Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Smart Polymer Systems: A Futuristic Approach to Enhance Therapeutic Efficacy

Author(s): Avinash Kumar Seth, Ghanshyam Parmar, Chintan Aundhia*, Nirmal Shah and Dipti Gohil

Volume 28, Issue 15, 2024

Published on: 20 May, 2024

Page: [1164 - 1178] Pages: 15

DOI: 10.2174/0113852728305580240429100851

Price: $65

Abstract

Recently, pharmaceutical industries have placed considerable emphasis on formulating drug delivery systems that precisely target specific sites, optimize drug utilization, minimize excipient usage, and mitigate side effects. Smart polymers hold tremendous promise in the design of innovative formulations tailored to deliver drugs with enhanced precision, efficacy, and therapeutic benefits while minimizing adverse effects. Within drug delivery, smart polymers demonstrate exceptional potential in achieving controlled and targeted release profiles, ensuring drug delivery to specific receptors, and minimizing offtarget effects. This comprehensive review article focuses on the latest developments in smart polymers, primarily in the domains of drug delivery. By intelligently responding to external stimuli, smart polymer-based materials offer various applications, making them pivotal in modern pharmaceutical research. By utilizing the remarkable attributes of smart polymers, researchers and industry stakeholders can forge a path toward personalized, efficient, and patient-centric therapies with reduced side effects, propelling the pharmaceutical field into an era of unprecedented advancements.

Graphical Abstract

[1]
Galaev, I.; Mattiasson, B. ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends Biotechnol., 1999, 17(8), 335-340.
[http://dx.doi.org/10.1016/S0167-7799(99)01345-1] [PMID: 10407406]
[2]
Panja, S.; Adams, D.J. Stimuli responsive dynamic transformations in supramolecular gels. Chem. Soc. Rev., 2021, 50(8), 5165-5200.
[http://dx.doi.org/10.1039/D0CS01166E] [PMID: 33646219]
[3]
Wang, W.; Li, P.F.; Xie, R.; Ju, X.J.; Liu, Z.; Chu, L.Y. Designable micro‐/nano‐structured smart polymeric materials. Adv. Mater., 2022, 34(46), 2107877.
[http://dx.doi.org/10.1002/adma.202107877] [PMID: 34897843]
[4]
Huang, S.; Kong, X.; Xiong, Y.; Zhang, X.; Chen, H.; Jiang, W.; Niu, Y.; Xu, W.; Ren, C. An overview of dynamic covalent bonds in polymer material and their applications. Eur. Polym. J., 2020, 141, 110094.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110094]
[5]
Parada, G.A.; Zhao, X. Ideal reversible polymer networks. Soft Matter, 2018, 14(25), 5186-5196.
[http://dx.doi.org/10.1039/C8SM00646F] [PMID: 29780993]
[6]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[7]
Bennet, D; Kim, S Polymer nanoparticles for smart drug delivery; Application of Nanotechnology in Drug Delivery,, 2014.
[http://dx.doi.org/10.5772/58422]
[8]
Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci., 2007, 32(10), 1205-1237.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003]
[9]
Roy, I.; Gupta, M.N. Smart polymeric materials: Emerging biochemical applications. Chem. Biol., 2003, 10(12), 1161-1171.
[http://dx.doi.org/10.1016/j.chembiol.2003.12.004] [PMID: 14700624]
[10]
Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive polymers and their biomedical application in tissue engineering – A review. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(4), 607-628.
[http://dx.doi.org/10.1039/C9TB02052G] [PMID: 31939978]
[11]
Strandman, S.; Zhu, X.X. Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog. Polym. Sci., 2015, 42, 154-176.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.10.008]
[12]
Henríquez, C.L.; Castro-Alpízar, J.; Correa, L.M.; Baudrit, V.J. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing. Int. J. Mol. Sci., 2021, 22(3), 1408.
[http://dx.doi.org/10.3390/ijms22031408] [PMID: 33573351]
[13]
Nakayama, M.; Chung, J.E.; Miyazaki, T.; Yokoyama, M.; Sakai, K.; Okano, T. Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles. React. Funct. Polym., 2007, 67(11), 1398-1407.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2007.07.056]
[14]
Dimitrov, I.; Trzebicka, B.; Müller, A.H.E.; Dworak, A.; Tsvetanov, C.B. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog. Polym. Sci., 2007, 32(11), 1275-1343.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.07.001]
[15]
Choi, S.; Baudys, M.; Kim, S.W. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm. Res., 2004, 21(5), 827-831.
[http://dx.doi.org/10.1023/B:PHAM.0000026435.27086.94] [PMID: 15180341]
[16]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[17]
Taylor, M.; Tomlins, P.; Sahota, T. Thermoresponsive Gels. Gels, 2017, 3(1), 4.
[http://dx.doi.org/10.3390/gels3010004] [PMID: 30920501]
[18]
Dutta, K.; Das, R.; Ling, J.; Monibas, R.M.; Jane, C.E.; Kekec, A.; Feng, D.D.; Lin, S.; Mu, J.; Saklatvala, R.; Thayumanavan, S.; Liang, Y. In situ forming injectable thermoresponsive hydrogels for controlled delivery of biomacromolecules. ACS Omega, 2020, 5(28), 17531-17542.
[http://dx.doi.org/10.1021/acsomega.0c02009] [PMID: 32715238]
[19]
Yoshida, Y.; Takahashi, A.; Kuzuya, A.; Ohya, Y. Instant preparation of a biodegradable injectable polymer formulation exhibiting a temperature-responsive sol–gel transition. Polym. J., 2014, 46(9), 632-635.
[http://dx.doi.org/10.1038/pj.2014.30]
[20]
Kohori, F.; Sakai, K.; Aoyagi, T.; Yokoyama, M.; Yamato, M.; Sakurai, Y.; Okano, T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf. B Biointerfaces, 1999, 16(1-4), 195-205.
[http://dx.doi.org/10.1016/S0927-7765(99)00070-3]
[21]
Doorty, K.B.; Golubeva, T.A.; Gorelov, A.V.; Rochev, Y.A.; Allen, L.T.; Dawson, K.A.; Gallagher, W.M.; Keenan, A.K. Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovasc. Pathol., 2003, 12(2), 105-110.
[http://dx.doi.org/10.1016/S1054-8807(02)00165-5] [PMID: 12684168]
[22]
Shimizu, K.; Fujita, H.; Nagamori, E. Oxygen plasma‐treated thermoresponsive polymer surfaces for cell sheet engineering. Biotechnol. Bioeng., 2010, 106(2), 303-310.
[http://dx.doi.org/10.1002/bit.22677] [PMID: 20091737]
[23]
Twaites, B.R.; Alarcón, d.l.H.C.; Lavigne, M.; Saulnier, A.; Pennadam, S.S.; Cunliffe, D.; Górecki, D.C.; Alexander, C. Thermoresponsive polymers as gene delivery vectors: Cell viability, DNA transport and transfection studies. J. Control. Release, 2005, 108(2-3), 472-483.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.009] [PMID: 16214254]
[24]
Najafi, M.; Habibi, M.; Fokkink, R.; Hennink, W.E.; Vermonden, T. LCST polymers with UCST behavior. Soft Matter, 2021, 17(8), 2132-2141.
[http://dx.doi.org/10.1039/D0SM01505A] [PMID: 33439188]
[25]
Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)? Polym. Chem., 2017, 8(1), 220-232.
[http://dx.doi.org/10.1039/C6PY01612J]
[26]
Vihola, H.; Laukkanen, A.; Tenhu, H.; Hirvonen, J. Drug release characteristics of physically cross‐linked thermosensitive poly(N‐vinylcaprolactam) hydrogel particles. J. Pharm. Sci., 2008, 97(11), 4783-4793.
[http://dx.doi.org/10.1002/jps.21348] [PMID: 18306245]
[27]
Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 2005, 26(16), 3055-3064.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.008] [PMID: 15603800]
[28]
Vihola, H.; Marttila, A.; Pakkanen, J.; Andersson, M.; Laukkanen, A.; Kaukonen, A.; Tenhu, H.; Hirvonen, J. Cell–polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer. Int. J. Pharm., 2007, 343(1-2), 238-246.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.020] [PMID: 17532153]
[29]
Hou, L.; Wu, P. Comparison of LCST-transitions of homopolymer mixture, diblock and statistical copolymers of NIPAM and VCL in water. Soft Matter, 2015, 11(14), 2771-2781.
[http://dx.doi.org/10.1039/C5SM00026B] [PMID: 25698362]
[30]
Zhelavskyi, O.S.; Kyrychenko, A. Atomistic molecular dynamics simulations of the LCST conformational transition in poly(N-vinylcaprolactam) in water. J. Mol. Graph. Model., 2019, 90, 51-58.
[http://dx.doi.org/10.1016/j.jmgm.2019.04.004] [PMID: 31009934]
[31]
Bütün, V.; Armes, S.P.; Billingham, N.C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer, 2001, 42(14), 5993-6008.
[http://dx.doi.org/10.1016/S0032-3861(01)00066-0]
[32]
Fraylich, M.R.; Liu, R.; Richardson, S.M.; Baird, P.; Hoyland, J.; Freemont, A.J.; Alexander, C.; Shakesheff, K.; Cellesi, F.; Saunders, B.R. Thermally-triggered gelation of PLGA dispersions: Towards an injectable colloidal cell delivery system. J. Colloid Interface Sci., 2010, 344(1), 61-69.
[http://dx.doi.org/10.1016/j.jcis.2009.12.030] [PMID: 20070971]
[33]
Raduan, N.H.; Horozov, T.S.; Georgiou, T.K. “Comb-like” non-ionic polymeric macrosurfactants. Soft Matter, 2010, 6(10), 2321-2329.
[http://dx.doi.org/10.1039/b926822g]
[34]
Miguel, S.V.; Limer, A.J.; Haddleton, D.M.; Catalina, F.; Peinado, C. Biodegradable and thermoresponsive micelles of triblock copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and ε-caprolactone for controlled drug delivery. Eur. Polym. J., 2008, 44(11), 3853-3863.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.07.056]
[35]
Takeda, N.; Nakamura, E.; Yokoyama, M.; Okano, T. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J. Control. Release, 2004, 95(2), 343-355.
[http://dx.doi.org/10.1016/j.jconrel.2003.12.001] [PMID: 14980782]
[36]
Ward, M.A.; Georgiou, T.K. Thermoresponsive terpolymers based on methacrylate monomers: Effect of architecture and composition. J. Polym. Sci. A Polym. Chem., 2010, 48(4), 775-783.
[http://dx.doi.org/10.1002/pola.23825]
[37]
Becer, C.R.; Hahn, S.; Fijten, M.W.M.; Thijs, H.M.L.; Hoogenboom, R.; Schubert, U.S. Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J. Polym. Sci. A Polym. Chem., 2008, 46(21), 7138-7147.
[http://dx.doi.org/10.1002/pola.23018]
[38]
Hu, Z.; Cai, T.; Chi, C. Thermoresponsive oligo(ethylene glycol)-methacrylate-based polymers and microgels. Soft Matter, 2010, 6(10), 2115-2123.
[http://dx.doi.org/10.1039/b921150k]
[39]
Kim, M.S.; Hyun, H.; Seo, K.S.; Cho, Y.H.; Lee, W.J.; Lee, R.C.; Khang, G.; Lee, H.B. Preparation and characterization of MPEG–PCL diblock copolymers with thermo‐responsive sol–gel–sol phase transition. J. Polym. Sci. A Polym. Chem., 2006, 44(18), 5413-5423.
[http://dx.doi.org/10.1002/pola.21659]
[40]
Yoon, J.A.; Gayathri, C.; Gil, R.R.; Kowalewski, T.; Matyjaszewski, K. Comparison of the thermoresponsive deswelling kinetics of Poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels prepared by ATRP and FRP. Macromolecules, 2010, 43(10), 4791-4797.
[http://dx.doi.org/10.1021/ma1004953]
[41]
Aoki, T.; Kawashima, M.; Katono, H.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules, 1994, 27(4), 947-952.
[http://dx.doi.org/10.1021/ma00082a010]
[42]
Asadujjaman, A.; Kent, B.; Bertin, A. Phase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-co-acrylonitrile) in water: Effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte. Soft Matter, 2017, 13(3), 658-669.
[http://dx.doi.org/10.1039/C6SM02262F] [PMID: 27995248]
[43]
Asadujjaman, A.; de Oliveira, E.T.; Mukherji, D.; Bertin, A. Polyacrylamide “revisited”: UCST-type reversible thermoresponsive properties in aqueous alcoholic solutions. Soft Matter, 2018, 14(8), 1336-1343.
[http://dx.doi.org/10.1039/C7SM02424J] [PMID: 29372224]
[44]
Ofridam, F.; Tarhini, M.; Lebaz, N.; Gagnière, É.; Mangin, D.; Elaissari, A. PH‐sensitive polymers: Classification and some fine potential applications. Polym. Adv. Technol., 2021, 32(4), 1455-1484.
[http://dx.doi.org/10.1002/pat.5230]
[45]
Shotorbani, B.S.; Sadrabadi, H.M.M.; Karkhaneh, A.; Serpooshan, V.; Jacob, K.I.; Moshaverinia, A.; Mahmoudi, M. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release, 2017, 253, 46-63.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.021] [PMID: 28242418]
[46]
Shaikh, R.P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C.; Ndesendo, V.M.K.; Bawa, P.; Cooppan, S. A review of multi-responsive membranous systems for rate-modulated drug delivery. AAPS PharmSciTech, 2010, 11(1), 441-459.
[http://dx.doi.org/10.1208/s12249-010-9403-2] [PMID: 20300895]
[47]
Ortega, R.F. pH-responsive polymers: Properties, synthesis and applications. In: Smart polymers and their applications;; Elsevier, 2014; pp. 45-92.
[48]
Blake, T.R.; Ho, W.C.; Turlington, C.R.; Zang, X.; Huttner, M.A.; Wender, P.A.; Waymouth, R.M. Synthesis and mechanistic investigations of pH-responsive cationic poly(aminoester)s. Chem. Sci., 2020, 11(11), 2951-2966.
[http://dx.doi.org/10.1039/C9SC05267D] [PMID: 34122796]
[49]
Dharmayanti, C.; Gillam, T.A.; Hoffmann, K.M.; Albrecht, H.; Blencowe, A. Strategies for the development of pH-responsive synthetic polypeptides and polymer-peptide hybrids: Recent advancements. Polymers, 2021, 13(4), 624.
[http://dx.doi.org/10.3390/polym13040624] [PMID: 33669548]
[50]
Das, A.; Theato, P. Activated ester containing polymers: Opportunities and challenges for the design of functional macromolecules. Chem. Rev., 2016, 116(3), 1434-1495.
[http://dx.doi.org/10.1021/acs.chemrev.5b00291] [PMID: 26305991]
[51]
Li, D.; Tang, G.; Yao, H.; Zhu, Y.; Shi, C.; Fu, Q.; Yang, F.; Wang, X. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact. Mater., 2022, 16, 47-56.
[http://dx.doi.org/10.1016/j.bioactmat.2022.02.018] [PMID: 35386319]
[52]
Zhou, H.; Qian, H. Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Drug Des. Devel. Ther., 2018, 12, 2601-2609.
[http://dx.doi.org/10.2147/DDDT.S170676] [PMID: 30174414]
[53]
Palanikumar, L.; Hosani, A.S.; Kalmouni, M.; Nguyen, V.P.; Ali, L.; Pasricha, R.; Barrera, F.N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol., 2020, 3(1), 95.
[http://dx.doi.org/10.1038/s42003-020-0817-4] [PMID: 32127636]
[54]
Montaña, J.A.; Perez, L.D.; Baena, Y. A pH-responsive drug delivery matrix from an interpolyelectrolyte complex: Preparation and pharmacotechnical properties. Braz. J. Pharm. Sci., 2018, 54(2), 54.
[http://dx.doi.org/10.1590/s2175-97902018000217183]
[55]
Kushwaha, S.K.S.; Kumar, P.; Rai, A.K. Formulation and evaluation of pH sensitive sustained release hydrogel of methotrexate. Clin. Cancer Drugs, 2019, 5(2), 105-112.
[http://dx.doi.org/10.2174/2212697X06666190102105652]
[56]
Ni, X.; Guo, Q.; Zou, Y.; Xuan, Y.; Mohammad, I.S.; Ding, Q.; Hu, H. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery. Iran. J. Basic Med. Sci., 2020, 23(7), 922-929.
[PMID: 32774815]
[57]
Pooresmaeil, M.; Namazi, H. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; Characterization, drug release kinetics and evaluation of anticancer activity. Int. J. Biol. Macromol., 2020, 162, 501-511.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.183] [PMID: 32574741]
[58]
Li, C.; Wang, K.; Xie, D. Green fabrication and release mechanisms of pH-sensitive chitosan–ibuprofen aerogels for controlled transdermal delivery of ibuprofen. Front Chem., 2021, 9, 767923.
[http://dx.doi.org/10.3389/fchem.2021.767923] [PMID: 34858944]
[59]
Su, J.; Chen, F.; Cryns, V.L.; Messersmith, P.B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc., 2011, 133(31), 11850-11853.
[http://dx.doi.org/10.1021/ja203077x] [PMID: 21751810]
[60]
Woraphatphadung, T.; Sajomsang, W.; Rojanarata, T.; Ngawhirunpat, T.; Tonglairoum, P.; Opanasopit, P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech, 2018, 19(3), 991-1000.
[http://dx.doi.org/10.1208/s12249-017-0906-y] [PMID: 29110292]
[61]
Jiang, X.; Lu, G.; Feng, C.; Li, Y.; Huang, X. Poly(acrylic acid)-graft-poly(N-vinylcaprolactam): A novel pH and thermo dual-stimuli responsive system. Polym. Chem., 2013, 4(13), 3876-3884.
[http://dx.doi.org/10.1039/c3py00415e]
[62]
Yamazaki, N.; Sugimoto, T.; Fukushima, M.; Teranishi, R.; Kotaka, A.; Shinde, C.; Kumei, T.; Sumida, Y.; Munekata, Y.; Maruyama, K.; Yuba, E.; Harada, A.; Kono, K. Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery. Polym. Chem., 2017, 8(9), 1507-1518.
[http://dx.doi.org/10.1039/C6PY01754A]
[63]
John, J.V.; Uthaman, S.; Augustine, R.; Lekshmi, M.K.; Park, I.K.; Kim, I. Biomimetic pH/redox dual stimuli‐responsive zwitterionic polymer block poly(L‐histidine) micelles for intracellular delivery of doxorubicin into tumor cells. J. Polym. Sci. A Polym. Chem., 2017, 55(12), 2061-2070.
[http://dx.doi.org/10.1002/pola.28602]
[64]
Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules, 2013, 14(8), 2601-2610.
[http://dx.doi.org/10.1021/bm400451v] [PMID: 23819825]
[65]
Curcio, A.; Marotta, R.; Riedinger, A.; Palumberi, D.; Falqui, A.; Pellegrino, T. Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem. Commun., 2012, 48(18), 2400-2402.
[http://dx.doi.org/10.1039/c2cc17223b] [PMID: 22266784]
[66]
Wang, G.; Yuan, D.; Yuan, T.; Dong, J.; Feng, N.; Han, G. A visible light responsive azobenzene‐functionalized polymer: Synthesis, self‐assembly, and photoresponsive properties. J. Polym. Sci. A Polym. Chem., 2015, 53(23), 2768-2775.
[http://dx.doi.org/10.1002/pola.27747]
[67]
Mahimwalla, Z.; Yager, K.G.; Mamiya, J.; Shishido, A.; Priimagi, A.; Barrett, C.J. Azobenzene photomechanics: Prospects and potential applications. Polym. Bull., 2012, 69(8), 967-1006.
[http://dx.doi.org/10.1007/s00289-012-0792-0]
[68]
Chen, M.C.; Ling, M.H.; Wang, K.W.; Lin, Z.W.; Lai, B.H.; Chen, D.H. Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromolecules, 2015, 16(5), 1598-1607.
[http://dx.doi.org/10.1021/acs.biomac.5b00185] [PMID: 25839774]
[69]
Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(43), 5942-5949.
[http://dx.doi.org/10.1039/c3tb21206h] [PMID: 32261061]
[70]
Thévenot, J.; Oliveira, H.; Sandre, O.; Lecommandoux, S. Magnetic responsive polymer composite materials. Chem. Soc. Rev., 2013, 42(17), 7099-7116.
[http://dx.doi.org/10.1039/c3cs60058k] [PMID: 23636413]
[71]
Kim, Y.; Yuk, H.; Zhao, R.; Chester, S.A.; Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709), 274-279.
[http://dx.doi.org/10.1038/s41586-018-0185-0] [PMID: 29899476]
[72]
Mdlovu, N.V.; Lin, K.S.; Weng, M.T.; Lin, Y.S. Design of doxorubicin encapsulated pH-/thermo-responsive and cationic shell-crosslinked magnetic drug delivery system. Colloids Surf. B Biointerfaces, 2022, 209(Pt 2), 112168.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112168] [PMID: 34715504]
[73]
Ding, C.; Tong, L.; Feng, J.; Fu, J. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules, 2016, 21(12), 1715.
[http://dx.doi.org/10.3390/molecules21121715] [PMID: 27999414]
[74]
Singh, B.; Khurana, R.K.; Garg, B.; Saini, S.; Kaur, R. Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Crit. Rev. Ther. Drug Carrier Syst., 2017, 34(3), 209-255.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017284] [PMID: 28845760]
[75]
Hernandez, C.; Gulati, S.; Fioravanti, G.; Stewart, P.L.; Exner, A.A. Cryo-EM Visualization of Lipid and Polymer-stabilized perfluorocarbon gas nanobubbles - A step towards nanobubble mediated drug delivery. Sci. Rep., 2017, 7(1), 13517.
[http://dx.doi.org/10.1038/s41598-017-13741-1] [PMID: 29044154]
[76]
Shende, P.K.; Desai, D.; Gaud, R.S. Role of Solid-Gas Interface of Nanobubbles for Therapeutic Applications. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(5), 469-494.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018020229] [PMID: 30317946]
[77]
Shende, P.; Jain, S. Polymeric nanodroplets: An emerging trend in gaseous delivery system. J. Drug Target., 2019, 27(10), 1035-1045.
[http://dx.doi.org/10.1080/1061186X.2019.1588281] [PMID: 30808239]
[78]
Tang, W.; Yang, Z.; Wang, S.; Wang, Z.; Song, J.; Yu, G.; Fan, W.; Dai, Y.; Wang, J.; Shan, L.; Niu, G.; Fan, Q.; Chen, X. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano, 2018, 12(3), 2610-2622.
[http://dx.doi.org/10.1021/acsnano.7b08628] [PMID: 29451774]
[79]
Rapoport, N.; Nam, K.H.; Gupta, R.; Gao, Z.; Mohan, P.; Payne, A.; Todd, N.; Liu, X.; Kim, T.; Shea, J.; Scaife, C.; Parker, D.L.; Jeong, E.K.; Kennedy, A.M. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release, 2011, 153(1), 4-15.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.022] [PMID: 21277919]
[80]
Marin, A.; Muniruzzaman, M.; Rapoport, N. Acoustic activation of drug delivery from polymeric micelles: Effect of pulsed ultrasound. J. Control. Release, 2001, 71(3), 239-249.
[http://dx.doi.org/10.1016/S0168-3659(01)00216-4] [PMID: 11295217]
[81]
Wei, P.; Sun, M.; Yang, B.; Xiao, J.; Du, J. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J. Control. Release, 2020, 322, 81-94.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.013] [PMID: 32173328]
[82]
Huebsch, N.; Kearney, C.J.; Zhao, X.; Kim, J.; Cezar, C.A.; Suo, Z.; Mooney, D.J. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci., 2014, 111(27), 9762-9767.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]
[83]
Yamaguchi, S.; Higashi, K.; Azuma, T.; Okamoto, A. Supramolecular polymeric hydrogels for ultrasound‐guided protein release. Biotechnol. J., 2019, 14(5), 1800530.
[http://dx.doi.org/10.1002/biot.201800530] [PMID: 30810275]
[84]
Kuo, J.S.; Jan, M.; Sung, K.C. Evaluation of the stability of polymer-based plasmid DNA delivery systems after ultrasound exposure. Int. J. Pharm., 2003, 257(1-2), 75-84.
[http://dx.doi.org/10.1016/S0378-5173(03)00107-8] [PMID: 12711163]
[85]
Yin, T.; Wang, P.; Li, J.; Wang, Y.; Zheng, B.; Zheng, R.; Cheng, D.; Shuai, X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials, 2014, 35(22), 5932-5943.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.072] [PMID: 24746965]
[86]
Aryal, M.; Arvanitis, C.D.; Alexander, P.M.; McDannold, N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev., 2014, 72, 94-109.
[http://dx.doi.org/10.1016/j.addr.2014.01.008] [PMID: 24462453]
[87]
Doukas, A.G.; Kollias, N. Transdermal drug delivery with a pressure wave. Adv. Drug Deliv. Rev., 2004, 56(5), 559-579.
[http://dx.doi.org/10.1016/j.addr.2003.10.031] [PMID: 15019746]
[88]
Chung, T.W.; Wang, S.S.; Tsai, W.J. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials, 2008, 29(2), 228-237.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.027] [PMID: 17953984]
[89]
Curley, S.; Palalon, F.; Sanders, K.; Koshkina, N. The effects of non-invasive radiofrequency treatment and hyperthermia on malignant and nonmalignant cells. Int. J. Environ. Res. Public Health, 2014, 11(9), 9142-9153.
[http://dx.doi.org/10.3390/ijerph110909142] [PMID: 25192147]
[90]
Zardad, A.Z.; Choonara, Y.; du Toit, L.; Kumar, P.; Mabrouk, M.; Kondiah, P.; Pillay, V. A review of thermo-and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers, 2016, 8(10), 359.
[http://dx.doi.org/10.3390/polym8100359] [PMID: 30974645]
[91]
Deshmukh, P.K.; Ramani, K.P.; Singh, S.S.; Tekade, A.R.; Chatap, V.K.; Patil, G.B.; Bari, S.B. Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: Targeting and biosensory applications. J. Control. Release, 2013, 166(3), 294-306.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.033] [PMID: 23313111]
[92]
Kar, A.; Ahamad, N.; Dewani, M.; Awasthi, L.; Patil, R.; Banerjee, R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials, 2022, 283, 121435.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121435] [PMID: 35227964]
[93]
Karimi, M.; Ghasemi, A.; Zangabad, S.P.; Rahighi, R.; Basri, M.S.M.; Mirshekari, H.; Amiri, M.; Pishabad, S.Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[94]
Rapoport, N.Y.; Kennedy, A.M.; Shea, J.E.; Scaife, C.L.; Nam, K.H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release, 2009, 138(3), 268-276.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[95]
Ranjan, A.; Jacobs, G.C.; Woods, D.L.; Negussie, A.H.; Partanen, A.; Yarmolenko, P.S.; Gacchina, C.E.; Sharma, K.V.; Frenkel, V.; Wood, B.J.; Dreher, M.R. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J. Control. Release, 2012, 158(3), 487-494.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.011] [PMID: 22210162]
[96]
Grüll, H.; Langereis, S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J. Control. Release, 2012, 161(2), 317-327.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.041] [PMID: 22565055]
[97]
Schroeder, A.; Kost, J.; Barenholz, Y. Ultrasound, liposomes, and drug delivery: Principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids, 2009, 162(1-2), 1-16.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.08.003] [PMID: 19703435]
[98]
Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.; Libutti, S.K.; Li, K.C.P.; Wood, B.J. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res., 2007, 13(9), 2722-2727.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2443] [PMID: 17473205]
[99]
Huang, J.; Xu, J.S.; Xu, R.X. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials, 2010, 31(6), 1278-1286.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.008] [PMID: 19942283]
[100]
Ahmed, S.E.; Martins, A.M.; Husseini, G.A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug Target., 2015, 23(1), 16-42.
[http://dx.doi.org/10.3109/1061186X.2014.954119] [PMID: 25203857]
[101]
Zhou, Q.L.; Chen, Z.Y.; Wang, Y.X.; Yang, F.; Lin, Y.; Liao, Y.Y. Ultrasound-mediated local drug and gene delivery using nanocarriers. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/963891] [PMID: 25202710]
[102]
Bhatnagar, S.; Kwan, J.J.; Shah, A.R.; Coussios, C.C.; Carlisle, R.C. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J. Control. Release, 2016, 238, 22-30.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.016] [PMID: 27417040]
[103]
Plesset, M.S.; Prosperetti, A. Bubble dynamics and cavitation. Annu. Rev. Fluid Mech., 1977, 9(1), 145-185.
[http://dx.doi.org/10.1146/annurev.fl.09.010177.001045]
[104]
Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev., 2008, 60(10), 1193-1208.
[http://dx.doi.org/10.1016/j.addr.2008.03.007] [PMID: 18474406]
[105]
Tsutsui, J.M.; Xie, F.; Porter, R.T. The use of microbubbles to target drug delivery. Cardiovasc. Ultrasound, 2004, 2(1), 23.
[http://dx.doi.org/10.1186/1476-7120-2-23] [PMID: 15546496]
[106]
Chung, Y.E.; Kim, K.W. Contrast-enhanced ultrasonography: Advance and current status in abdominal imaging. Ultrasonography, 2015, 34(1), 3-18.
[http://dx.doi.org/10.14366/usg.14034] [PMID: 25342120]
[107]
Lencioni, R.; Cioni, D.; Bartolozzi, C. Tissue harmonic and contrast-specific imaging: Back to gray scale in ultrasound. Eur. Radiol., 2002, 12(1), 151-165.
[http://dx.doi.org/10.1007/s003300101022] [PMID: 11868093]
[108]
Flint, E.B.; Suslick, K.S. The temperature of cavitation. Science, 1991, 253(5026), 1397-1399.
[http://dx.doi.org/10.1126/science.253.5026.1397] [PMID: 17793480]
[109]
Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci., 1999, 29(1), 295-326.
[http://dx.doi.org/10.1146/annurev.matsci.29.1.295]
[110]
Zhang, H. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. Eur. Polym. J., 2013, 49(3), 579-600.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.016]
[111]
Satoh, K.; Kamigaito, M. Stereospecific living radical polymerization: Dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev., 2009, 109(11), 5120-5156.
[http://dx.doi.org/10.1021/cr900115u] [PMID: 19715302]
[112]
Matyjaszewski, K. Controlled/living radical polymerization: State of the art in 2005 In: ACS Symposium Series; American Chemical Society: Washington, DC, 2006; pp. 2-12.
[113]
Truong, N.P.; Jones, G.R.; Bradford, K.G.E.; Konkolewicz, D.; Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem., 2021, 5(12), 859-869.
[http://dx.doi.org/10.1038/s41570-021-00328-8] [PMID: 37117386]
[114]
Nuyken, O.; Pask, S. Ring-opening polymerization-An introductory review. Polymers , 2013, 5(2), 361-403.
[http://dx.doi.org/10.3390/polym5020361]
[115]
Palmiero, C.U.; Sponchioni, M.; Manfredini, N.; Maraldi, M.; Moscatelli, D. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym. Chem., 2018, 9(30), 4084-4099.
[http://dx.doi.org/10.1039/C8PY00649K]
[116]
Matyjaszewski, K.; Spanswick, J. Controlled/living radical polymerization. Handbook of Polymer Synthesis; CRC Press, 2004, pp. 907-954.
[117]
Zetterlund, P.B.; Thickett, S.C.; Perrier, S.; Lami, B.E.; Lansalot, M. Controlled/living radical polymerization in dispersed systems: An update. Chem. Rev., 2015, 115(18), 9745-9800.
[http://dx.doi.org/10.1021/cr500625k] [PMID: 26313922]
[118]
Bauri, K.; Nandi, M.; De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem., 2018, 9(11), 1257-1287.
[http://dx.doi.org/10.1039/C7PY02014G]
[119]
Zhou, Y.; Yan, D.; Dong, W.; Tian, Y. Temperature-responsive phase transition of polymer vesicles: Real-time morphology observation and molecular mechanism. J. Phys. Chem. B, 2007, 111(6), 1262-1270.
[http://dx.doi.org/10.1021/jp0673563] [PMID: 17243669]
[120]
Smith, A.E.; Xu, X.; McCormick, C.L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog. Polym. Sci., 2010, 35(1-2), 45-93.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.11.005]
[121]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[122]
Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier transform infrared (FTIR) spectroscopy. Membrane characterization; Elsevier, 2017, pp. 3-29.
[123]
Shapiro, Y.E. Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Prog. Polym. Sci., 2011, 36(9), 1184-1253.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.04.002]
[124]
Leong, S.S.; Ng, W.M.; Lim, J.; Yeap, S.P. Dynamic light scattering: Effective sizing technique for characterization of magnetic nanoparticles. In: Handbook of materials characterization; Springer: Cham, 2018; pp. 77-111.
[125]
Azzawi, A.W.; Epaarachchi, J.A.; Leng, J. Investigation of ultraviolet radiation effects on thermomechanical properties and shape memory behaviour of styrene-based shape memory polymers and its composite. Compos. Sci. Technol., 2018, 165, 266-273.
[http://dx.doi.org/10.1016/j.compscitech.2018.07.001]
[126]
Inkson, B.J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. Materials characterization using nondestructive evaluation (NDE) methods; Elsevier, 2016, pp. 17-43.
[127]
Amna, B.; Ozturk, T. Click chemistry: A fascinating method of connecting organic groups. Org. Commun., 2021, 14(2), 120.
[128]
Castañeda, P.H.M.; Monroy, R.Z.J.; Maldonado, M. Copper (I)-catalyzed alkyne–azide cycloaddition (CuAAC)“Click” reaction: A powerful tool for functionalizing polyhydroxylated platforms. ACS Omega, 2023, 8(4), 3650-3666.
[http://dx.doi.org/10.1021/acsomega.2c06269] [PMID: 36743057]
[129]
Lutz, J.F.; Börner, H.G. Modern trends in polymer bioconjugates design. Prog. Polym. Sci., 2008, 33(1), 1-39.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.07.005]
[130]
Chen, C.; Ng, D.Y.W.; Weil, T. Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Prog. Polym. Sci., 2020, 105, 101241.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101241]
[131]
Herrero, P.E.; Medarde, F.A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[132]
Han, J.; Cui, Y.; Gu, Z.; Yang, D. Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials, 2021, 273, 120846.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120846] [PMID: 33930736]
[133]
Lim, E.K.; Chung, B.H.; Chung, S.J. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr. Drug Targets, 2018, 19(4), 300-317.
[http://dx.doi.org/10.2174/1389450117666160602202339] [PMID: 27262486]
[134]
Vivek, R.; Thangam, R.; Kumar, S.R.; Rejeeth, C.; Sivasubramanian, S.; Vincent, S.; Gopi, D.; Kannan, S.; Kannan, S. HER2 targeted breast cancer therapy with switchable “Off/On” multifunctional “Smart” magnetic polymer core–shell nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8(3), 2262-2279.
[http://dx.doi.org/10.1021/acsami.5b11103] [PMID: 26771508]
[135]
Matsumoto, A.; Yoshida, R.; Kataoka, K. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules, 2004, 5(3), 1038-1045.
[http://dx.doi.org/10.1021/bm0345413] [PMID: 15132698]
[136]
VandenBerg, M.A.; Webber, M.J. Biologically inspired and chemically derived methods for glucose‐responsive insulin therapy. Adv. Healthc. Mater., 2019, 8(12), 1801466.
[http://dx.doi.org/10.1002/adhm.201801466] [PMID: 30605265]
[137]
Jafari, B.; Rafie, F.; Davaran, S. Preparation and characterization of a novel smart polymeric hydrogel for drug delivery of insulin. Bioimpacts, 2011, 1(2), 135-143.
[PMID: 23678418]
[138]
Luo, F.Q.; Chen, G.; Xu, W.; Zhou, D.; Li, J.X.; Huang, Y.C.; Lin, R.; Gu, Z.; Du, J-Z. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Res., 2021, 14(8), 2689-2696.
[http://dx.doi.org/10.1007/s12274-020-3273-z]
[139]
Zhu, H-Y.; Fang, C.; Zhao, W-O.; Wang, J-Y.; Li, Y-P. Synthesis and characterization of dual-function H2O2-responsive nanoparticles for drug delivery to treat atherosclerosis. Chin. J. Anal. Chem., 2020, 48(12), e20149-e20157.
[http://dx.doi.org/10.1016/S1872-2040(20)60066-4]
[140]
Daou, A.; Alany, R.G.; Calabrese, G. Formulation of boron encapsulated smart nanocapsules for targeted drug delivery to the brain. Appl. Sci., 2021, 11(22), 10738.
[http://dx.doi.org/10.3390/app112210738]
[141]
Agyare, E.K.; Curran, G.L.; Ramakrishnan, M.; Yu, C.C.; Poduslo, J.F.; Kandimalla, K.K. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer’s disease and cerebral amyloid angiopathy. Pharm. Res., 2008, 25(11), 2674-2684.
[http://dx.doi.org/10.1007/s11095-008-9688-y] [PMID: 18712585]
[142]
Bayan, M.F.; Marji, S.M.; Salem, M.S.; Begum, M.Y.; Chidambaram, K.; Chandrasekaran, B. Development of polymeric-based formulation as potential smart colonic drug delivery system. Polymers, 2022, 14(17), 3697.
[http://dx.doi.org/10.3390/polym14173697] [PMID: 36080771]
[143]
Batool, F.; Özçelik, H.; Stutz, C.; Gegout, P.Y.; Jessel, B.N.; Petit, C.; Huck, O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J. Tissue Eng., 2021, 12, 20417314211041428.
[http://dx.doi.org/10.1177/20417314211041428] [PMID: 34721831]
[144]
Ruiz, J.C.; Lorenzo, A.C.; Taboada, P.; Burillo, G.; Bucio, E.; Prijck, D.K.; Nelis, H.J.; Coenye, T.; Concheiro, A. Polypropylene grafted with smart polymers (PNIPAAm/PAAc) for loading and controlled release of vancomycin. Eur. J. Pharm. Biopharm., 2008, 70(2), 467-477.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.020] [PMID: 18577453]
[145]
Sahu, D.K.; Pradhan, D.; Naik, P.K.; Kar, B.; Ghosh, G.; Rath, G. Smart polymeric eye gear: A possible preventive measure against ocular transmission of COVID-19. Med. Hypotheses, 2020, 144, 110288.
[http://dx.doi.org/10.1016/j.mehy.2020.110288] [PMID: 33254590]
[146]
Yadav, A.K.; Verma, D.; Dalal, N.; Kumar, A.; Solanki, P.R. Molecularly imprinted polymer-based nanodiagnostics for clinically pertinent bacteria and virus detection for future pandemics. Biosens. Bioelectron., 2022, X, 100257.
[147]
Sangiao, T.E.; Holban, A.; Gestal, M. Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 2016, 21(7), 867.
[http://dx.doi.org/10.3390/molecules21070867] [PMID: 27376260]
[148]
Ilka, R.; Mohseni, M.; Kianirad, M.; Naseripour, M.; Ashtari, K.; Mehravi, B. Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int. J. Biol. Macromol., 2018, 109, 955-962.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.090] [PMID: 29154878]
[149]
Natesan, S.; Boddu, S.H.S.; Krishnaswami, V.; Shahwan, M. The role of nano-ophthalmology in treating dry eye disease. Pharm. Nanotechnol., 2020, 8(4), 258-289.
[http://dx.doi.org/10.2174/2211738508666200628034227] [PMID: 32600244]
[150]
Wang, X.; Luan, F.; Yue, H.; Song, C.; Wang, S.; Feng, J.; Zhang, X.; Yang, W.; Li, Y.; Wei, W.; Tao, Y. Recent advances of smart materials for ocular drug delivery. Adv. Drug Deliv. Rev., 2023, 200, 115006.
[http://dx.doi.org/10.1016/j.addr.2023.115006] [PMID: 37451500]
[151]
Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur. J. Pharm. Biopharm., 2021, 161, 80-99.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.007] [PMID: 33607239]
[152]
Fan, R.; Cheng, Y.; Wang, R.; Zhang, T.; Zhang, H.; Li, J.; Song, S.; Zheng, A. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers, 2022, 14(12), 2379.
[http://dx.doi.org/10.3390/polym14122379] [PMID: 35745954]
[153]
Said, S.S.; Campbell, S.; Hoare, T. Externally addressable smart drug delivery vehicles: Current technologies and future directions. Chem. Mater., 2019, 31(14), 4971-4989.
[http://dx.doi.org/10.1021/acs.chemmater.9b01798]
[154]
Bajpai, A.K.; Bajpai, J.; Saini, R.K.; Agrawal, P.; Tiwari, A. Smart biomaterial devices: Polymers in biomedical sciences; CRC Press, 2016.
[http://dx.doi.org/10.1201/9781315371559]
[155]
Cecen, B.; Hassan, S.; Li, X.; Zhang, Y.S. Smart biomaterials in biomedical applications: Current advances and possible future directions. Macromol. Biosci., 2023, 24(3), 2200550.
[PMID: 37728061]
[156]
Zhang, D.; Chen, Q.; Shi, C.; Chen, M.; Ma, K.; Wan, J.; Liu, R. Dealing with the foreign‐body response to implanted biomaterials: Strategies and applications of new materials. Adv. Funct. Mater., 2021, 31(6), 2007226.
[http://dx.doi.org/10.1002/adfm.202007226]
[157]
Du, J.; O’Reilly, R.K. Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009, 5(19), 3544-3561.
[http://dx.doi.org/10.1039/b905635a]
[158]
Dhara, M. Smart polymeric nanostructures for targeted delivery of therapeutics. J. Macromol. Sci. Part A., 2020, 58(4), 269-284.
[http://dx.doi.org/10.1080/10601325.2020.1842766]
[159]
Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stabil., 2010, 95(11), 2126-2146.
[http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.007]
[160]
Anju, S.; Prajitha, N.; Sukanya, V.S.; Mohanan, P.V. Complicity of degradable polymers in health-care applications. Mater. Today Chem., 2020, 16, 100236.
[http://dx.doi.org/10.1016/j.mtchem.2019.100236]
[161]
Fakhri, V.; Su, C.H.; Dare, T.M.; Bazmi, M.; Jafari, A.; Pirouzfar, V. Harnessing the power of polyol-based polyesters for biomedical innovations: Synthesis, properties, and biodegradation. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(40), 9597-9629.
[http://dx.doi.org/10.1039/D3TB01186K] [PMID: 37740402]
[162]
Vera, M.; Mella, C.; Urbano, B.F. Smart polymer nanocomposites: Recent advances and perspectives. J. Chil. Chem. Soc., 2020, 65(4), 4973-4981.
[http://dx.doi.org/10.4067/S0717-97072020000404973]
[163]
Nadgorny, M.; Ameli, A. Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl. Mater. Interfaces, 2018, 10(21), 17489-17507.
[http://dx.doi.org/10.1021/acsami.8b01786] [PMID: 29742896]
[164]
Mustapha, K.B.; Metwalli, K.M. A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur. Polym. J., 2021, 156, 110591.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110591]
[165]
Sagdic, K.; Eş, I.; Sitti, M.; Inci, F. Smart materials: Rational design in biosystems via artificial intelligence. Trends Biotechnol., 2022, 40(8), 987-1003.
[http://dx.doi.org/10.1016/j.tibtech.2022.01.005] [PMID: 35241311]
[166]
Srivastava, S.; Varshney, B.; Sharma, V.P.; Ali, B. Applications of artificial intelligence in polymer manufacturing. Mater. Res. Found., 2023, 147, 105-122.
[http://dx.doi.org/10.21741/9781644902530-5]
[167]
Yang, X.; Valenzuela, C.; Zhang, X.; Chen, Y.; Yang, Y.; Wang, L.; Feng, W. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter, 2023, 6(4), 1278-1294.
[http://dx.doi.org/10.1016/j.matt.2023.02.003]
[168]
Luo, Z.; Weiss, D.E.; Liu, Q.; Tian, B. Biomimetic approaches toward smart bio-hybrid systems. Nano Res., 2018, 11(6), 3009-3030.
[http://dx.doi.org/10.1007/s12274-018-2004-1] [PMID: 30906509]
[169]
Meyer, C.E.; Abram, S.L.; Craciun, I.; Palivan, C.G. Biomolecule–polymer hybrid compartments: Combining the best of both worlds. Phys. Chem. Chem. Phys., 2020, 22(20), 11197-11218.
[http://dx.doi.org/10.1039/D0CP00693A] [PMID: 32393957]
[170]
Ansari, A.M.A.; Dash, M.; Unal, C.G.; Jain, P.K.; Nukavarapu, S.; Ramakrishna, S.; Falcone, N.; Dokmeci, M.R.; Najafabadi, A.H.; Khademhosseini, A.; Nanda, H.S. Engineered stimuli-responsive smart grafts for bone regeneration. Curr. Opin. Biomed. Eng., 2023, 28, 100493.
[http://dx.doi.org/10.1016/j.cobme.2023.100493]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy