Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Trihaloisocyanuric Acids: Useful Reagents for Halogenation Reactions and Heterocyclic Scaffold Construction

Author(s): Marcio C.S. de Mattos*

Volume 28, Issue 14, 2024

Published on: 03 May, 2024

Page: [1079 - 1101] Pages: 23

DOI: 10.2174/0113852728304619240408045311

Price: $65

conference banner
Abstract

Trihaloisocyanuric acids [1,3,5-trihalo-1,3,5-triazine-2,4,6-(1H,3H,5H)-triones] are commercially available or easily prepared solids. They are highly reactive, stable, easily handled, and have an excellent atom economy, transferring up to three halogen atoms to organic substrates. In these regards, the present review summarizes their synthetic applications as safe and convenient reagents. Therefore, electrophilic halogenation reactions of alkenes, alkynes, arenes, heteroarenes, carbonyl compounds, and heteroatoms, as well as radical halogenation involving saturated substrates and in situ halogenated intermediates for Appel-type reactions are presented and discussed. Remarkably, applications of trihaloisocyanuric acids in processes for the construction of heteroarene scaffolds based on electrophilic halo- and oxidative cyclization, multicomponent reactions, and telescopic reactions are also given.

Graphical Abstract

[1]
Gribble, G.W. Newly discovered naturally occurring organohalogens. ARKIVOC, 2018, 2018(1), 372-410.
[http://dx.doi.org/10.24820/ark.5550190.p010.610]
[2]
(a) Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem., 2013, 56(4), 1363-1388.
[http://dx.doi.org/10.1021/jm3012068] [PMID: 23145854];
(b) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev., 2016, 116(4), 2478-2601.
[http://dx.doi.org/10.1021/acs.chemrev.5b00484] [PMID: 26812185];
(c) Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking back, looking forward at halogen bonding in drug discovery. Molecules, 2017, 22(9), 1397.
[http://dx.doi.org/10.3390/molecules22091397] [PMID: 28837116]
[3]
Krishnamurti, R. Chlorinated benzenes. In: Kirk-Othmer Encyclopedia of Technical Technology; Ley, C., Ed.; Wiley: Hoboken, 2001; Vol. 6, pp. 211-225.
[http://dx.doi.org/10.1002/0471238961.0308121502182501.a01.pub2]
[4]
(a) Fourcroy, A.F. On three different species of hydrogen gas, removed from ether and alcohol by different processes, sent to the institute by the Society of Dutch Chemists. Ann. Chim. Phys., 1797, 21, 48-71.;
(b) Wisniak, J. The history of catalysis. From the beginning to nobel prizes. Educ. Quím., 2010, 21(1), 60-69.
[http://dx.doi.org/10.1016/S0187-893X(18)30074-0]
[5]
(a) Faraday, M. XX. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. Lond., 1825, 115, 440-466.
[http://dx.doi.org/10.1098/rstl.1825.0022];
(b) Newell, L.C. Faraday’s discovery of benzene. J. Chem. Educ., 1926, 3(11), 1248-1253.
[http://dx.doi.org/10.1021/ed003p1248]
[6]
Couper, A. About some derivatives of benzene. Justus Liebigs Ann. Chem., 1857, 104(2), 225-227.
[http://dx.doi.org/10.1002/jlac.18571040217]
[7]
(a) Koval’, I.V. N-Halo reagents. N-Halosuccinimides in organic synthesis and in chemistry of natural compounds. Russ. J. Org. Chem., 2002, 38(3), 301-337.
[http://dx.doi.org/10.1023/A:1016390721218];
(b) Gołebiewski, W.; Gucma, M. Applications of N-chlorosuccinimide in organic synthesis. Synthesis, 2007, 2007(23), 3599-3619.
[http://dx.doi.org/10.1055/s-2007-990871];
(c) Bera, S.; Mondal, D.; Chatterjee, B. Application of N-bromosuccinimide in carbohydrate chemistry. SynOpen, 2023, 7(4), 501-510.
[http://dx.doi.org/10.1055/s-0042-1751501]
[8]
(a) Barbero, M.; Bazzi, S.; Cadamuro, S.; Dughera, S. o-Benzenedisulfonimide: An organic reagent and organocatalyst of renewed interest. Curr. Org. Chem., 2011, 15(4), 576-599.
[http://dx.doi.org/10.2174/138527211794474474];
(b) Phukan, P.; Rajbongshi, K.; Borah, A. N,N-Dibromo-p-toluenesulfonamide (TsNBr2): A promising alternative bromo-organic reagent. Synlett, 2016, 27(11), 1618-1634.
[http://dx.doi.org/10.1055/s-0035-1562024]
[9]
(a) Souza, S.P.L.; Silva, J.F.M.; Mattos, M.C.S. N-halosaccharins: Useful (and alternative) reagents in organic synthesis. Quim. Nova, 2006, 29(5), 1061-1064.
[http://dx.doi.org/10.1590/S0100-40422006000500028];
(b) Sharma, K.; Jain, I.; Sharma, V.K. N-Halosaccharin: A novel and versatile reagent. Oxid. Commun., 2015, 38(2), 631-647.
[10]
de Mattos, M.C.S. Trialoisocyanuric acids: New applications for old ideas. In: Synthetic Organic Chemistry Brazil; E-papers: Rio de Janeiro, 2022; 3, pp. 483-495.
[11]
(a) Yousefi, R.; Whitehead, D.C.; Mueller, J.M.; Staples, R.J.; Borhan, B. On the chlorenium source in the asymmetric chlorolactonization reaction. Org. Lett., 2011, 13(4), 608-611.
[http://dx.doi.org/10.1021/ol102850m] [PMID: 21244044];
(b) Nagao, Y.; Katagiri, S. The chlorination of amides (imides) with 1,3,5-trichloro-1,3,5-triazines-2,4,6(1H,3H,5H)-trione. Sci. Rep. Hirosaki Univ, 1991, 38, 20-23.
[12]
Trost, B.M. The atom economy--a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[13]
(a) Saldick, J. Biodegradation of cyanuric acid. Appl. Microbiol., 1974, 28(6), 1004-1008.
[http://dx.doi.org/10.1128/am.28.6.1004-1008.1974] [PMID: 4451360];
(b) Aukema, K.G.; Tassoulas, L.J.; Robinson, S.L.; Konopatski, J.F.; Bygd, M.D.; Wackett, L.P. Cyanuric acid biodegradation via biuret: Physiology, taxonomy, and geospatial distribution. Appl. Environ. Microbiol., 2020, 86(2), e01964-19.
[http://dx.doi.org/10.1128/AEM.01964-19] [PMID: 31676480]
[14]
Tozetti, S.D.F.; Almeida, L.S.; Esteves, P.M.; Mattos, M.C.S. Trihaloisocyanuric acids/NaX: An environmentaly friendly system for vicinal dihalogenation of alkenes without using molecular halogen. J. Braz. Chem. Soc., 2007, 18(4), 675-677.
[http://dx.doi.org/10.1590/S0103-50532007000400002]
[15]
(a) Reva, I. Comment on “Density functional theory studies on molecular structure, vibrational spectra and electronic properties of cyanuric acid”. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 232-236.
[http://dx.doi.org/10.1016/j.saa.2015.06.070] [PMID: 26142656];
(b) Liang, X.; Pu, X.; Zhou, H.; Wong, N.B.; Tian, A. Keto–enol tautomerization of cyanuric acid in the gas phase and in water and methanol. J. Mol. Struct. THEOCHEM, 2007, 816(1-3), 125-136.
[http://dx.doi.org/10.1016/j.theochem.2007.04.010]
[16]
Chattaway, F.D.; Wadmore, J.M. XX.—The constitution of hydrocyanic, cyanic, and cyanuric acids. J. Chem. Soc. Trans., 1902, 81(0), 191-203.
[http://dx.doi.org/10.1039/CT9028100191]
[17]
(a) Canelli, E. Chemical, bacteriological, and toxicological properties of cyanuric acid and chlorinated isocyanurates as applied to swimming pool disinfection: A review. Am. J. Public Health, 1974, 64(2), 155-162.
[http://dx.doi.org/10.2105/AJPH.64.2.155] [PMID: 4594286];
(b) Manju, M.; Suresh, S.; Vivekanand, P.A.; Gunasekaran, S.; Srinivasan, S.; Biju, C.S. Vibrational spectroscopic investigation and antibacterial activity studies on Trichloroisocyanuric acid. Mater. Today Proc., 2021, 36(4), 857-862.
[http://dx.doi.org/10.1016/j.matpr.2020.07.018]
[18]
Future market insights; Trichloroisocyanuric acid market. 2024. Available from: www.futuremarketinsights.com/reports/trichloroisocyanuric-acid-market (Accessed January, 10th, 2024).
[19]
Gottardi, W. On the reaction of bromine with silver cyanurates. Monatsh. Chem., 1967, 98(4), 1613-1617.
[http://dx.doi.org/10.1007/BF00909031]
[20]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Tribromoisocyanuric acid: A new reagent for regioselective cobromination of alkenes. Synlett, 2006, (10), 1515-1518.
[21]
Gottardi, W. About triiodisocyanuric acid. Monatsh. Chem., 1970, 101(3), 655-661.
[http://dx.doi.org/10.1007/BF00909880]
[22]
Ribeiro, R.S.; Esteves, P.M.; de Mattos, M.C.S. Triiodoisocyanuric acid: A new and convenient reagent for regioselective coiodination of alkenes and enolethers with oxygenated nucleophiles. Tetrahedron Lett., 2007, 48(49), 8747-8751.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.011]
[23]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Efficient electrophilic cobromination of alkenes and bromination of activated arenes with bromodichloroisocyanuric acid under mild conditions. Synlett, 2007, (11), 1687-1690.
[24]
Ribeiro, R.S.; Esteves, P.M.; de Mattos, M.C.S. Dichloroiodoisocyanuric acid: A new reagent for regioselective coiodination of alkenes and iodination of activated arenes. J. Braz. Chem. Soc., 2012, 23(2), 228-235.
[http://dx.doi.org/10.1590/S0103-50532012000200006]
[25]
Ziegler, K.; Späth, A.; Schaaf, E.; Schumann, W.; Winkelmann, E. The halogenation of unsaturated substances in the allyl position. Justus Liebigs Ann. Chem., 1942, 551(1), 80-119.
[http://dx.doi.org/10.1002/jlac.19425510103]
[26]
(a) Tilstam, U.; Weinmann, H. Trichloroisocyanuric acid: A safe and efficient oxidant. Org. Process Res. Dev., 2002, 6(4), 384-393.
[http://dx.doi.org/10.1021/op010103h];
(b) Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255];
(c) Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Trichloroisocyanuric acid: A versatile and efficient chlorinating and oxidizing reagent. Eur. J. Org. Chem., 2019, 2019(22), 3544-3552.
[http://dx.doi.org/10.1002/ejoc.201900449]
[27]
(a) Almeida, L.; Esteves, P.; Mattos, M. Tribromoisocyanuric acid: A green and versatile reagent. Curr. Green Chem., 2014, 1(2), 94-107.
[http://dx.doi.org/10.2174/2213346101999140109142834];
(b) Day, D.P.; Alsenani, N.I. Dibromoisocyanuric acid: Applications in brominations and oxidation processes for the synthesis of high value compounds. Asian J. Org. Chem., 2020, 9(8), 1162-1171.
[http://dx.doi.org/10.1002/ajoc.202000249]
[28]
De La Mare, P.B.D. Electrophilic Halogenation; Cambridge University Press: London, 1976.
[29]
Rodriguez, J.; Dulcère, J.P. Cohalogenation in organic synthesis. Synthesis, 1993, 1993(12), 1177-1205.
[http://dx.doi.org/10.1055/s-1993-26022]
[30]
(a) Mori, S.; Morita, K-i.; Mukawa, F.; Steroids, X.V. Hypochlorous acid addition reactions of Δ5-cholesten-3-ones and its ethyleneketal. Proc. Jpn. Acad., 1956, 32(8), 585-587.
[http://dx.doi.org/10.2183/pjab1945.32.585];
(b) Mukawa, F. Steroids XVIII. The addition of hypochlorous acid to Δ-steroids with isocyanuric chloride. Nippon kagaku zassi, 1957, 78(4), 452-454.
[http://dx.doi.org/10.1246/nikkashi1948.78.452];
c) Morita, K. The oxidation and hypobromous acid addition of steroids by means of isocyanur bromide. Bull. Chem. Soc. Jpn., 1958, 31(3), 347-351.
[http://dx.doi.org/10.1246/bcsj.31.347]
[31]
Mendonça, G.F.; Sanseverino, A.M.; de Mattos, M.C.S. Trichloroisocyanuric acid as a cohalogenating reagent: An efficient transformation of alkenes into chlorohydrins, β-chloroethers and β-chloroacetates. Synthesis, 2003, (1), 45-48.
[32]
Souza, A.V.A.; Mendonça, G.F.; Bernini, R.B.; Mattos, M.C.S. Cohalogenation of alkenes with DMF: An easy vicinal haloformyloxylation reaction. J. Braz. Chem. Soc., 2007, 18(8), 1575-1579.
[http://dx.doi.org/10.1590/S0103-50532007000800020]
[33]
Souza, S.P.L.; Silva, J.F.M.; Mattos, M.C.S. N-Chloro and N-bromosaccharins: Valuable reagents for halogenation of electron rich aromatics and cohalogenation of alkenes. J. Braz. Chem. Soc., 2003, 14(5), 832-835.
[http://dx.doi.org/10.1590/S0103-50532003000500021]
[34]
Wengert, M.; Sanseverino, A.M.; Mattos, M.C.S. Trichloroisocyanuric acid: An alternate green route for the transformation of alkenes into epoxides. J. Braz. Chem. Soc., 2002, 13(5), 700-703.
[http://dx.doi.org/10.1590/S0103-50532002000500028]
[35]
Constantino, M.G.; Júnior, V.L.; Invernize, P.R.; Filho, L.C.S.; José da Silva, G.V. Opening of epoxide rings catalyzed by niobium pentachloride. Synth. Commun., 2007, 37(20), 3529-3539.
[http://dx.doi.org/10.1080/00397910701555790]
[36]
Crespo, L.T.C.; Ribeiro, R.S.; de Mattos, M.C.S.; Esteves, P.M. Halofluorination of alkenes using trihaloisocyanuric acids and HF.pyridine. Synthesis, 2010, (14), 2379-2382.
[37]
(a) Rajbongshi, K.K.; Phukan, P. Facile generation of α,α-dibromodimethyl ketals from alkynes using TsNBr2. Tetrahedron Lett., 2014, 55(11), 1877-1878.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.123];
(b) Okamoto, N.; Sueda, T.; Minami, H.; Miwa, Y.; Yanada, R. Regioselective iodoazidation of alkynes: Synthesis of α,α-diazidoketones. Org. Lett., 2015, 17(5), 1336-1339.
[http://dx.doi.org/10.1021/acs.orglett.5b00395] [PMID: 25719992];
(c) Streuff, J.; Riedel, S.; Beck, T.; Haller, H. Brominations with Pr4NBr9 as a solid reagent with high reactivity and selectivity. Synthesis, 2014, 46(6), 740-747.
[http://dx.doi.org/10.1055/s-0033-1340705];
(d) Deng, D.; Huang, D.; Sun, X.; Gao, B. Recent advances in the tandem difunctionalization of alkynes: Mechanism-based classification. Synthesis, 2021, 53(19), 3522-3534.
[http://dx.doi.org/10.1055/a-1486-2158]
[38]
(a) Hiegel, G.A.; Bayne, C.D.; Ridley, B. Conversion of alkynes into α,α-dichloro ketones and dichlorodimethyl ketals using trichloroisocyanuric acid. Synth. Commun., 2003, 33(12), 1997-2002.
[http://dx.doi.org/10.1081/SCC-120021025];
(b) Crespo, L.T.C.; Senra, M.R.; Esteves, P.M.; de Mattos, M.C.S. Tribromoisocyanuric acid as a green cohalogenating reagent: an efficient transformation of alkynes into α,α-dibromoketones and vicinal dibromoalkenes. Lett. Org. Chem., 2019, 16(8), 627-632.
[http://dx.doi.org/10.2174/1570178615666180803152951]
[39]
Zhang, X.; Wu, Y.; Zhang, Y.; Liu, H.; Xie, Z.; Fu, S.; Liu, F. Ultrasound-assisted tandem reaction of alkynes and trihaloisocyanuric acids by thiourea as catalyst in water. Tetrahedron, 2017, 73(31), 4513-4518.
[http://dx.doi.org/10.1016/j.tet.2017.05.075]
[40]
Cho, E.; Kim, M.; Jayaraman, A.; Kim, J.; Lee, S. Synthesis of α,α‐dichloroketones through sequential reaction of decarboxylative coupling and chlorination. Eur. J. Org. Chem., 2018, 2018(6), 781-784.
[http://dx.doi.org/10.1002/ejoc.201701640]
[41]
D’Oyley, J.M.; Aliev, A.E.; Sheppard, T.D. Regioselective dihalohydration reactions of propargylic alcohols: Gold-catalyzed and noncatalyzed reactions. Angew. Chem. Int. Ed., 2014, 53(40), 10747-10750.
[http://dx.doi.org/10.1002/anie.201405348] [PMID: 25147077]
[42]
Crespo, L.T.C.; Nogueira, G.P.; de Mattos, M.C.S.; Esteves, P.M. Reaction of trihaloisocyanuric acids with alkynes: An efficient methodology for the preparation of β-haloenol acetates. ARKIVOC, 2018, (ii), 205-214.
[43]
Bragueroli, H.S.; Esteves, P.M.; de Mattos, M.C.S. The double halofluorination reaction of alkynes using trihaloisocyanuric acids and Olah’s reagent. J. Fluor. Chem., 2023, 272, 110214.
[http://dx.doi.org/10.1016/j.jfluchem.2023.110214]
[44]
Varenikov, A.; Shapiro, E.; Gandelman, M. Decarboxylative halogenation of organic compounds. Chem. Rev., 2021, 121(1), 412-484.
[http://dx.doi.org/10.1021/acs.chemrev.0c00813] [PMID: 33200917]
[45]
Sodré, L.R.; Esteves, P.M.; Mattos, M.C.S. A green hunsdiecker reaction of cinnamic acids. J. Braz. Chem. Soc., 2013, 24(2), 212-218.
[http://dx.doi.org/10.5935/0103-5053.20130027]
[46]
de Andrade, V.S.C.; de Mattos, M.C.S. Tribromoisocyanuric acid as a useful oxidant for the synthesis of 1,3-diynes via Glaser coupling. Monatsh. Chem., 2020, 151(9), 1403-1408.
[http://dx.doi.org/10.1007/s00706-020-02673-8]
[47]
Jayaraman, A.; Cho, E.; Irudayanathan, F.M.; Kim, J.; Lee, S. Metal‐free decarboxylative trichlorination of alkynyl carboxylic acids: Synthesis of trichloromethyl ketones. Adv. Synth. Catal., 2018, 360(1), 130-141.
[http://dx.doi.org/10.1002/adsc.201701116]
[48]
(a) Sindhu, K.S.; Anilkumar, G. Recent advances and applications of Glaser coupling employing greener protocols. RSC Advances, 2014, 4(53), 27867-27887.
[http://dx.doi.org/10.1039/C4RA02416H];
b) Radhika, S.; Harry, N.A.; Neetha, M.; Anilkumar, G. Recent trends and applications of the Cadiot–Chodkiewicz reaction. Org. Biomol. Chem., 2019, 17(41), 9081-9094.
[http://dx.doi.org/10.1039/C9OB01757G] [PMID: 31596306]
[49]
Mendonça, G.; de Almeida, L.; de Mattos, M.; Esteves, P.; Ribeiro, R. New ideas for a 160 years-old reaction. Curr. Org. Synth., 2015, 12(5), 603-617.
[http://dx.doi.org/10.2174/157017941205150821130712]
[50]
(a) Juenge, E.C.; Beal, D.A.; Duncan, W.P. Chlorination of aromatic systems with trichloroisocyanuric acid under polar and free-radical conditions. J. Org. Chem., 1970, 35(3), 719-722.
[http://dx.doi.org/10.1021/jo00828a039];
(b) Rosevear, J.; Wilshire, J.F.K. The chlorination of some N,N-Dimethylanilines with 1,3,5-trichloro-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (Trichloroisocyanuric acid). Aust. J. Chem., 1980, 33(4), 843-852.
[http://dx.doi.org/10.1071/CH9800843]
[51]
Mendonça, G.F.; Mattos, M.C.S. A simple and efficient methodology for the chlorination of activated aromatic compounds using trichloroisocyanuric acid. Quim. Nova, 2008, 31(4), 798-801.
[http://dx.doi.org/10.1590/S0100-40422008000400017]
[52]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. A new regioselective bromination of activated aromatic rings. Synthesis, 2006, (2), 221-223.
[53]
Ribeiro, R.S.; Esteves, P.M.; Mattos, M.C.S. Triiodoisocyanuric acid: A new and convenient reagent for regioselective iodination of activated arenes. J. Braz. Chem. Soc., 2008, 19(7), 1239-1243.
[http://dx.doi.org/10.1590/S0103-50532008000700002]
[54]
(a) Neto, J.S.S.; Balaguez, R.A.; Franco, M.S.; de Sá Machado, V.C.; Saba, S.; Rafique, J.; Galetto, F.Z.; Braga, A.L. Trihaloisocyanuric acids in ethanol: An eco-friendly system for the regioselective halogenation of imidazo-heteroarenes. Green Chem., 2020, 22(11), 3410-3415.
[http://dx.doi.org/10.1039/D0GC00137F];
(b) Motati, D.R.; Uredi, D.; Watkins, E.B. A general method for the metal-free, regioselective, remote C–H halogenation of 8-substituted quinolines. Chem. Sci., 2018, 9(7), 1782-1788.
[http://dx.doi.org/10.1039/C7SC04107A] [PMID: 29675222]
[55]
(a) Mishra, A.K.; Nagarajaiah, H.; Moorthy, J.N. Trihaloisocyanuric acids as atom-economic reagents for halogenation of aromatics and carbonyl compounds in the solid state by mall milling. Eur. J. Org. Chem., 2015, 2015(12), 2733-2738.
[http://dx.doi.org/10.1002/ejoc.201403463];
(b) Chen, C.M.; Chen, J.X.; To, C.T. Solvent-free mechanochemical chlorination of pyrazoles with trichloroisocyanuric acid. Green Chem., 2023, 25(7), 2559-2562.
[http://dx.doi.org/10.1039/D3GC00170A]
[56]
(a) de Aguiar, L.; de Mattos, M.; Sanabria, C.; Costa, B.; Viana, G. Efficient direct halogenation of unsymmetrical N-benzyl- and N-phenylureas with trihaloisocyanuric acids. Synthesis, 2018, 50(6), 1359-1367.
[http://dx.doi.org/10.1055/s-0036-1589149];
(b) Sanabria, C.M.; do Casal, M.T.; de Souza, R.B.A.; de Aguiar, L.C.S.; de Mattos, M.C.S. Highly regioselective iodination of N-phenylureas with iodine / trichloroisocyanuric acid. Synthesis, 2017, 49(7), 1648-1654.
[57]
(a) Ronchetti, R.; Moroni, G.; Carotti, A.; Gioiello, A.; Camaioni, E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med. Chem., 2021, 12(7), 1046-1064.
[http://dx.doi.org/10.1039/D1MD00058F] [PMID: 34355177];
(b) Ghosh, A.K.; Brindisi, M. Urea derivatives in modern drug discovery and medicinal chemistry. J. Med. Chem., 2020, 63(6), 2751-2788.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01541] [PMID: 31789518];
(c) Jagtap, A.; Kondekar, N.; Sadani, A.; Chern, J.W. Ureas: Applications in drug design. Curr. Med. Chem., 2017, 24(6), 622-651.
[http://dx.doi.org/10.2174/0929867323666161129124915] [PMID: 27897114]
[58]
(a) Yin, Y.; Zheng, K.; Eid, N.; Howard, S.; Jeong, J.H.; Yi, F.; Guo, J.; Park, C.M.; Bibian, M.; Wu, W.; Hernandez, P.; Park, H.; Wu, Y.; Luo, J.L.; LoGrasso, P.V.; Feng, Y. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J. Med. Chem., 2015, 58(4), 1846-1861.
[http://dx.doi.org/10.1021/jm501680m] [PMID: 25621531];
(b) Luzina, E.L.; Popov, A.V. Anticancer activity of N-bis(trifluoromethyl)alkyl-N′-(polychlorophenyl) and N′-(1,2,4-triazolyl) ureas. Eur. J. Med. Chem., 2010, 45(11), 5507-5512.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.057] [PMID: 20850204]
[59]
Hubbard, A.; Okazaki, T.; Laali, K.K. Chlorination of aromatics with trichloroisocyanuric acid (TCCA) in Bronsted-acidic imidazolium ionic liquid [BMIM(SO3H)][OTf]: An economical, green protocol for the synthesis of chloroarenes. Aust. J. Chem., 2007, 60(12), 923-927.
[http://dx.doi.org/10.1071/CH07261]
[60]
Mendonça, G.F.; Senra, M.R.; Esteves, P.M.; de Mattos, M.C.S. Trichloroisocyanuric acid in 98% sulfuric acid: A superelectrophilic medium for chlorination of deactivated arenes. Appl. Catal. A Gen., 2011, 401(1-2), 176-181.
[http://dx.doi.org/10.1016/j.apcata.2011.05.017]
[61]
de Mattos, M.; Esteves, P.; de Almeida, L. Tribromoisocyanuric acid in trifluoroacetic acid: An efficient system for smooth brominating of moderately deactivated arenes. Synlett, 2013, 24(5), 603-606.
[http://dx.doi.org/10.1055/s-0032-1317795]
[62]
Mendonça, G.F.; Magalhães, R.R.; Mattos, M.C.S.; Esteves, P.M. Trichloroisocyanuric acid in H2SO4: An efficient superelectrophilic reagent for chlorination of isatin and benzene derivatives. J. Braz. Chem. Soc., 2005, 16(4), 695-698.
[http://dx.doi.org/10.1590/S0103-50532005000500003]
[63]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Superelectrophilic bromination of deactivated aromatic rings with tribromoisocyanuric acid—an experimental and DFT study. Tetrahedron Lett., 2009, 50(25), 3001-3004.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.010]
[64]
Ribeiro, R.S.; Esteves, P.M.; de Mattos, M.C.S. Superelectrophilic iodination of deactivated arenes with triiodoisocyanuric acid. Synthesis, 2011, (5), 739-744.
[65]
(a) Suseela, Y.V.; Sasikumar, M.; Govindaraju, T. An effective and regioselective bromination of 1,4,5,8-naphthalenetetracarboxylic dianhydride using tribromoisocyanuric acid. Tetrahedron Lett., 2013, 54(47), 6314-6318.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.029];
(b) Canto, K.; da Silva Ribeiro, R.; Biajoli, A.F.P.; Correia, C.R.D. Expeditious synthesis of the marine natural products prepolycitrin A and polycitrins A and B through Heck arylations. Eur. J. Org. Chem., 2013, 2013(35), 8004-8013.
[http://dx.doi.org/10.1002/ejoc.201301108];
(c) Benz, S.; Nötzli, S.; Siegel, J.S.; Eberli, D.; Jessen, H.J. Controlled oxygen release from pyridone endoperoxides promotes cell survival under anoxic conditions. J. Med. Chem., 2013, 56(24), 10171-10182.
[http://dx.doi.org/10.1021/jm4016137] [PMID: 24299550];
(d) Liu, J-Q.; Qian, C.; Chen, X-Z. A facile chiral pool synthesis of (S)-6-nitroindoline-2-carboxylic acid from L-phenylalanine. Synthesis, 2010, (3), 403-406.;
(e) Martens, S.C.; Zschieschang, U.; Wadepohl, H.; Klauk, H.; Gade, L.H. Tetrachlorinated tetraazaperopyrenes (TAPPs): Highly fluorescent dyes and semiconductors for air-stable organic n-channel transistors and complementary circuits. Chemistry, 2012, 18(12), 3498-3509.
[http://dx.doi.org/10.1002/chem.201103158] [PMID: 22354835]
[66]
Chaikovskii, V.K.; Skorokhodov, V.I.; Filimonov, V.D. Synthesis of N-iodosuccinimide and its application in H2SO4 as efficient iodination reagent for deactivated compounds. Russ. J. Org. Chem., 2001, 37(10), 1503-1504.
[http://dx.doi.org/10.1023/A:1013435608182]
[67]
(a) Kokel, A.; Schäfer, C.; Török, B. Organic synthesis using environmentally benign acid catalysis. Curr. Org. Synth., 2019, 16(4), 615-649.
[http://dx.doi.org/10.2174/1570179416666190206141028] [PMID: 31984932];
(b) Ratnasamy, P.; Singh, A.P.; Sharma, S. Halogenation over zeolite catalysts. Appl. Catal. A Gen., 1996, 135(1), 25-55.
[http://dx.doi.org/10.1016/0926-860X(95)00210-3];
(c) van Santen, R.A.; Kramer, G.J. Reactivity theory of zeolitic Broensted acidic sites. Chem. Rev., 1995, 95(3), 637-660.
[http://dx.doi.org/10.1021/cr00035a008]
[68]
Mendonça, G.F.; Bastos, A.R.; Boltz, M.; Louis, B.; Pale, P.; Esteves, P.M.; de Mattos, M.C.S. Electrophilic chlorination of arenes with trichloroisocyanuric acid over acid zeolites. Appl. Catal. A Gen., 2013, 460-461, 46-51.
[http://dx.doi.org/10.1016/j.apcata.2013.04.017]
[69]
Boltz, M.; de Mattos, M.C.S.; Esteves, P.M.; Pale, P.; Louis, B. Green route for the chlorination of nitrobenzene. Appl. Catal. A Gen., 2012, 449, 1-8.
[http://dx.doi.org/10.1016/j.apcata.2012.09.021]
[70]
Losch, P.; Kolb, J.F.; Astafan, A.; Daou, T.J.; Pinard, L.; Pale, P.; Louis, B. Eco-compatible zeolite-catalysed continuous halogenation of aromatics. Green Chem., 2016, 18(17), 4714-4724.
[http://dx.doi.org/10.1039/C6GC00731G]
[71]
Festa, A.A.; Storozhenko, O.A.; Voskressensky, L.G.; Van der Eycken, E.V. Visible light-mediated halogenation of organic compounds. Chem. Soc. Rev., 2023, 52(24), 8678-8698.
[http://dx.doi.org/10.1039/D3CS00366C] [PMID: 37975853]
[72]
Rogers, D.A.; Bensalah, A.T.; Espinosa, A.T.; Hoerr, J.L.; Refai, F.H.; Pitzel, A.K.; Alvarado, J.J.; Lamar, A.A. Amplification of trichloroisocyanuric acid (TCCA) reactivity for chlorination of arenes and heteroarenes via catalytic organic dye activation. Org. Lett., 2019, 21(11), 4229-4233.
[http://dx.doi.org/10.1021/acs.orglett.9b01414] [PMID: 31140821]
[73]
Lied, F.; Lerchen, A.; Knecht, T.; Mück-Lichtenfeld, C.; Glorius, F. Versatile Cp*Rh(III)-catalyzed selective Ortho -chlorination of arenes and heteroarenes. ACS Catal., 2016, 6(11), 7839-7843.
[http://dx.doi.org/10.1021/acscatal.6b02227]
[74]
Schröder, N.; Wencel-Delord, J.; Glorius, F. High-yielding, versatile, and practical [Rh(III)Cp*]-catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc., 2012, 134(20), 8298-8301.
[http://dx.doi.org/10.1021/ja302631j] [PMID: 22548632]
[75]
Smith, M.B.; March, J. Advanced Organic Chemistry - Reactions, Mechanisms and Structures, 6th ed; John Wiley & Sons: New Jersey, 2007, p. 778.
[76]
Hiegel, G.A.; Peyton, K.B. Chlorination of ketones with trichloroisocyanuric acid. Synth. Commun., 1985, 15(5), 385-392.
[http://dx.doi.org/10.1080/00397918508063816]
[77]
Mendonça, G.F.; Sindra, H.C.; de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Trihaloisocyanuric acids as convenient reagents for regioselective halogenation of β-dicarbonyl compounds. Tetrahedron Lett., 2009, 50(4), 473-475.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.045]
[78]
Vieira, A.A.; Gomes, N.M.; Matheus, M.E.; Fernandes, P.D.; Figueroa-Villar, J.D. Synthesis and in vivo evaluation of 5-chloro-5-benzobarbiturates as new central nervous system depressants. J. Braz. Chem. Soc., 2011, 22(2), 364-371.
[http://dx.doi.org/10.1590/S0103-50532011000200024]
[79]
Su, Y.; Shi, Y.; Chang, B.; Wu, L.; Chong, S.; Zhang, W.; Huang, D.; Wang, K.; Hu, Y. Chlorination of α -cyanoketones and 1, 3-dicarbonyl compounds by using trichloroisocyanuric acid as chlorine source. Youji Huaxue, 2018, 38(6), 1454-1461.
[http://dx.doi.org/10.6023/cjoc201712042]
[80]
Bertolini, V.; Pallavicini, M.; Tibhe, G.; Roda, G.; Arnoldi, S.; Monguzzi, L.; Zoccola, M.; Di Nardo, G.; Gilardi, G.; Bolchi, C. Synthesis of α-hydroxy fatty acids from fatty acids by intermediate α-chlorination with TCCA under solvent-free conditions: A way to valorization of waste fat biomasses. ACS Omega, 2021, 6(47), 31901-31906.
[http://dx.doi.org/10.1021/acsomega.1c04640] [PMID: 34870012]
[81]
Jing, Y.; Daniliuc, C.G.; Studer, A. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones. Org. Lett., 2014, 16(18), 4932-4935.
[http://dx.doi.org/10.1021/ol5024568] [PMID: 25197943]
[82]
Qiu, C.; Yu, H.; Qiu, C.; Li, F.; Suo, T.; Wang, C.; Bie, S.; Li, Z. Metal-free halogenation of N-substituted enaminoesters and enaminones: A facile access to functionalized α,α-dihaloimines. Synthesis, 2020, 52(8), 1301-1314.
[http://dx.doi.org/10.1055/s-0039-1690819]
[83]
Gupta, A.K.; Acharya, J.; Dubey, D.K.; Kaushik, M.P. Trichloroisocyanuric acid: An efficient reagent for one-pot synthesis of Ptychodiscus brevis (PB-1) toxin and its derivatives. J. Chem. Res., 2007, 2007(1), 29-33.
[http://dx.doi.org/10.3184/030823407780199667]
[84]
Varaprath, S.; Stutts, D.H. Utility of trichloroisocyanuric acid in the efficient chlorination of silicon hydrides. J. Organomet. Chem., 2007, 692(10), 1892-1897.
[http://dx.doi.org/10.1016/j.jorganchem.2006.12.032]
[85]
Zhong, P.; Guo, M.P. Preparation of disulfides by the oxidation of thiols using trichloroisocyanuric acid. Synth. Commun., 2001, 31(12), 1825-1828.
[http://dx.doi.org/10.1081/SCC-100104331]
[86]
Chen, Y.; Li, M.; Gong, Z.; Shen, Z. Trichloroisocyanuric acid-promoted thiolation of phosphites by thiols. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(1), 19-27.
[http://dx.doi.org/10.1080/10426507.2020.1799369]
[87]
Bonk, J.D.; Amos, D.T.; Olson, S.J. Convenient one‐pot synthesis of sulfonamides from thiols using trichloroisocyanuric acid. Synth. Commun., 2007, 37(12), 2039-2050.
[http://dx.doi.org/10.1080/00397910701356942]
[88]
Xiong, Z.X.; Huang, N.P.; Zhong, P. Oxidation of sulfides to sulfoxides with trichloroisocyanuric acid. Synth. Commun., 2001, 31(2), 245-248.
[http://dx.doi.org/10.1081/SCC-100000205]
[89]
Xu, Y.; Peng, Y.; Sun, J.; Chen, J.; Ding, J.; Wu, H. TCCA-promoted solvent-free chemoselective synthesis of thiosulfonates on grinding. J. Chem. Res., 2010, 34(6), 358-360.
[http://dx.doi.org/10.3184/030823410X12744466896732]
[90]
Zhong, P.; Guo, M.P. Preparation of diselenides by the oxidation of selenols using trichloroisocyanuric acid. Synth. Commun., 2001, 31(10), 1507-1510.
[http://dx.doi.org/10.1081/SCC-100104062]
[91]
Back, T.G.; Chau, J.H.L.; Dyck, B.P.; Gladstone, P.L. The synthesis of some novel N -chloro-Δ 1 -4-azasteroids by efficient N-chlorination of azasteroid lactams with trichloroisocyanuric acid. Can. J. Chem., 1991, 69(9), 1482-1486.
[http://dx.doi.org/10.1139/v91-219]
[92]
(a) Hiegel, G.A.; Hogenauer, T.J.; Lewis, J.C. Preparation of N ‐chloroamides using trichloroisocyanuric acid. Synth. Commun., 2005, 35(15), 2099-2105.
[http://dx.doi.org/10.1081/SCC-200066703];
(b) De Luca, L.; Giacomelli, G.; Nieddu, G. A simple protocol for efficient n-chlorination of amides and carbamates. Synlett, 2005, (2), 223-226.
[93]
De Luca, L.; Giacomelli, G. An insight of the reactions of amines with trichloroisocyanuric acid. Synlett, 2004, (12), 2180-2184.
[http://dx.doi.org/10.1055/s-2004-830896]
[94]
(a) Whitehead, D.C.; Staples, R.J.; Borhan, B. A simple and expedient method for the preparation of N-chlorohydantoins. Tetrahedron Lett., 2009, 50(6), 656-658.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.091] [PMID: 20157342];
(b) Shiri, A.; Khoramabadi-zad, A. Preparation of several active n-chloro compounds from trichloroisocyanuric acid. Synthesis, 2009, (16), 2797-2801.
[95]
Debnath, P. Recent advances in the hofmann rearrangement and its application to natural product synthesis. Curr. Org. Chem., 2020, 23(22), 2402-2435.
[http://dx.doi.org/10.2174/1385272823666191021115508]
[96]
(a) Hiegel, G.A.; Hogenauer, T.J. Preparation of methyl N ‐substituted carbamates from amides through N ‐chloroamides. Synth. Commun., 2005, 35(15), 2091-2098.
[http://dx.doi.org/10.1081/SCC-200066695];
(b) Miranda, L.S.M.; da Silva, T.R.; Crespo, L.T.; Esteves, P.M.; de Matos, L.F.; Diederichs, C.C.; de Souza, R.O.M.A. TBCA mediated microwave-assisted Hofmann rearrangement. Tetrahedron Lett., 2011, 52(14), 1639-1640.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.126]
[97]
(a) Bastos, G.A.; de Mattos, M.C.S. A convenient Hofmann reaction of carboxamides and cyclic imides mediated by trihaloisocyanuric acids. Tetrahedron Lett., 2021, 83, 153422.
[http://dx.doi.org/10.1016/j.tetlet.2021.153422];
(b) Gambacorta, G.; Baxendale, I.R. Continuous-flow hofmann rearrangement using trichloroisocyanuric acid for the preparation of 2-benzoxazolinone. Org. Process Res. Dev., 2022, 26(2), 422-430.
[http://dx.doi.org/10.1021/acs.oprd.1c00440];
(c) Katuri, J.V.P.; Ekkundi, V.S.; Nagarajan, K. A simple and expedient procedure for the preparation of gabapentin lactam (2-Aza-spiro[4,5]decan-3-one). Org. Process Res. Dev., 2016, 20(10), 1828-1832.
[http://dx.doi.org/10.1021/acs.oprd.6b00246]
[98]
Wan, X.; Lin, J.; Bai, J.; Li, J.; Wang, K.; Cao, Z.; Li, M.; Bao, X.; Wan, X. Interception of RCONCl 2 : Late-stage hydrolysis and esterification of primary amides. Org. Chem. Front., 2023, 11(1), 183-193.
[http://dx.doi.org/10.1039/D3QO01730C]
[99]
Bajec, D.; Grom, M.; Lašič Jurković, D.; Kostyniuk, A.; Huš, M.; Grilc, M.; Likozar, B.; Pohar, A. A review of methane activation reactions by halogenation: Catalysis, mechanism, kinetics, modeling, and reactors. Processes, 2020, 8(4), 443.
[http://dx.doi.org/10.3390/pr8040443]
[100]
de Andrade, V.S.C.; de Mattos, M.C.S. Chloroaromatics: Advances in synthesis and applications. In: Industrial Arene Chemistry: Markets, Technologies, Processes and Case Studies of Aromatic Commodities; Mortier, J., Ed.; Wiley-VCH: Weinheim, 2023; Vol. 4, pp. 1769-1802.
[http://dx.doi.org/10.1002/9783527827992.ch57]
[101]
Bilke, M.; Losch, P.; Vozniuk, O.; Bodach, A.; Schüth, F. Methane to chloromethane by mechanochemical activation: A selective radical pathway. J. Am. Chem. Soc., 2019, 141(28), 11212-11218.
[http://dx.doi.org/10.1021/jacs.9b04413] [PMID: 31260287]
[102]
Mohan, V.; Dutta, B.; Ripani, R.; Jain, P.K. Room-temperature catalyst-free methane chlorination. Cell Rep. Phys. Sci., 2021, 2(9), 100545.
[http://dx.doi.org/10.1016/j.xcrp.2021.100545]
[103]
Huo, S.; Wu, R.; Li, M.; Chen, H.; Zuo, W. Methane activation with N -Haloimides. Ind. Eng. Chem. Res., 2020, 59(52), 22690-22695.
[http://dx.doi.org/10.1021/acs.iecr.0c05972]
[104]
(a) Gomes, C.A.; Lube, L.M.; Fernandes, C.; Franco, R.W.A.; Resende, J.A.L.C.; Horn, A., Jr A new system for cyclohexane functionalization employing iron(III) catalysts and trichloroisocyanuric acid. New J. Chem., 2017, 41(20), 11498-11502.
[http://dx.doi.org/10.1039/C7NJ01164D];
(b) Melo, I.L.; Lube, L.M.; Neves, E.S.; Terra, W.S.; Fernandes, C.; Matos, C.R.R.; Franco, R.W.A.; Resende, J.A.L.C.; Valente, D.C.A.; Horta, B.A.C.; Cardozo, T.M.; Horn, A., Jr Experimental and theoretical studies of a greener catalytic system for saturated hydrocarbon chlorination composed by trichloroisocyanuric acid and a copper(II) compound. Appl. Catal. A Gen., 2018, 562, 150-158.
[http://dx.doi.org/10.1016/j.apcata.2018.06.003];
(c) Neves, E.S.; Fernandes, C.; Horn, A., Jr Study of cyclohexane and methylcyclohexane functionalization promoted by manganese(III) compounds. Inorganics, 2023, 11(3), 105.
[http://dx.doi.org/10.3390/inorganics11030105]
[105]
Combe, S.H.; Hosseini, A.; Parra, A.; Schreiner, P.R. Mild aliphatic and benzylic hydrocarbon C–H bond chlorination using trichloroisocyanuric acid. J. Org. Chem., 2017, 82(5), 2407-2413.
[http://dx.doi.org/10.1021/acs.joc.6b02829] [PMID: 28106993]
[106]
de Almeida, L.S.; Esteves, P.M.; de Mattos, M.C.S. Tribromoisocyanuric acid as a green reagent for benzylic bromination of alkylarenes. Tetrahedron Lett., 2015, 56(49), 6843-6845.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.081]
[107]
Gaspa, S.; Valentoni, A.; Mulas, G.; Porcheddu, A.; De Luca, L. Metal‐free preparation of α‐H‐chlorinated alkylaromatic hydrocarbons by sunlight. ChemistrySelect, 2018, 3(27), 7991-7995.
[http://dx.doi.org/10.1002/slct.201801168]
[108]
(a) Gaspa, S.; Porcheddu, A.; De Luca, L. Metal-free direct oxidation of aldehydes to esters using TCCA. Org. Lett., 2015, 17(15), 3666-3669.
[http://dx.doi.org/10.1021/acs.orglett.5b01579] [PMID: 26161512];
(b) Gaspa, S.; Raposo, I.; Pereira, L.; Mulas, G.; Ricci, P.C.; Porcheddu, A.; De Luca, L. Visible light-induced transformation of aldehydes to esters, carboxylic anhydrides and amides. New J. Chem., 2019, 43(27), 10711-10715.
[http://dx.doi.org/10.1039/C9NJ01984G]
[109]
Gaspa, S.; Porcheddu, A.; De Luca, L. Metal-free oxidative self-coupling of aldehydes or alcohols to symmetric carboxylic anhydrides. Tetrahedron Lett., 2017, 58(26), 2533-2536.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.030]
[110]
Yang, H.; Hu, W.; Deng, S.; Wu, T.; Cen, H.; Chen, Y.; Zhang, D.; Wang, B. Catalyst-free amidation of aldehyde with amine under mild conditions. New J. Chem., 2015, 39(8), 5912-5915.
[http://dx.doi.org/10.1039/C5NJ01372K]
[111]
Kobayashi, S.; Yamaguchi, R.; Yamamoto, F.; Komori, J.; Sakamoto, H.; Kasashima, T.; Adriaenssens, L.; Lear, M.J. One‐pot conversion of benzyl alcohols to n‐protected anilines and alkyl alcohols to carbamoyl azides. Eur. J. Org. Chem., 2023, 26(47), e202300786.
[http://dx.doi.org/10.1002/ejoc.202300786]
[112]
Motati, D.R.; Uredi, D.; Burra, A.G.; Bowen, J.P.; Fronczek, F.R.; Smith, C.R.; Watkins, E.B. Differential formation of nitrogen-centered radicals leading to unprecedented, regioselective bromination of N, N ′-(1,2-phenylene)bisamides and 2-amidophenols. Org. Chem. Front., 2020, 7(9), 1095-1106.
[http://dx.doi.org/10.1039/C9QO01508F]
[113]
de Andrade, V.; de Mattos, M. New reagents and synthetic approaches to the appel reaction. Curr. Org. Synth., 2015, 12(3), 309-327.
[http://dx.doi.org/10.2174/1570179412666150305231358]
[114]
Hiegel, G.A.; Rubino, M. Conversion of alcohols into alkyl chlorides using trichloroisocyanuric acid with triphenylphosphine. Synth. Commun., 2002, 32(17), 2691-2694.
[http://dx.doi.org/10.1081/SCC-120006034]
[115]
Andrade, V.S.C.; Mattos, M.C.S. Tribromoisocyanuric acid / triphenylphosphine: A new system for conversion of alcohols into alkyl bromides. J. Braz. Chem. Soc., 2014, 25(5), 975-979.
[http://dx.doi.org/10.5935/0103-5053.20140055]
[116]
Hiegel, G.A.; Nguyen, J.; Zhou, Y. Preparation of alkyl nitrates, nitrites, and thiocyanates from alcohols utilizing trichloroisocyanuric acid with triphenylphosphine. Synth. Commun., 2004, 34(14), 2507-2511.
[http://dx.doi.org/10.1081/SCC-200025580]
[117]
Sindra, H.C.; dos Santos, C.V.P.; de Mattos, M.C.S. Trihaloisocyanuric acids: Useful reagents for conversion of benzaldehydes into benzylidene dihalides under Appel conditions. Lett. Org. Chem., 2020, 17(8), 586-589.
[118]
de Mattos, M.; de Andrade, V. Trihaloisocyanuric acid / triphenylphosphine: An efficient system for regioselective conversion of epoxides into vicinal halohydrins and vicinal dihalides under mild conditions. Synthesis, 2016, 48(9), 1381-1388.
[http://dx.doi.org/10.1055/s-0035-1560408]
[119]
Khanam, A.; Dubey, S.; Mandal, P.K. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr. Res., 2023, 534, 108976.
[http://dx.doi.org/10.1016/j.carres.2023.108976] [PMID: 37871478]
[120]
Khanam, A.; Javed; Lal, M.; Kumar Mandal, P. Trichloroisocyanuric acid (TCCA): A suitable reagent for direct glycosylations of C1‐hemiacetals with different nucleophiles. Asian J. Org. Chem., 2023, 12(4), e202300044.
[http://dx.doi.org/10.1002/ajoc.202300044]
[121]
(a) Rodrigues, R.C.; Barros, I.M.A.; Lima, E.L.S. Mild one-pot conversion of carboxylic acids to amides or esters with Ph3P/trichloroisocyanuric acid. Tetrahedron Lett., 2005, 46(35), 5945-5947.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.127];
(b) Sindra, H.C.; Mattos, M.C.S. Appel reaction of carboxylic acids with tribromoisocyanuric acid / triphenylphosphine: A mild and acid-free preparation of esters and amides. J. Braz. Chem. Soc., 2016, 27(6), 1129-1136.
[http://dx.doi.org/10.5935/0103-5053.20160006]
[122]
Singh, M.; Singh, A.; Mishra, N.; Agrahari, A.; Tiwari, V. Trichloroisocyanuric acid mediated high-yielding synthesis of N-acylbenzotriazoles under mild reaction conditions. Synthesis, 2019, 51(10), 2183-2190.
[http://dx.doi.org/10.1055/s-0037-1611724]
[123]
Akhlaghinia, B.; Rouhi-Saadabad, H. Direct and facile synthesis of acyl azides from carboxylic acids using the trichloroisocyanuric acid–triphenylphosphine system. Can. J. Chem., 2013, 91(3), 181-185.
[http://dx.doi.org/10.1139/cjc-2011-0493]
[124]
Phakhodee, W.; Yamano, D.; Pattarawarapan, M. Ultrasound-assisted synthesis of N-acylcyanamides and N-acyl-substituted imidazolones from carboxylic acids by using trichloroisocyanuric acid/triphenylphosphine. Synlett, 2020, 31(7), 703-707.
[http://dx.doi.org/10.1055/s-0039-1691583]
[125]
Entezari, N.; Akhlaghinia, B.; Rouhi-Saadabad, H. Direct and facile synthesis of acyl isothiocyanates from carboxylic acids using trichloroisocyanuric acid/triphenylphosphine system. Croat. Chem. Acta, 2014, 87(3), 201-206.
[http://dx.doi.org/10.5562/cca2381]
[126]
Rezazadeh, S.; Akhlaghinia, B.; Razavi, N. Trichloroisocyanuric acid/triphenylphosphine-mediated synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Aust. J. Chem., 2015, 68(1), 145-155.
[http://dx.doi.org/10.1071/CH14037]
[127]
Ghodsinia, S.S.E.; Akhlaghinia, B. A high-yielding, expeditious, and multicomponent synthesis of urea and carbamate derivatives by using triphenylphosphine/trichloroisocyanuric acid system. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(1), 1-7.
[http://dx.doi.org/10.1080/10426507.2015.1085038]
[128]
Kiani, A.; Akhlaghinia, B.; Rouhi-Saadabad, H.; Bakavoli, M. Direct synthesis of sulfonyl azides from sulfonic acids. J. Sulfur Chem., 2014, 35(2), 119-127.
[http://dx.doi.org/10.1080/17415993.2013.801476]
[129]
Sugimoto, O.; Tanji, K. An improved method for chlorination of nitrogen-containing π-deficient heteroaromatics using triphenylphosphine and trichloroisocyanuric acid. Heterocycles, 2005, 65(1), 181-185.
[http://dx.doi.org/10.3987/COM-04-10245]
[130]
Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9]
[131]
Wender, P.A. Toward the ideal synthesis and molecular function through synthesis-informed design. Nat. Prod. Rep., 2014, 31(4), 433-440.
[http://dx.doi.org/10.1039/C4NP00013G] [PMID: 24589860]
[132]
Ameta, K.L.; Dandia, A. Green Chemistry: Synthesis of Bioactive Heterocycles; Springer: New Delhi, 2014.
[http://dx.doi.org/10.1007/978-81-322-1850-0]
[133]
de Andrade, V.; de Mattos, M. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51(9), 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
[134]
Wang, Y.; Wang, K.H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. Cascade oxidation/halogenoaminocyclization reaction of trifluoromethylated homoallylic N -acylhydrazines: metal-free synthesis of CF 3 -substituted pyrazolines. J. Org. Chem., 2018, 83(2), 939-950.
[http://dx.doi.org/10.1021/acs.joc.7b02934] [PMID: 29268606]
[135]
Sniady, A.; Morreale, M.S.; Wheeler, K.A.; Dembinski, R. Room- temperature electrophilic 5-endo-dig chlorocyclization of alk-3-yn-1-ones with the use of pool sanitizer: Synthesis of 3-chlorofurans and 5-chlorofuropyrimidine nucleosides. Eur. J. Org. Chem., 2008, 2008(20), 3449-3452.
[http://dx.doi.org/10.1002/ejoc.200800397]
[136]
Xiang, H.; Yang, C. A facile and general approach to 3-((trifluoromethyl)thio)-4H-chromen-4-one. Org. Lett., 2014, 16(21), 5686-5689.
[http://dx.doi.org/10.1021/ol502751k] [PMID: 25338291]
[137]
Doerner, C.V.; Neto, J.S.S.; Cabreira, C.R.; Saba, S.; Sandjo, L.P.; Rafique, J.; Braga, A.L.; de Assis, F.F. Synthesis of 3-selanyl-isoflavones from 2-hydroxyphenyl enaminones using trichloroisocyanuric acid (TCCA): A sustainable approach. New J. Chem., 2023, 47(12), 5598-5602.
[http://dx.doi.org/10.1039/D2NJ06043D]
[138]
Xiao, J.; Ai, Z.; Li, X.; Tao, S.; Zhao, B.; Wang, X.; Wang, X.; Du, Y. Synthesis of 3-thiocyanated chromones via TCCA/NH4SCN-mediated cyclization/thiocyanation of alkynyl aryl ketones. Green Synth. Catal., 2022, 3(2), 198-201.
[http://dx.doi.org/10.1016/j.gresc.2021.12.003]
[139]
Blödorn, G.B.; Duarte, L.F.B.; Roehrs, J.A.; Silva, M.S.; Neto, J.S.S.; Alves, D. Trichloroisocyanuric acid (TCCA): A suitable reagent for the synthesis of selanyl‐benzo[b]chalcogenophenes. Eur. J. Org. Chem., 2022, 2022(40), e202200775.
[http://dx.doi.org/10.1002/ejoc.202200775]
[140]
Tsoungas, P.G.; Diplas, A.I. Oxidative cyclization in the synthesis of 5‐ and 6‐membered N, O ‐heterocycles. Heteroatom Chem., 2003, 14(7), 642-670.
[http://dx.doi.org/10.1002/hc.10200]
[141]
Subhas Bose, D.; Raghavender Reddy, K. A simple and convenient method for the synthesis of 3,5‐disubstituted 1,2,4‐thiadiazoles via oxidative dimerization of primary thioamides. J. Heterocycl. Chem., 2017, 54(1), 769-774.
[http://dx.doi.org/10.1002/jhet.2627]
[142]
Moraes, A.M.; da Silva, T.L.; de Mattos, M.C.S. An eco‐friendly synthesis of 5‐aminotetrazoles using trichloroisocyanuric acid as desulfurization agent of thioureas. J. Heterocycl. Chem., 2023, 60(9), 1625-1632.
[http://dx.doi.org/10.1002/jhet.4667]
[143]
Crispim-Neto, J.; de Mattos, M.C.S. Tribromoisocyanuric acid as an alternative oxidant in the synthesis of 2-amino-1,3,4-oxadiazoles from 1-acylthiosemicarbazides. Tetrahedron Lett., 2023, 121, 154494.
[http://dx.doi.org/10.1016/j.tetlet.2023.154494]
[144]
de Andrade, V.S.C.; de Mattos, M.C.S. Applications of N-halo reagents in multicomponent reactions: A still underrated approach for the construction of heterocyclic scaffolds. Curr. Org. Chem., 2022, 26(11), 1088-1111.
[http://dx.doi.org/10.2174/1385272826666220822124705]
[145]
Hojati, S.F.; Nezhadhoseiny, S.A.; Beykzadeh, Z. Trichloroisocyanuric acid-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazoles. Monatsh. Chem., 2013, 144(3), 387-390.
[http://dx.doi.org/10.1007/s00706-012-0830-5]
[146]
Maleki, B.; Salehabadi, H.; Sepehr, Z.; Kermanian, M. Solvent-free, one-pot synthesis of 2,4,6-triarylpyridines using trichloroisocyanuric acid or N-bromosuccinimide as a novel and neutral catalyst. Collect. Czech. Chem. Commun., 2011, 76(11), 1307-1315.
[http://dx.doi.org/10.1135/cccc2011021]
[147]
Roknaddini, M.; Sheikhhosseini, E. Synthesis of 1,4-dihydropyridines (DHP) catalyzed by trichloroisocyanuric acid (TCCA) in aqueous media. Sci. Iran. C, 2016, 23(6), 2756-2761.
[148]
Hojati, S.F.; MoeiniEghbali, N.; Mohamadi, S.; Ghorbani, T. Trichloroisocyanuric acid as a highly efficient catalyst for the synthesis of tetrahydrobenzo[b]pyran derivatives. Org. Prep. Proced. Int., 2018, 50(4), 408-415.
[http://dx.doi.org/10.1080/00304948.2018.1468982]
[149]
Maleki, B.; Gholizadeh, M.; Sepehr, Z. 1,3,5-Trichloro-2,4,6-triazinetrion: A versatile heterocycle for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthene, 1,8-dioxooctahydroxanthene and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives under solvent-free conditions. Bull. Korean Chem. Soc., 2011, 32(5), 1697-1702.
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1697]
[150]
Bigdeli, M.A.; Nemati, F.; Mahdavinia, G.H.; Doostmohammadi, H. A series of 1,8-dioxooctahydroxanthenes are prepared using trichloroisocyanuric acid. Chin. Chem. Lett., 2009, 20(11), 1275-1278.
[http://dx.doi.org/10.1016/j.cclet.2009.06.024]
[151]
(a) Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci., 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118];
(b) Andrade, V.; Mattos, M. The telescopic approach as a green chemistry tool. Quim. Nova, 2021, 44(7), 912-918.
[http://dx.doi.org/10.21577/0100-4042.20170731]
[152]
Pattarawarapan, M.; Yamano, D.; Jaita, S.; Hongsibsong, S.; Yimklan, S.; Phakhodee, W. 5-Amino-Substituted 2-Methoxy-1,3,4-oxadiazoles as common precursors toward 1,3,4-Oxadiazol-2(3H)-ones and 1,2,4-Triazolidine-3,5-diones. Synthesis, 2022, 54(20), 4539-4550.
[http://dx.doi.org/10.1055/a-1874-6399]
[153]
Pattarawarapan, M.; Yamano, D.; Wiriya, N.; Phakhodee, W.; Wet-osot, S. Mechanochemical synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles mediated by PPh3-TCCA. Synlett, 2022, 33(14), 1458-1462.
[http://dx.doi.org/10.1055/s-0040-1719867]
[154]
Vadagaonkar, K.S.; Murugan, K.; Chaskar, A.C.; Bhate, P.M. A facile and practical one-pot synthesis of [1,2,4]triazolo[4,3-a]pyridines. RSC Advances, 2014, 4(64), 34056-34064.
[http://dx.doi.org/10.1039/C4RA04961F]
[155]
de Andrade, V.S.C.; de Mattos, M.C.S. N-Halo reagents-mediated greener protocols for heterocyclic synthesis: Safe chemistry and pot-economy approaches to azoles and quinoxalines. Curr. Green Chem., 2018, 5(2), 68-85.
[http://dx.doi.org/10.2174/2452273202666180719124023]
[156]
Hantzsch, A.; Weber, J.H. About compounds of thiazole (pyridine of the thiophene series). Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[157]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[158]
dos Santos, C.V.P.; de Mattos, M.C.S. A convenient protocol for the oxidation of benzyl and secondary alcohols to carbonyl compounds by trichloroisocyanuric acid. Lett. Org. Chem., 2021, 18(11), 854-861.
[http://dx.doi.org/10.2174/1570178617999200707110940]
[159]
de Andrade, V.S.C.; de Mattos, M.C.S. One-pot synthesis of 4-aryl-2-aminothiazoles from styrenes and thioureas promoted by tribromoisocyanuric acid. Tetrahedron Lett., 2020, 61(30), 152164.
[http://dx.doi.org/10.1016/j.tetlet.2020.152164]
[160]
de Mattos, M.; de Andrade, V. One-pot telescoped synthesis of thiazole derivatives from β-keto esters and thioureas promoted by tribromoisocyanuric acid. Synthesis, 2018, 50(24), 4867-4874.
[http://dx.doi.org/10.1055/s-0037-1610243]
[161]
Pereira, F.A.C.; de Andrade, V.S.C.; Souza, E.A.; de Mattos, M.C.S.; Oliveira, D.F. 2‐Aminoselenazoles and 2‐aminothiazoles: One‐pot synthesis and control of the fungus Colletotrichum lindemuthianum in common beans. Pest Manag. Sci., 2022, 78(4), 1665-1676.
[http://dx.doi.org/10.1002/ps.6786] [PMID: 34994047]
[162]
Bowroju, S.K.; Marumamula, H.; Bavanthula, R. One-pot protocol for the synthesis of quinoxalines from styrenes, o-phenylenediamine and benzo[c][1,2,5]thiadiazole-4,5-diamine using triiodoisocyanuric acid. Organic Communications, 2021, 14(1), 48-57.
[http://dx.doi.org/10.25135/acg.oc.93.2009.1800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy