104]
Mahalapbutr, P.; Leechaisit, R.; Thongnum, A.; Todsaporn, D.; Prachayasittikul, V.; Rungrotmongkol, T.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V.; Pingaew, R. Discovery of anilino-1, 4-naphthoquinones as potent EGFR tyrosine kinase inhibitors: synthesis, biological evaluation, and comprehensive molecular modeling. ACS Omega, 2022, 7(21), 17881-17893.
[http://dx.doi.org/10.1021/acsomega.2c01188] [PMID: 35664590]
[105]
Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 2021, 10(10), 1310.
[http://dx.doi.org/10.3390/pathogens10101310] [PMID: 34684258]
[106]
Naeem, A.; Badshah, S.; Muska, M.; Ahmad, N.; Khan, K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules, 2016, 21(4), 268.
[http://dx.doi.org/10.3390/molecules21040268] [PMID: 27043501]
[107]
Mataraci Kara, E.; Jannuzzi, A.T.; Bayrak, N.; Yildirim, H.; Yildiz, M.; Tuyu, A.F.; Alpertunga, B.; Ozbek Celik, B. Investigation of antimicrobial, antibiofilm, and cytotoxic effects of straight-chained sulfanyl members of arylamino-1, 4-naphthoquinones as potential antimicrobial agents. Eur. J. Biol., 2019, 78(2), 117-123.
[http://dx.doi.org/10.26650/EurJBiol.2019.0017]
[108]
Yıldırım, H.; Bayrak, N.; Tuyun, A.F.; Kara, E.M.; Çelik, B.Ö.; Gupta, G.K. 2,3-Disubstituted-1,4-naphthoquinones containing an arylamine with trifluoromethyl group: synthesis, biological evaluation, and computational study. RSC Advances, 2017, 7(41), 25753-25764.
[http://dx.doi.org/10.1039/C7RA00868F]
[109]
De Moura, K.C.G.; Emery, F.S.; Neves-Pinto, C.; Pinto, M.C.F.R.; Dantas, A.P.; Salomão, K.; Castro, S.L.; Pinto, A.V. Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: A review from an interdisciplinary study. J. Braz. Chem. Soc., 2001, 12(3), 325-338.
[http://dx.doi.org/10.1590/S0103-50532001000300003]
[110]
Yamashita, M.; Kaneko, M.; Tokuda, H.; Nishimura, K.; Kumeda, Y.; Iida, A. Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae. Bioorg. Med. Chem., 2009, 17(17), 6286-6291.
[http://dx.doi.org/10.1016/j.bmc.2009.07.039] [PMID: 19674905]
[111]
Pereira, E.M.; Machado, T.B.; Leal, I.C.R.; Jesus, D.M.; Damaso, C.R.A.; Pinto, A.V.; Giambiagi-deMarval, M.; Kuster, R.M.; dos Santos, K.R.N. Tabebuia avellanedae naphthoquinones: Activity against methicillin-resistant Staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis. Ann. Clin. Microbiol. Antimicrob., 2006, 5(1), 5.
[http://dx.doi.org/10.1186/1476-0711-5-5] [PMID: 16553949]
[112]
Dias, R.B.; de Araújo, T.B.S.; de Freitas, R.D.; Rodrigues, A.C.B.C.; Sousa, L.P.; Sales, C.B.S.; Valverde, L.F.; Soares, M.B.P.; dos Reis, M.G.; Coletta, R.D.; Ramos, E.A.G.; Camara, C.A.; Silva, T.M.S.; Filho, J.M.B.; Bezerra, D.P.; Rocha, C.A.G. β-Lapachone and its iodine derivatives cause cell cycle arrest at G2/M phase and reactive oxygen species-mediated apoptosis in human oral squamous cell carcinoma cells. Free Radic. Biol. Med., 2018, 126, 87-100.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.022] [PMID: 30071298]
[113]
Lewis, J.E.; Costantini, F.; Mims, J.; Chen, X.; Furdui, C.M.; Boothman, D.A.; Kemp, M.L. Genome-scale modeling of NADPH-driven β-lapachone sensitization in head and neck squamous cell carcinoma. Antioxid. Redox Signal., 2018, 29(10), 937-952.
[http://dx.doi.org/10.1089/ars.2017.7048] [PMID: 28762750]
[114]
Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-Jr, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int., 2019, 19(1), 207.
[http://dx.doi.org/10.1186/s12935-019-0925-8] [PMID: 31388334]
[115]
Bannwitz, S.; Krane, D.; Vortherms, S.; Kalin, T.; Lindenschmidt, C.; Zahedi Golpayegani, N.; Tentrop, J.; Prinz, H.; Müller, K. Synthesis and structure-activity relationships of lapacho analogues. 2. Modification of the basic Naphtho[2,3-b]furan-4,9-dione, redox activation, and suppression of human keratinocyte hyperproliferation by 8-hydroxynaphtho[2,3-b]thiophene-4,9-diones. J. Med. Chem., 2014, 57(14), 6226-6239.
[http://dx.doi.org/10.1021/jm500754d] [PMID: 24964246]
[116]
Yamashita, M.; Sawano, J.; Umeda, R.; Tatsumi, A.; Kumeda, Y.; Iida, A. Structure–activity relationship studies of antimicrobial naphthoquinones derived from constituents of Tabebuia avellanedae. Chem. Pharm. Bull. , 2021, 69(7), 661-673.
[http://dx.doi.org/10.1248/cpb.c21-00208] [PMID: 34193715]
[117]
López-López, L.I. Synthesis and biological evaluation of 1,4-naphthodione derivatives. Ph.D. Thesis, Autonomous University of San Luis Potosí, SLP,: Mexico, 2008.
[118]
Khan, R.M.; Mlungwana, S.M. 5-Hydroxylapachol: A cytotoxic agent from Tectona grandis. Phytochemistry, 1999, 50(3), 439-442.
[http://dx.doi.org/10.1016/S0031-9422(98)00478-6]
[119]
Ollinger, K.; Brunmark, A. Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. J. Biol. Chem., 1991, 266(32), 21496-21503.
[http://dx.doi.org/10.1016/S0021-9258(18)54666-4] [PMID: 1718980]
[120]
Bonifazi, E.L.; Ríos-Luci, C.; León, L.G.; Burton, G.; Padrón, J.M.; Misico, R.I. Antiproliferative activity of synthetic naphthoquinones related to lapachol. First synthesis of 5-hydroxylapachol. Bioorg. Med. Chem., 2010, 18(7), 2621-2630.
[http://dx.doi.org/10.1016/j.bmc.2010.02.032] [PMID: 20304655]
[121]
Ríos-Luci, C.; Bonifazi, E.L.; León, L.G.; Montero, J.C.; Burton, G.; Pandiella, A.; Misico, R.I.; Padrón, J.M. β-Lapachone analogs with enhanced antiproliferative activity. Eur. J. Med. Chem., 2012, 53, 264-274.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.008] [PMID: 22560628]
[122]
Pozharitskaya, O.; Shikov, A.; Makarova, M.; Ivanova, S.; Kosman, V.; Makarov, V.; Bazgier, V.; Berka, K.; Otyepka, M.; Ulrichová, J. Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells. Planta Med., 2013, 79(18), 1698-1704.
[http://dx.doi.org/10.1055/s-0033-1351098] [PMID: 24288292]
[123]
Marimuthu, K.; Gunaselvam, P.; Aminur Rahman, M.; Xavier, R.; Arockiaraj, J.; Subramanian, S.; Yusoff, F.M.; Arshad, A. Antibacterial activity of ovary extract from sea urchin Diadema setosum. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(10), 1895-1899.
[PMID: 26044237]
[124]
Shikov, A.N.; Pozharitskaya, O.N.; Krishtopina, A.S.; Makarov, V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev., 2018, 17(3), 509-534.
[http://dx.doi.org/10.1007/s11101-018-9547-3]
[125]
Ríos, D.; Valderrama, J.A.; Cautin, M.; Tapia, M.; Salas, F.; Guerrero-Castilla, A.; Muccioli, G.G.; Buc Calderón, P.; Benites, J. New 2-Acetyl-3-aminophenyl-1, 4-naphthoquinones: Synthesis and in vitro antiproliferative activities on breast and prostate human cancer cells. Oxid. Med. Cell. Longev., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8939716] [PMID: 33101594]
[126]
Baxter, I.; Davis, B.A. Synthesis of heterocyclic quinones. Q. Rev. Chem. Soc., 1971, 25(2), 239-263.
[http://dx.doi.org/10.1039/qr9712500239]
[127]
Ríos, D.; Benites, J.; Torrejón, F.; Theoduloz, C.; Valderrama, J.A. Synthesis and in vitro antiproliferative evaluation of 3-acyl-2-arylamino-1,4-naphthoquinones. Med. Chem. Res., 2014, 23(9), 4149-4155.
[http://dx.doi.org/10.1007/s00044-014-0991-3]
[128]
Valderrama, J.A.; Cabrera, M.; Benites, J.; Ríos, D.; Inostroza-Rivera, R.; Muccioli, G.G.; Calderon, P.B. Synthetic approaches and in vitro cytotoxic evaluation of 2-acyl-3-(3,4,5-trimethoxyanilino)-1,4-naphthoquinones. RSC Advances, 2017, 7(40), 24813-24821.
[http://dx.doi.org/10.1039/C7RA03238B]
[129]
Jiang, M.C.; Chuang, C.P. Manganese(III) acetate initiated oxidative free radical reactions between 2-amino-1,4-naphthoquinones and beta-dicarbonyl compounds. J. Org. Chem., 2000, 65(17), 5409-5412.
[http://dx.doi.org/10.1021/jo991947q] [PMID: 10993373]
[130]
Lee, E.J.; Lee, H.J.; Park, H.J.; Min, H.Y.; Suh, M.E.; Chung, H.J.; Lee, S.K. Induction of G2/M cell cycle arrest and apoptosis by a benz[f]indole-4,9-dione analog in cultured human lung (A549) cancer cells. Bioorg. Med. Chem. Lett., 2004, 14(20), 5175-5178.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.062] [PMID: 15380222]
[131]
Park, H.J.; Lee, H.J.; Lee, E.J.; Hwang, H.J.; Shin, S.H.; Suh, M.E.; Kim, C.; Kim, H.J.; Seo, E.K.; Lee, S.K. Cytotoxicity and DNA topoisomerase inhibitory activity of benz[f]indole-4,9-dione analogs. Biosci. Biotechnol. Biochem., 2003, 67(9), 1944-1949.
[http://dx.doi.org/10.1271/bbb.67.1944] [PMID: 14519980]
[132]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[133]
El-Gazzar, A.R.B.A.; Hafez, H.N. Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3392-3397.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.044] [PMID: 19481936]
[134]
Nasr, M.N.; Gineinah, M.M. Pyrido[2, 3-d]pyrimidines and pyrimido[5′,4′:5, 6]pyrido[2, 3-d]pyrimidines as new antiviral agents: Synthesis and biological activity. Arch. Pharm., 2002, 335(6), 289-295.
[http://dx.doi.org/10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-Z] [PMID: 12210772]
[135]
Donkor, I.O.; Klein, C.L.; Liang, L.; Zhu, N.; Bradley, E.; Clark, A.M. Synthesis and antimicrobial activity of 6,7-annulated pyrido[2,3-d]pyrimidines. J. Pharm. Sci., 1995, 84(5), 661-664.
[http://dx.doi.org/10.1002/jps.2600840526] [PMID: 7658362]
[136]
Elzahabi, H.S.A.; Nossier, E.S.; Khalifa, N.M.; Alasfoury, R.A.; El-Manawaty, M.A. Anticancer evaluation and molecular modeling of multi-targeted kinase inhibitors based pyrido[2,3-d]pyrimidine scaffold. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 546-557.
[http://dx.doi.org/10.1080/14756366.2018.1437729] [PMID: 29482389]
[137]
Zhang, C.; Sun, G.; Peng, Q.; Zhu, S.; Ni, D. Synthesis and anti-proliferative activity evaluation of novel 1,4-naphthoquinones possessing pyrido[2,3-d]pyrimidine scaffolds. RSC Advances, 2016, 6(78), 73953-73958.
[http://dx.doi.org/10.1039/C6RA17032C]
[138]
Asche, C. Antitumour quinones. Mini Rev. Med. Chem., 2005, 5(5), 449-467.
[http://dx.doi.org/10.2174/1389557053765556] [PMID: 15892687]
[139]
Webb, M.R.; Ebeler, S.E. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: Structural determinates of activity. Biochem. J., 2004, 384(3), 527-541.
[http://dx.doi.org/10.1042/BJ20040474] [PMID: 15312049]
[140]
De Isabella, P.; Palumbo, M.; Sissi, C.; Carenini, N.; Capranico, G.; Menta, E.; Oliva, A.; Spinelli, S.; Krapcho, A.P.; Giuliani, F.C.; Zunino, F. Physicochemical properties, cytotoxic activity and topoisomerase ii inhibition of 2,3-diaza-anthracenediones. Biochem. Pharmacol., 1997, 53(2), 161-169.
[http://dx.doi.org/10.1016/S0006-2952(96)00646-6] [PMID: 9037248]
[141]
Colucci, M.A.; Couch, G.D.; Moody, C.J. Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: From synthetic organic chemistry to compounds with anticancer potential. Org. Biomol. Chem., 2008, 6(4), 637-656.
[http://dx.doi.org/10.1039/B715270A] [PMID: 18264564]
[142]
Thorn, J.M.; Barton, J.D.; Dixon, N.E.; Ollis, D.L.; Edwards, K.J. Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J. Mol. Biol., 1995, 249(4), 785-799.
[http://dx.doi.org/10.1006/jmbi.1995.0337] [PMID: 7602590]
[143]
Bianchet, M.A.; Faig, M.; Amzel, L.M. Structure and mechanism of NAD[P]H:quinone acceptor oxidoreductases (NQO). Methods Enzymol., 2004, 382, 144-174.
[http://dx.doi.org/10.1016/S0076-6879(04)82009-3] [PMID: 15047101]
[144]
Kim, Y.S.; Park, S.Y.; Lee, H.J.; Suh, M.E.; Schollmeyer, D.; Lee, C.O. Synthesis and cytotoxicity of 6,11-Dihydro-pyrido- and 6,11-Dihydro-benzo[2,3-b]phenazine-6,11-dione derivatives. Bioorg. Med. Chem., 2003, 11(8), 1709-1714.
[http://dx.doi.org/10.1016/S0968-0896(03)00028-2] [PMID: 12659757]
[145]
Chaudhary, A.; Khurana, J.M. Synthetic routes for phenazines: An overview. Res. Chem. Intermed., 2018, 44(2), 1045-1083.
[http://dx.doi.org/10.1007/s11164-017-3152-8]
[146]
Kanishcheva, E.A.; Vasilin, V.K.; Kasimova, D.R.; Stroganova, T.A.; Krapivin, G.D. Synthesis of a novel tetracyclic pyrido[3′,2′:4,5] thieno [3,2-b]indole system. Chem. Heterocycl. Compd., 2013, 48(12), 1883-1885.
[http://dx.doi.org/10.1007/s10593-013-1226-0]
[147]
Zhou, H.; Wang, W.; Khorev, O.; Zhang, Y.; Miao, Z.; Meng, T.; Shen, J. Three‐component, one‐pot sequential synthesis of tetracyclic pyrido[2′, 1′: 2, 3]imidazo[5, 1‐a] isoquinolinium compounds as potent anticancer agents. Eur. J. Inorg. Chem., 2012, 2012(28), 5585-5594.
[http://dx.doi.org/10.1002/ejoc.201200542]
[148]
Tuyun, A.F.; Bayrak, N.; Yıldırım, H.; Onul, N.; Mataraci Kara, E.; Ozbek Celik, B. Synthesis and in vitro biological evaluation of aminonaphthoquinones and benzo [b] phenazine-6, 11-dione derivatives as potential antibacterial and antifungal compounds. J. Chem., 2015, 2015, 1-8.
[149]
Loredo-Carrillo, S.E.; Leyva, E.; Platz, M.S.; Cárdenas-Chaparro, A.; Martínez-Richa, A. Thermolysis of 2-azido-3-(R-anilino)-1,4-naphthoquinones. Nitrene insertion versus hydrogen abstraction. Tetrahedron Lett., 2020, 61(14), 151731.
[http://dx.doi.org/10.1016/j.tetlet.2020.151731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy