Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Green Routes to Dimethyl Carbonate: A Green and Versatile Methylating Reactant

Author(s): Claudio J.A. Mota*

Volume 28, Issue 14, 2024

Published on: 30 April, 2024

Page: [1069 - 1078] Pages: 10

DOI: 10.2174/0113852728304402240403052919

Price: $65

conference banner
Abstract

This mini-review reports the current routes used for the production of dimethyl carbonate (DMC), a green and versatile methylating reactant widely used in organic synthesis. The use of DMC in methylation processes is also discussed. The main routes of DMC production, encompassing the reaction between phosgene and methanol and the oxidative carbonylation of methanol with CO and urea methanolysis, are summarised. However, none of them can be considered entirely green, and the drawbacks in terms of green chemistry principles are addressed. The present commercial route to DMC, which involves the initial reaction of CO2 with ethylene oxide to produce ethylene carbonate that further reacts with excess methanol, is also explored regarding the green chemistry principles. Moreover, this review focuses on the direct DMC production from the reaction of methanol and CO2, discussing catalysts and strategies to shift equilibrium. An emphasis is given to heterogeneous catalysts, especially those based on CeO2. A final remark on the production of DMC through the capture of CO2 using chitosan-derived adsorbents and renewable methanol is addressed.

Graphical Abstract

[1]
Anatas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, United Kingdom, 2000.
[http://dx.doi.org/10.1093/oso/9780198506980.001.0001]
[2]
Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res., 2002, 35(9), 706-716.
[http://dx.doi.org/10.1021/ar010076f] [PMID: 12234200]
[3]
Park, J.H.; Jeon, J.Y.; Lee, J.J.; Jang, Y.; Varghese, J.K.; Lee, B.Y. Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules, 2013, 46(9), 3301-3308.
[http://dx.doi.org/10.1021/ma400360w]
[4]
Song, M.; Yang, X.; Wang, G. Preparation of polycarbonate diols (PCDLs) from dimethyl carbonate (DMC) and diols catalyzed by KNO3/γ-Al2O3. RSC Advances, 2018, 8(61), 35014-35022.
[http://dx.doi.org/10.1039/C8RA07141A] [PMID: 35547059]
[5]
Fang, W.; Zhang, Z.; Yang, Z.; Zhang, Y.; Xu, F.; Li, C.; An, H.; Song, T.; Luo, Y.; Zhang, S. One-pot synthesis of bio-based polycarbonates from dimethyl carbonate and isosorbide under metal-free condition. Green Chem., 2020, 22(14), 4550-4560.
[http://dx.doi.org/10.1039/D0GC01440K]
[6]
Ein-Eli, Y. Dimethyl carbonate (DMC) electrolytes – the effect of solvent purity on Li–ion intercalation into graphite anodes. Electrochem. Commun., 2002, 4(8), 644-648.
[http://dx.doi.org/10.1016/S1388-2481(02)00407-1]
[7]
Pacheco, M.A.; Marshall, C.L. Review of Dimethyl Carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, 1997, 11(1), 2-29.
[http://dx.doi.org/10.1021/ef9600974]
[8]
Memoli, S.; Selva, M.; Tundo, P. Dimethylcarbonate for eco-friendly methylation reactions. Chemosphere, 2001, 43(1), 115-121.
[http://dx.doi.org/10.1016/S0045-6535(00)00331-3] [PMID: 11233818]
[9]
Tundo, P. New developments in dimethyl carbonate chemistry. Pure Appl. Chem., 2001, 73(7), 1117-1124.
[http://dx.doi.org/10.1351/pac200173071117]
[10]
Fu, Z.H.; Ono, Y. Selective O-methylation of phenol with dimethyl carbonate over X-zeolites. Catal. Lett., 1993, 21(1-2), 43-47.
[http://dx.doi.org/10.1007/BF00767369]
[11]
Bomben, A.; Selva, M.; Tundo, P. A continuous flow O-methylation of phenols with dimethylcarbonate in a CSTR system. Ind. Eng. Chem. Res., 1999, 38, 2075-2079.
[http://dx.doi.org/10.1021/ie9806444]
[12]
Xie, J.; Wu, C.; Christopher, B.W.; Quan, J.; Zhu, L. Ionic liquids-promoted S-methylation of thiols utilizing dimethyl carbonate. Phosphorus Sulfur Silicon Relat. Elem., 2010, 186(1), 31-37.
[http://dx.doi.org/10.1080/10426501003776939]
[13]
Selva, M.; Bomben, A.; Tundo, P. Selective mono-N-methylation of primary aromatic amines by dimethyl carbonate over faujasite X- and Y-type zeolites. J. Chem. Soc., Perkin Trans. 1, 1997, (7), 1041-1046.
[http://dx.doi.org/10.1039/a606684d]
[14]
Selva, M.; Marques, C.A.; Tundo, P. Selective mono-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate. J. Chem. Soc., Perkin Trans. 1, 1994, (10), 1323.
[http://dx.doi.org/10.1039/p19940001323]
[15]
Bomben, A.; Marques, C.A.; Selva, M.; Tundo, P. Selective mono-C-methylation of methyl aryloxyacetates and aryloxyacetonitriles by dimethylcarbonate. Tetrahedron, 1995, 51, 11573.
[http://dx.doi.org/10.1016/0040-4020(95)00718-N]
[16]
Bomben, A.; Selva, M.; Tundo, P. Dimethylcarbonate as a methylating agent. The selective mono-C-methylation of alkyl aryl sulfones. J. Chem. Res., 1997, 1997(12), 448-449.
[17]
Sen, S.; Patil, S.; Argyropoulos, D.S. Methylation of softwood kraft lignin with dimethyl carbonate. Green Chem., 2015, 17(2), 1077-1087.
[http://dx.doi.org/10.1039/C4GC01759E]
[18]
Ouk, S.; Thiébaud, S.; Borredon, E.; Chabaud, B. N‐methylation of nitrogen‐containing heterocycles with dimethyl carbonate. Synth. Commun., 2005, 35(23), 3021-3026.
[http://dx.doi.org/10.1080/00397910500278578]
[19]
Hemming, E.B.; Masters, A.F.; Perosa, A.; Selva, M.; Maschmeyer, T. Single-step methylation of chitosan using dimethyl carbonate as a green methylating agent. Molecules, 2019, 24(21), 3986.
[http://dx.doi.org/10.3390/molecules24213986] [PMID: 31690018]
[20]
Ji, Y.; Sweeney, J.; Zoglio, J.; Gorin, D.J. Catalytic methyl transfer from dimethylcarbonate to carboxylic acids. J. Org. Chem., 2013, 78(22), 11606-11611.
[http://dx.doi.org/10.1021/jo401941v] [PMID: 24138535]
[21]
Nath, P.; Deb, M.L.; Baruah, P.K. Synthesis of tris(indolyl)methanes by using dimethyl carbonate as a single carbon source via C-H functionalization approach. Chem. Zvesti, 2024, 78(2), 1117-1124.
[http://dx.doi.org/10.1007/s11696-023-03150-2]
[22]
Hobson, S.T.; Richieri, R.A.; Parseghian, M.H. Phosgene: Toxicology, animal models, and medical countermeasures. Toxicol. Mech. Methods, 2021, 31(4), 293-307.
[http://dx.doi.org/10.1080/15376516.2021.1885544] [PMID: 33588685]
[23]
Keller, N.; Rebmann, G.; Keller, V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. J. Mol. Catal. Chem., 2010, 317(1-2), 1-18.
[http://dx.doi.org/10.1016/j.molcata.2009.10.027]
[24]
Delledonne, D.; Rivetti, F.; Romano, U. Oxidative carbonylation of methanol to dimethyl carbonate (DMC): A new catalytic system. J. Organomet. Chem., 1995, 488(1-2), C15-C19.
[http://dx.doi.org/10.1016/0022-328X(94)00039-F]
[25]
Álvarez, M.; Marín, P.; Ordóñez, S. Production of dimethyl carbonate by gas-phase oxidative carbonylation of methanol over Cu/Y zeolite: Mechanism and kinetics. Fuel Process. Technol., 2023, 247, 107805.
[http://dx.doi.org/10.1016/j.fuproc.2023.107805]
[26]
Kinoshita, H.; Türkan, H.; Vucinic, S.; Naqvi, S.; Bedair, R.; Rezaee, R.; Tsatsakis, A. Carbon monoxide poisoning. Toxicol. Rep., 2020, 7, 169-173.
[http://dx.doi.org/10.1016/j.toxrep.2020.01.005] [PMID: 32015960]
[27]
Wang, M.; Wang, H.; Zhao, N.; Wei, W.; Sun, Y. High-yield synthesis of dimethyl carbonate from urea and methanol using a catalytic distillation process. Ind. Eng. Chem. Res., 2007, 46(9), 2683-2687.
[http://dx.doi.org/10.1021/ie061101u]
[28]
Wang, M.; Wang, H.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts. Catal. Commun., 2006, 7(1), 6-10.
[http://dx.doi.org/10.1016/j.catcom.2005.08.003]
[29]
Joe, W.; Lee, H.J.; Hong, U.G.; Ahn, Y.S.; Song, C.J.; Kwon, B.J.; Song, I.K. Urea methanolysis to dimethyl carbonate over ZnO–CeO2–MO (MO: La2O3, Y2O3, Co2O3, Ga2O3, and ZrO2) catalysts. J. Ind. Eng. Chem., 2012, 18(5), 1730-1735.
[http://dx.doi.org/10.1016/j.jiec.2012.03.017]
[30]
Asghari, S.; Ghiaci, M. Dimethyl carbonate synthesis from urea methanolysis over ZnO-Nb2O5-TiO2 mixed oxide catalysts. Ind. Eng. Chem. Res., 2020, 59(14), 6405-6415.
[http://dx.doi.org/10.1021/acs.iecr.9b05637]
[31]
Bhanage, B.M.; Fujita, S.; Ikushima, Y.; Arai, M. Transesterification of urea and ethylene glycol to ethylene carbonate as an important step for urea based dimethyl carbonate synthesis. Green Chem., 2003, 5(4), 429-432.
[http://dx.doi.org/10.1039/b304182d]
[32]
Dahiya, S.; Srivastava, V.C.; Kumar, V. Dimethyl carbonate synthesis via transesterification of propylene carbonate using a titanium–praseodymium-based catalyst. Energy Fuels, 2022, 36(21), 13148-13158.
[http://dx.doi.org/10.1021/acs.energyfuels.2c02235]
[33]
Huang, H.; Samsun, R.C.; Peters, R.; Stolten, D. Greener production of dimethyl carbonate by the Power-to-Fuel concept: A comparative techno-economic analysis. Green Chem., 2021, 23(4), 1734-1747.
[http://dx.doi.org/10.1039/D0GC03865B]
[34]
Dasari, M.A.; Kiatsimkul, P.P.; Sutterlin, W.R.; Suppes, G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A Gen., 2005, 281(1-2), 225-231.
[http://dx.doi.org/10.1016/j.apcata.2004.11.033]
[35]
Mota, C.J.A.; Pinto, B.P. Glycerol: A Versatile Renewable Feedstock for the Chemical Industry; Springer: Cham, 2017.
[36]
Pang, J.; Zheng, M.; Sun, R.; Wang, A.; Wang, X.; Zhang, T. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem., 2016, 18(2), 342-359.
[http://dx.doi.org/10.1039/C5GC01771H]
[37]
Fukuoka, S.; Tojo, M.; Hachiya, H.; Aminaka, M.; Hasegawa, K. Green and sustainable chemistry in practice: Development and Industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polym. J., 2007, 39(2), 91-114.
[http://dx.doi.org/10.1295/polymj.PJ2006140]
[38]
Lynch, H.N.; Kozal, J.S.; Russell, A.J.; Thompson, W.J.; Divis, H.R.; Freid, R.D.; Calabrese, E.J.; Mundt, K.A. Systematic review of the scientific evidence on ethylene oxide as a human carcinogen. Chem. Biol. Interact., 2022, 364, 110031.
[http://dx.doi.org/10.1016/j.cbi.2022.110031] [PMID: 35779612]
[39]
Matsuzaki, T. 99 novel method for dimethyl carbonate synthesis using methyl nitrite. Stud. Surf. Sci. Catal., 2003, 145, 447-450.
[http://dx.doi.org/10.1016/S0167-2991(03)80256-2]
[40]
Nunes, L.J.R. The Rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments (Basel), 2023, 10(4), 66.
[http://dx.doi.org/10.3390/environments10040066]
[41]
Becker, C.E. Methanol poisoning. J. Emerg. Med., 1983, 1(1), 51-58.
[http://dx.doi.org/10.1016/0736-4679(83)90009-4] [PMID: 6386968]
[42]
da Silva, R.J. CO2 hydrogenation into dimethyl ether.The Carbon Chain in Carbon Dioxide Industrial Utilization Technologies; Routledge: Milton Park, Abingdon, Oxfordshire, 2019, pp. 83-97.
[43]
Kizlink, J.; Pastucha, I. Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of organotin compounds. Collect. Czech. Chem. Commun., 1994, 59(9), 2116-2118.
[http://dx.doi.org/10.1135/cccc19942116]
[44]
Ballivet-Tkatchenko, D.; Douteau, O.; Stutzmann, S. Reactivity of carbon dioxide with n -Butyl(phenoxy)-, (alkoxy)-, and (oxo)stannanes: Insight into dimethyl carbonate synthesis. Organometallics, 2000, 19(22), 4563-4567.
[http://dx.doi.org/10.1021/om000397f]
[45]
Tkatchenko, B. The role of distannoxanes in the synthesis of dimethyl carbonate from carbon dioxide. Appl. Catal. A, 2003, 225, 93-99.
[46]
Ballivet-Tkatchenko, D.; Ligabue, R.A.; Plasseraud, L. Synthesis of dimethyl carbonate in supercritical carbon dioxide. Braz. J. Chem. Eng., 2006, 23(1), 111-116.
[http://dx.doi.org/10.1590/S0104-66322006000100012]
[47]
Ferreira, H.B.P.; Vale, D.L.; Andrade, L.S.; Mota, C.J.A.; Miranda, J.L. Dimethylcarbonate: A route for the conversion of CO2. Revista Virtual de Química, 2013, 5(2), 188-200.
[http://dx.doi.org/10.5935/1984-6835.20130021]
[48]
Cai, Q.; Lu, B.; Guo, L.; Shan, Y. Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal. Commun., 2009, 10(5), 605-609.
[http://dx.doi.org/10.1016/j.catcom.2008.11.002]
[49]
Fang, S.; Fujimoto, K. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl. Catal. A Gen., 1996, 142(1), L1-L3.
[http://dx.doi.org/10.1016/0926-860X(96)00081-6]
[50]
Du, J.; Shi, J.; Li, Z.; Liu, Z.; Fan, X.; Tao, C. Ionic liquid mediated CO2 activation for DMC synthesis. J. Nat. Gas Chem., 2012, 21(4), 476-479.
[http://dx.doi.org/10.1016/S1003-9953(11)60393-9]
[51]
Tamboli, A.H.; Chaugule, A.A.; Kim, H. Highly selective and multifunctional chitosan/ionic liquids catalyst for conversion of CO2 and methanol to dimethyl carbonates at mild reaction conditions. Fuel, 2016, 166, 495-501.
[http://dx.doi.org/10.1016/j.fuel.2015.11.023]
[52]
Zhao, T.; Hu, X.; Wu, D.; Li, R.; Yang, G.; Wu, Y. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using Imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant. ChemSusChem, 2017, 10(9), 2046-2052.
[http://dx.doi.org/10.1002/cssc.201700128] [PMID: 28244650]
[53]
Zhao, T.; Han, Y.; Sun, Y. Novel reaction route for dimethyl carbonate synthesis from CO2 and methanol. Fuel Process. Technol., 2000, 62(2-3), 187-194.
[http://dx.doi.org/10.1016/S0378-3820(99)00118-6]
[54]
Zhang, M.; Fu, Z.; Xiao, M.; Yu, Y.; Wang, S.; Choi, M.J.; Meng, Y. Synthesis of Co 1.5 PW 12 O 40 and its catalytic performance of completely converting methanol to ethylene. Chem. Commun. (Camb.), 2016, 52(6), 1151-1153.
[http://dx.doi.org/10.1039/C5CC02230D] [PMID: 26596904]
[55]
Aouissi, A.; Al-Othman, Z.A.; Al-Amro, A. Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co(1.5)PW(12)O(40) Keggin-type heteropolyanion. Int. J. Mol. Sci., 2010, 11(4), 1343-1351.
[http://dx.doi.org/10.3390/ijms11041343] [PMID: 20480023]
[56]
Aouissi, A.; Al-Deyab, S.S.; Al-Owais, A.; Al-Amro, A. Reactivity of heteropolytungstate and heteropolymolybdate metal transition salts in the synthesis of dimethyl carbonate from methanol and CO2. Int. J. Mol. Sci., 2010, 11(7), 2770-2779.
[http://dx.doi.org/10.3390/ijms11072770] [PMID: 20717536]
[57]
Jung, K.T.; Bell, A.T. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. J. Catal., 2001, 204(2), 339-347.
[http://dx.doi.org/10.1006/jcat.2001.3411]
[58]
Li, A.; Pu, Y.; Li, F.; Luo, J.; Zhao, N.; Xiao, F. Synthesis of dimethyl carbonate from methanol and CO2 over Fe–Zr mixed oxides., 2017, 19, 33-39. J. CO 2 Util., 2017, 19, 33-39
[59]
Akune, T.; Morita, Y.; Shirakawa, S.; Katagiri, K.; Inumaru, K. ZrO2 nanocrystals as catalyst for synthesis of dimethyl carbonate from methanol and carbon dioxide: Catalytic activity and elucidation of active sites. Langmuir, 2018, 34(1), 23-29.
[http://dx.doi.org/10.1021/acs.langmuir.7b01294] [PMID: 28974090]
[60]
Yoshida, Y.; Arai, Y.; Kado, S.; Kunimori, K.; Tomishige, K. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal. Today, 2006, 115(1-4), 95-101.
[http://dx.doi.org/10.1016/j.cattod.2006.02.027]
[61]
Wang, S.; Zhao, L.; Wang, W.; Zhao, Y.; Zhang, G.; Ma, X.; Gong, J. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5(12), 5582-5588.
[http://dx.doi.org/10.1039/c3nr00831b] [PMID: 23680853]
[62]
Lee, H.J.; Park, S.; Song, I.K.; Jung, J.C. Direct Synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: Effect of acidity and basicity of the catalysts. Catal. Lett., 2011, 141(4), 531-537.
[http://dx.doi.org/10.1007/s10562-010-0544-4]
[63]
Kumar, P.; Srivastava, V.C.; Gläser, R.; With, P.; Mishra, I.M. Active ceria-calcium oxide catalysts for dimethyl carbonate synthesis by conversion of CO2. Powder Technol., 2017, 309, 13-21.
[http://dx.doi.org/10.1016/j.powtec.2016.12.016]
[64]
Liu, H.; Zou, W.; Xu, X.; Zhang, X.; Yang, Y.; Yue, H.; Yu, Y.; Tian, G.; Feng, S. The proportion of Ce4+ in surface of CexZr1-xO2 catalysts: The key parameter for direct carboxylation of methanol to dimethyl carbonate. J. CO2 Util., 2017, 17, 43-49.
[65]
Aresta, M.; Dibenedetto, A.; Pastore, C.; Cuocci, C.; Aresta, B.; Cometa, S.; Degiglio, E. Cerium(IV)oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal. Today, 2008, 137(1), 125-131.
[http://dx.doi.org/10.1016/j.cattod.2008.04.043]
[66]
Zhang, M.; Xiao, M.; Wang, S.; Han, D.; Lu, Y.; Meng, Y. Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from carbon dioxide and methanol. J. Clean. Prod., 2015, 103, 847-853.
[http://dx.doi.org/10.1016/j.jclepro.2014.09.024]
[67]
Marin, C.M.; Li, L.; Bhalkikar, A.; Doyle, J.E.; Zeng, X.C.; Cheung, C.L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J. Catal., 2016, 340, 295-301.
[http://dx.doi.org/10.1016/j.jcat.2016.06.003]
[68]
Chang, S.; Li, M.; Hua, Q.; Zhang, L.; Ma, Y.; Ye, B.; Huang, W. Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J. Catal., 2012, 293, 195-204.
[http://dx.doi.org/10.1016/j.jcat.2012.06.025]
[69]
Zhao, S.Y.; Wang, S.P.; Zhao, Y.J.; Ma, X.B. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2. Chin. Chem. Lett., 2017, 28(1), 65-69.
[http://dx.doi.org/10.1016/j.cclet.2016.06.003]
[70]
Chen, L.; Wang, S.; Zhou, J.; Shen, Y.; Zhao, Y.; Ma, X. Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO2 versus over ZrO2: Comparison of mechanisms. RSC Advances, 2014, 4(59), 30968-30975.
[http://dx.doi.org/10.1039/C4RA03081H]
[71]
Yang, C.; Bebensee, F.; Nefedov, A.; Wöll, C.; Kropp, T.; Komissarov, L.; Penschke, C.; Moerer, R.; Paier, J.; Sauer, J. Methanol adsorption on monocrystalline ceria surfaces. J. Catal., 2016, 336, 116-125.
[http://dx.doi.org/10.1016/j.jcat.2016.01.003]
[72]
Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S.S.C.; Li, Z. Oxygen Vacancy Promoting Dimethyl Carbonate Synthesis from CO2 and Methanol over Zr-Doped CeO 2 Nanorods. ACS Catal., 2018, 8(11), 10446-10456.
[http://dx.doi.org/10.1021/acscatal.8b00415]
[73]
Ganduglia-Pirovano, M.V. The non-innocent role of cerium oxide in heterogeneous catalysis: A theoretical perspective. Catal. Today, 2015, 253, 20-32.
[http://dx.doi.org/10.1016/j.cattod.2015.01.049]
[74]
Wada, S.; Oka, K.; Watanabe, K.; Izumi, Y. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism. Front Chem., 2013, 1, 8.
[http://dx.doi.org/10.3389/fchem.2013.00008] [PMID: 24790937]
[75]
Tamboli, A.H.; Chaugule, A.A.; Gosavi, S.W.; Kim, H. Ce Zr1-O2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: Reaction mechanism and the effect of catalyst morphology on catalytic activity. Fuel, 2018, 216, 245-254.
[http://dx.doi.org/10.1016/j.fuel.2017.12.008]
[76]
Capdevila-Cortada, M.; Vilé, G.; Teschner, D.; Pérez-Ramírez, J.; López, N. Reactivity descriptors for ceria in catalysis. Appl. Catal. B, 2016, 197, 299-312.
[http://dx.doi.org/10.1016/j.apcatb.2016.02.035]
[77]
Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J.C.; Qu, Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep., 2018, 73(1), 1-36.
[http://dx.doi.org/10.1016/j.surfrep.2018.02.001]
[78]
Marciniak, A.A.; Alves, O.C.; Appel, L.G.; Mota, C.J.A. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent. J. Catal., 2019, 371, 88-95.
[http://dx.doi.org/10.1016/j.jcat.2019.01.035]
[79]
Metiu, H.; Chrétien, S.; Hu, Z.; Li, B.; Sun, X. Chemistry of Lewis acid–base pairs on oxide surfaces. J. Phys. Chem. C, 2012, 116(19), 10439-10450.
[http://dx.doi.org/10.1021/jp301341t]
[80]
Marciniak, A.A.; Henrique, F.J.F.S.; de Lima, A.F.F.; Alves, O.C.; Moreira, C.R.; Appel, L.G. What are the preferred CeO2 exposed planes for the synthesis of dimethyl carbonate from co2 and methanol? Answers from theory and experiments. Molec. Catal., 2020, 493, 111053.
[http://dx.doi.org/10.1016/j.mcat.2020.111053]
[81]
O’Neill, M.F.; Sankar, M.; Hintermair, U. Sustainable synthesis of dimethyl- and diethyl carbonate from CO2 in batch and continuous flow—lessons from thermodynamics and the importance of catalyst stability. ACS Sustain. Chem.& Eng., 2022, 10(16), 5243-5257.
[http://dx.doi.org/10.1021/acssuschemeng.2c00291] [PMID: 35493694]
[82]
Bian, J.; Xiao, M.; Wang, S.J.; Lu, Y.X.; Meng, Y.Z. Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. J. Colloid Interface Sci., 2009, 334(1), 50-57.
[http://dx.doi.org/10.1016/j.jcis.2009.03.009] [PMID: 19376522]
[83]
Honda, M.; Suzuki, A.; Noorjahan, B.; Fujimoto, K.; Suzuki, K.; Tomishige, K. Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration. Chem. Commun. (Camb.), 2009, 30(30), 4596-4598.
[http://dx.doi.org/10.1039/b909610h] [PMID: 19617995]
[84]
Tomishige, K.; Kunimori, K. Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: Effect of H2O removal from the reaction system. Appl. Catal. A Gen., 2002, 237(1-2), 103-109.
[http://dx.doi.org/10.1016/S0926-860X(02)00322-8]
[85]
Eta, V.; Mäki-Arvela, P.; Wärnå, J.; Salmi, T.; Mikkola, J.P.; Murzin, D.Y. Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2–MgO catalyst in the presence of butylene oxide as additive. Appl. Catal. A Gen., 2011, 404, 39-46.
[http://dx.doi.org/10.1016/j.apcata.2011.07.004]
[86]
Honda, M.; Tamura, M.; Nakagawa, Y.; Sonehara, S.; Suzuki, K.; Fujimoto, K.; Tomishige, K. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem, 2013, 6(8), 1341-1344.
[http://dx.doi.org/10.1002/cssc.201300229] [PMID: 23801598]
[87]
Tamura, M.; Wakasugi, H.; Shimizu, K.; Satsuma, A. Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chemistry, 2011, 17(41), 11428-11431.
[http://dx.doi.org/10.1002/chem.201101576] [PMID: 21953923]
[88]
Kohli, K.; Sharma, B.K.; Panchal, C.B. Dimethyl carbonate: Review of synthesis routes and catalysts used. Energies, 2022, 15(14), 5133.
[http://dx.doi.org/10.3390/en15145133]
[89]
Marciniak, A.A.; Santos, E.C.S. CeO2-decorated α-Fe2O3 nanorings for the direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol. Energy Fuels, 38(1), 628-636.
[http://dx.doi.org/10.1021/acs.energyfuels.3c03050]
[90]
Marciniak, A.A.; Mota, C.J.A. Methyl trihaloacetic esters as efficient and sustainable water suppressors in the synthesis of dimethyl carbonate from CO2. ChemistrySelect, 2017, 2(5), 1808-1811.
[http://dx.doi.org/10.1002/slct.201601815]
[91]
Zhang, M.; Xu, Y.; Williams, B.L.; Xiao, M.; Wang, S.; Han, D.; Sun, L.; Meng, Y. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean. Prod., 2021, 279, 123344.
[http://dx.doi.org/10.1016/j.jclepro.2020.123344]
[92]
Driver, J.G.; Owen, R.E.; Makanyire, T.; Lake, J.A.; McGregor, J.; Styring, P. Blue Urea: Fertilizer with reduced environmental impact. Front. Energy Res., 2019, 7, 88.
[http://dx.doi.org/10.3389/fenrg.2019.00088]
[93]
Ip, Y.K.; Chew, S.F.; Randall, D.J. Ammonia toxicity, tolerance, and excretion. J. Fish Fisiol., 2001, 20, 109-148.
[94]
Barzagli, F.; Mani, F.; Peruzzini, M. From greenhouse gas to feedstock: Formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem., 2011, 13(5), 1267-1274.
[http://dx.doi.org/10.1039/c0gc00674b]
[95]
Hu, C.C.; Cheng, S.H. Development of alternative methanol/dimethyl carbonate separation systems by extractive distillation - A holistic approach. Chem. Eng. Res. Des., 2017, 127, 189-214.
[http://dx.doi.org/10.1016/j.cherd.2017.09.016]
[96]
Chagas, J.; Marciniak, A.; Mota, C. Trends in carbon dioxide capture and conversion. J. Braz. Chem. Soc., 2022, 33, 801-814.
[http://dx.doi.org/10.21577/0103-5053.20220029]
[97]
Chagas, J.A.O.; Crispim, G.O.; Pinto, B.P.; San Gil, R.A.S.; Mota, C.J.A. Synthesis, characterization, and CO2 uptake of adsorbents prepared by hydrothermal carbonization of chitosan. ACS Omega, 2020, 5(45), 29520-29529.
[http://dx.doi.org/10.1021/acsomega.0c04470] [PMID: 33225183]
[98]
Oliveira, D.E.F.; Chagas, J.A.O.; de Lima, A.L.; Mota, C.J.A. CO2 capture over MCM-41 and SBA-15 mesoporous silicas impregnated with chitosan. Ind. Eng. Chem. Res., 2022, 61(29), 10522-10530.
[http://dx.doi.org/10.1021/acs.iecr.2c00385]
[99]
Ohno, H.; Ikhlayel, M.; Tamura, M.; Nakao, K.; Suzuki, K.; Morita, K.; Kato, Y.; Tomishige, K.; Fukushima, Y. Direct dimethyl carbonate synthesis from CO2 and methanol catalyzed by CeO2 and assisted by 2-cyanopyridine: A cradle-to-gate greenhouse gas emission study. Green Chem., 2021, 23(1), 457-469.
[http://dx.doi.org/10.1039/D0GC03349A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy