Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Polypeptides by Ring-opening Polymerization: A Concise Review

Author(s): Mostafa Badreldin, Pedro Salas-Ambrosio, Marcela Ayala, Simon Harrisson and Colin Bonduelle*

Volume 28, Issue 15, 2024

Published on: 22 March, 2024

Page: [1154 - 1163] Pages: 10

DOI: 10.2174/0113852728274519240228105518

Price: $65

conference banner
Abstract

The most economical and efficient route to prepare polypeptides from synthetic chemistry is through the Ring-opening Polymerization (ROP) of amino acids using Ncarboxyanhydride (NCA) monomers. Peptide polymers, in contrast to proteins, consist of repeated amino acid units and are comparatively simpler macromolecules. Despite their simplicity, these polypeptides offer a unique combination of beneficial traits found in both synthetic polymers (such as solubility, processability, and rubber elasticity) and natural proteins (including secondary structure, functionality, and biocompatibility). Nevertheless, NCA polymerization faces significant challenges, including intricate monomer purification and the necessity for processing toxic solvents. In this context, this review presents the fundamental principles of this polymer chemistry, the synthesis of NCA monomers, and the different methodologies to access polypeptides by ROP. It also explores the most recent advances in this field of research, with a focus on how new methods enable the use of more reactive initiators and the development of original processes, including the use of aqueous solvents.

Graphical Abstract

[1]
Ruan, Z.; Li, S.; Grigoropoulos, A.; Amiri, H.; Hilburg, S.L.; Chen, H.; Jayapurna, I.; Jiang, T.; Gu, Z.; Alexander-Katz, A.; Bustamante, C.; Huang, H.; Xu, T. Population-based heteropolymer design to mimic protein mixtures. Nature, 2023, 615(7951), 251-258.
[http://dx.doi.org/10.1038/s41586-022-05675-0] [PMID: 36890370]
[2]
van Hest, J.C.M.; Tirrell, D.A. Protein-based materials, toward a new level of structural control. Chem. Commun., 2001, 19(19), 1897-1904.
[http://dx.doi.org/10.1039/b105185g] [PMID: 12240211]
[3]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol., 2014, 5(APR), 1-17.
[PMID: 24478763]
[4]
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N.J.A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N.M.; Qiao, G.G. Ring opening polymerization of α-amino acids: Advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev., 2020, 49(14), 4737-4834.
[http://dx.doi.org/10.1039/C9CS00738E] [PMID: 32573586]
[5]
Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.A.; Zhong, Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci., 2014, 39(2), 330-364.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.10.008]
[6]
Mitchell, A.R. Biopolym. Pept. Sci. Sect., 2008, 90(3), 175-184.
[http://dx.doi.org/10.1002/bip.20925]
[7]
Liu, Y.; Li, D.; Ding, J.; Chen, X. Controlled synthesis of polypeptides. Chin. Chem. Lett., 2020, 31(12), 3001-3014.
[http://dx.doi.org/10.1016/j.cclet.2020.04.029]
[8]
Fuchs, F. German reports. Chem. Society, 1922, 55(9), 2943-2943.
[9]
Farthing, A.C. Synthetic polypeptides. Part I. Synthesis of oxazolid-2: 5-diones and a new reaction of glycine. J. Chem. Soc., 1950, 3213-3217.
[http://dx.doi.org/10.1039/jr9500003213]
[10]
Leuchs, H. Ueber die Glycin‐carbonsäure. Ber. Dtsch. Chem. Ges., 1906, 39(1), 857-861.
[http://dx.doi.org/10.1002/cber.190603901133]
[11]
Leuchs, H.; Geiger, W. On the anhydrides of α-amino-N-carboxylic acids and those of α-amino acids. Ber. Dtsch. Chem. Ges., 1908, 41(2), 1721-1726.
[http://dx.doi.org/10.1002/cber.19080410232]
[12]
Katchalski, E.; Sela, M. Synthesis and chemical properties of poly-alpha-amino acids. Adv. Protein Chem., 1958, 13(C), 243-492.
[http://dx.doi.org/10.1016/S0065-3233(08)60600-2] [PMID: 14404711]
[13]
Kricheldorf, H.R.; Hull, W.E. 15N NMR spectroscopy. 21. copolymerization of glycine n-carboxyanhydride with γ-methyl glutamate n-carboxyanhydride, s-benzylcysteine n-carboxyanhydride, leucine n-carboxyanhydride, and valine n-carboxyanhydride. Macromolecules, 1980, 13(1), 87-95.
[http://dx.doi.org/10.1021/ma60073a018]
[14]
Salas-Ambrosio, P.; Tronnet, A.; Badreldin, M.; Ji, S.; Lecommandoux, S.; Harrisson, S.; Verhaeghe, P.; Bonduelle, C. Effect of N-alkylation in N-carboxyanhydride (NCA) ring-opening polymerization kinetics. Polym. Chem., 2022, 13(43), 6149-6161.
[http://dx.doi.org/10.1039/D2PY00985D]
[15]
Skoulas, D.; Stavroulaki, D.; Santorinaios, K.; Iatrou, H. Synthesis of hybrid-polypeptides m-PEO-b-poly(His-co-Gly) and m-PEO-b-poly(His-co-Ala) and study of their structure and aggregation. influence of hydrophobic copolypeptides on the properties of poly(L-histidine). Polymers, 2017, 9(11), 564.
[http://dx.doi.org/10.3390/polym9110564] [PMID: 30965867]
[16]
Hayakawa, T.; Kondo, Y.; Yamamoto, H.; Murakami, Y. The synthesis of poly-L-arginine hydrobromide and copolymers of L-arginine and other amino acids. Bull. Chem. Soc. Jpn., 1969, 42(2), 479-482.
[http://dx.doi.org/10.1246/bcsj.42.479] [PMID: 5818120]
[17]
Hofmann, K.; Rheiner, A.; Peckham, W.D. Studies on polypeptides. v. The synthesis of arginine peptides. J. Am. Chem. Soc., 1953, 75(23), 6083-6084.
[http://dx.doi.org/10.1021/ja01119a545]
[18]
Detwiler, R.E.; Schlirf, A.E.; Kramer, J.R. Rethinking transition metal catalyzed N-carboxyanhydride polymerization: Polymerization of pro and acopro N-carboxyanhydrides. J. Am. Chem. Soc., 2021, 143(30), 11482-11489.
[http://dx.doi.org/10.1021/jacs.1c03338] [PMID: 34283588]
[19]
Gkikas, M.; Iatrou, H.; Thomaidis, N.S.; Alexandridis, P.; Hadjichristidis, N. Well-defined homopolypeptides, copolypeptides, and hybrids of poly(l-proline). Biomacromolecules, 2011, 12(6), 2396-2406.
[http://dx.doi.org/10.1021/bm200495n] [PMID: 21568310]
[20]
Yu, M.; Nowak, A.P.; Deming, T.J.; Pochan, D.J. Methylated mono- and diethyleneglycol functionalized polylysines: Nonionic, α-helical, water-soluble polypeptides. J. Am. Chem. Soc., 1999, 121(51), 12210-12211.
[http://dx.doi.org/10.1021/ja993637v]
[21]
Mobashery, S.; Johnston, M. A new approach to the preparation of N-carboxy. Alpha.-amino acid anhydrides. J. Org. Chem., 1985, 50(12), 2200-2202.
[http://dx.doi.org/10.1021/jo00212a042]
[22]
Hirschmann, R.; Schwam, H.; Strachan, R.G.; Schoenewaldt, E.F.; Barkemeyer, H.; Miller, S.M.; Conn, J.B.; Garsky, V.; Veber, D.F.; Denkewalter, R.G. Controlled synthesis of peptides in aqueous medium. VIII. Preparation and use of novel. Alpha.-amino acid N-carboxyanhydrides. J. Am. Chem. Soc., 1971, 93(11), 2746-2754.
[http://dx.doi.org/10.1021/ja00740a027] [PMID: 5573721]
[23]
Bossion, A.; Nicolas, J. Synthesis of poly(Asparagine-co-phenylalanine) copolymers, analogy with thermosensitive poly(acrylamide-co-styrene) copolymers and formation of PEGylated nanoparticles. Eur. Polym. J., 2020, 140(July), 110033.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110033]
[24]
Akssira, M.; Boumzebra, M.; Kasmi, H.; Dahdouh, A.; Roumestant, M.L.; Viallefont, P. New routes to 1,4-benzodiazepin-2,5-diones. Tetrahedron, 1994, 50(30), 9051-9060.
[http://dx.doi.org/10.1016/S0040-4020(01)85371-0]
[25]
Ohkawa, K.; Nagai, T.; Nishida, A.; Yamomoto, H. Purification of DOPA-containing foot proteins from green mussel, Perna viridis, and adhesive properties of synthetic model copolypeptides. J. Adhes., 2009, 85(11), 770-791.
[http://dx.doi.org/10.1080/00218460903291353]
[26]
Zalipsky, S.; Albericio, F.; Słomczyńska, U.; Barany, G. A convenient general method for synthesis of N α‐ or N ω‐dithiasuccinoyl (Dts) amino acids and dipeptides: Application of polyethylene glycol as a carrier for functional purification. Int. J. Pept. Protein Res., 1987, 30(6), 740-783.
[http://dx.doi.org/10.1111/j.1399-3011.1987.tb03386.x] [PMID: 3440701]
[27]
Devarayan, K.; Nakagami, S.; Suzuki, S.; Yuki, I.; Ohkawa, K. Electrospinning and post-spun chain conformations of synthetic, hydrophobic poly(α-amino acid)s. Polymers, 2020, 12(2), 327.
[http://dx.doi.org/10.3390/polym12020327] [PMID: 32033154]
[28]
Zhang, Z.; Su, K.; Li, Z. Carboxylic anhydride synthesis from γ-benzyl-L-glutamate and dimethyl carbonate. Org. Lett., 2019, 21(3), 749-752.
[http://dx.doi.org/10.1021/acs.orglett.8b03984] [PMID: 30653330]
[29]
Kricheldorf, H.R. Springer Berlin Heidelberg, 1st ed; Springer, 1987.
[30]
Marcantoni, E.; Massaccesi, M.; Torregiani, E.; Bartoli, G.; Bosco, M.; Sambri, L. Selective deprotection of N-Boc-protected tert-butyl ester amino acids by the CeCl3*7H2O-NaI system in acetonitrile. J. Org. Chem., 2001, 66(12), 4430-4432.
[http://dx.doi.org/10.1021/jo010010y] [PMID: 11397190]
[31]
Sarkar, A.; Roy, S.R.; Parikh, N.; Chakraborti, A.K. Nonsolvent application of ionic liquids: Organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J. Org. Chem., 2011, 76(17), 7132-7140.
[http://dx.doi.org/10.1021/jo201102q] [PMID: 21774556]
[32]
Hioki, K.; Kinugasa, M.; Kishimoto, M.; Fujiwara, M.; Tani, S.; Kunishima, M. Useful reagents for introduction of Boc and Fmoc protective groups to amines: Boc-DMT and Fmoc-DMT kazuhito hioki, mizuho kinugasa, michiko kishimoto, miho fujiwara, shohei tani, munetaka kunishima. Synthesis, 2006, (12), 1931-1933.
[33]
Ibrahim, T.S.; Tala, S.R.; El-Feky, S.A.; Abdel-Samii, Z.K.; Katritzky, A.R. Benzotriazole reagents for the syntheses of Fmoc-, Boc-, and Alloc-protected amino acids. Synlett, 2011, (14), 2013-2016.
[34]
Eckert, H.; Forster, B. Triphosgene, a crystalline phosgene substitute. Angew. Chem. Int. Ed. Engl., 1987, 26(9), 894-895.
[http://dx.doi.org/10.1002/anie.198708941]
[35]
Yang, J.; Han, X.; Zhou, L.; Xiong, C. A facile route to pyrazolo[1,2-a]cinnoline via rhodium(III)-catalyzed annulation of pyrazolidinoes and iodonium ylides. Asian J. Chem., 2011, 23(4), 1615-1617.
[36]
Ganiu, M.O.; Nepal, B.; Van Houten, J.P.; Kartika, R. A decade review of triphosgene and its applications in organic reactions. Tetrahedron, 2020, 76(47), 131553.
[http://dx.doi.org/10.1016/j.tet.2020.131553] [PMID: 33883783]
[37]
INRS. Phosgène Fiche toxicologique n. Available from: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_72
[38]
[39]
Wilder, R.; Mobashery, S. The use of triphosgene in preparation of N-carboxy. Alpha.-amino acid anhydrides. J. Org. Chem., 1992, 57(9), 2755-2756.
[http://dx.doi.org/10.1021/jo00035a044]
[40]
Daly, W.H.; Poché, D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Lett., 1988, 29(46), 5859-5862.
[http://dx.doi.org/10.1016/S0040-4039(00)82209-1]
[41]
Oya, M.; Katakai, R.; Nakai, H.; Iwakura, Y. A novel synthesis of n carboxy-α-amino acid anhydride. Chem. Lett., 1973, 2(11), 1143-1144.
[http://dx.doi.org/10.1246/cl.1973.1143]
[42]
Fujita, Y.; Koga, K.; Kim, H.K.; Wang, X.S.; Sudo, A.; Nishida, H.; Endo, T. Phosgene‐free synthesis of N‐carboxyanhydrides of α‐amino acids based on bisarylcarbonates as starting compounds. J. Polym. Sci. A Polym. Chem., 2007, 45(22), 5365-5370.
[http://dx.doi.org/10.1002/pola.22281]
[43]
Koga, K.; Sudo, A.; Endo, T. Revolutionary phosgene‐free synthesis of α‐amino acid N‐carboxyanhydrides using diphenyl carbonate based on activation of α‐amino acids by converting into imidazolium salts. J. Polym. Sci. A Polym. Chem., 2010, 48(19), 4351-4355.
[http://dx.doi.org/10.1002/pola.24213]
[44]
Sugimoto, T.; Kuwahara, T.; Liang, F.; Wang, H.; Tsuda, A. Photo-on-demand synthesis of α-amino acid N-carboxyanhydrides with chloroform. ACS Omega, 2022, 7(43), 39250-39257.
[http://dx.doi.org/10.1021/acsomega.2c05299] [PMID: 36340075]
[45]
Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeyras, A. A new simple and quantitative synthesis of α-aminoacid-N-carboxyanhydrides (oxazolidin-es-2,5-dione). Tetrahedron Lett., 1996, 37(50), 9043-9046.
[http://dx.doi.org/10.1016/S0040-4039(96)01974-0]
[46]
Vayaboury, W.; Giani, O.; Collet, H.; Commeyras, A.; Schué, F. Synthesis of Nepsilon-protected-L-lysine and gamma-benzyl-L-glutamate N-carboxyanhydrides (NCA) by carbamoylation and nitrosation. Amino Acids, 2004, 27(2), 161-167.
[http://dx.doi.org/10.1007/s00726-004-0112-6] [PMID: 15378412]
[47]
Boiteau, L.; Collet, H.; Lagrille, O.; Taillades, J.; Vayaboury, W.; Giani, O.; Schué, F.; Commeyras, A. From prebiotic macromolecules to synthetic poly-peptides: A new, efficient synthesis of α‐amino acid N‐carboxyanhydrides (NCAs). Polym. Int., 2002, 51(10), 1037-1040.
[http://dx.doi.org/10.1002/pi.946]
[48]
Curtius, T.; Hochschwender, K.; Meier, H.; Lehmann, W.; Benckiser, A.; Schenck, M.; Wirbatz, W.; Gaier, J.; Mühlhäusser, W. Conversion of alkylated malonic acids to α‐amino acids. J. Prakt. Chem., 1930, 125(1), 211-302.
[http://dx.doi.org/10.1002/prac.19301250110]
[49]
Laconde, G.; Amblard, M.; Martinez, J. Synthesis of α-amino acid N-carb-oxyanhydrides. Org. Lett., 2021, 23(16), 6412-6416.
[http://dx.doi.org/10.1021/acs.orglett.1c02224] [PMID: 34369154]
[50]
Tran, T.V.; Shen, Y.; Nguyen, H.D.; Deng, S.; Roshandel, H.; Cooper, M.M.; Watson, J.R.; Byers, J.A.; Diaconescu, P.L.; Do, L.H. N-carboxyanhydrides directly from amino acids and carbon dioxide and their tandem reactions to therapeutic alkaloids. Green Chem., 2022, 24(23), 9245-9252.
[http://dx.doi.org/10.1039/D2GC03507C]
[51]
Kramer, J.R.; Deming, T.J. General method for purification of α-amino acid-N-carboxyanhydrides using flash chromatography. Biomacromolecules, 2010, 11(12), 3668-3672.
[http://dx.doi.org/10.1021/bm101123k] [PMID: 21047056]
[52]
Moore, G.W.K.; Howell, S.E.L.; Brady, M.; Xu, X.; McNeil, K. Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat. Commun., 2021, 12(1), 1-11.
[http://dx.doi.org/10.1038/s41467-020-20314-w] [PMID: 33397941]
[53]
Otake, Y.; Nakamura, H.; Fuse, S. Rapid and mild synthesis of amino acid N‐carboxyanhydrides: Basic‐to‐acidic flash switching in a microflow reactor. Angew. Chem. Int. Ed., 2018, 57(35), 11389-11393.
[http://dx.doi.org/10.1002/anie.201803549]
[54]
Semple, J.E.; Sullivan, B.; Sill, K.N. Large-scale synthesis of α-amino acid- N -carboxyanhydrides. Synth. Commun., 2017, 47(1), 53-61.
[http://dx.doi.org/10.1080/00397911.2016.1249289]
[55]
Song, Z.; Tan, Z.; Cheng, J. Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules, 2019, 52(22), 8521-8539.
[http://dx.doi.org/10.1021/acs.macromol.9b01450]
[56]
Vacogne, C.D.; Schlaad, H. Controlled ring-opening polymerization of α-amino acid N-carboxyanhydrides in the presence of tertiary amines. Polymer, 2017, 124, 203-209.
[http://dx.doi.org/10.1016/j.polymer.2017.07.062]
[57]
Gradišar, Š.; Žagar, E.; Pahovnik, D. Ring-opening polymerization of N-carboxyanhydrides initiated by a hydroxyl group. ACS Macro Lett., 2017, 6(6), 637-640.
[http://dx.doi.org/10.1021/acsmacrolett.7b00379] [PMID: 35650850]
[58]
Zhang, X.; Oddon, M.; Giani, O.; Monge, S.; Robin, J.J. Novel strategy for ROP of NCAs using thiols as initiators: Synthesis of diblock copolymers based on polypeptides. Macromolecules, 2010, 43(6), 2654-2656.
[http://dx.doi.org/10.1021/ma9025916]
[59]
Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Living polypeptides. Biomacromolecules, 2004, 5(5), 1653-1656.
[http://dx.doi.org/10.1021/bm0497217] [PMID: 15360270]
[60]
Habraken, G.J.M.; Wilsens, K.H.R.M.; Koning, C.E.; Heise, A. Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym. Chem., 2011, 2(6), 1322.
[http://dx.doi.org/10.1039/c1py00079a]
[61]
Zou, J.; Fan, J.; He, X.; Zhang, S.; Wang, H.; Wooley, K.L. A facile glovebox-free strategy to significantly accelerate the syntheses of well-defined polypeptides by N-carboxyanhydride (NCA) ring opening polymerizations. Macromolecules, 2013, 46(10), 4223-4226.
[http://dx.doi.org/10.1021/ma4007939] [PMID: 23794753]
[62]
Deming, T.J. Polypeptide materials: New synthetic methods and applications. Adv. Mater., 1997, 9(4), 299-311.
[http://dx.doi.org/10.1002/adma.19970090404]
[63]
Dimitrov, I.; Schlaad, H. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem. Commun., 2003, 3(23), 2944-2945.
[http://dx.doi.org/10.1039/B308990H] [PMID: 14680253]
[64]
Zhao, W.; Gnanou, Y.; Hadjichristidis, N. Fast and living ring-opening polymerization of α-amino acid N-carboxyanhydrides triggered by an “alliance” of primary and secondary amines at room temperature. Biomacromolecules, 2015, 16(4), 1352-1357.
[http://dx.doi.org/10.1021/acs.biomac.5b00134] [PMID: 25761228]
[65]
Zhao, W.; Gnanou, Y.; Hadjichristidis, N. From competition to cooperation: A highly efficient strategy towards well-defined (co)polypeptides. Chem. Commun., 2015, 51(17), 3663-3666.
[http://dx.doi.org/10.1039/C4CC09055A] [PMID: 25643829]
[66]
Vacogne, C.D.; Schlaad, H. Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides. Chem. Commun., 2015, 51(86), 15645-15648.
[http://dx.doi.org/10.1039/C5CC06905J] [PMID: 26359317]
[67]
Zhao, W.; Lv, Y.; Li, J.; Feng, Z.; Ni, Y.; Hadjichristidis, N. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nat. Commun., 2019, 10(1), 3590.
[http://dx.doi.org/10.1038/s41467-019-11524-y] [PMID: 31399569]
[68]
Zhao, W.; Gnanou, Y.; Hadjichristidis, N. Organocatalysis by hydrogen-bonding: A new approach to controlled/living polymerization of α-amino acid N-carboxyanhydrides. Polym. Chem., 2015, 6(34), 6193-6201.
[http://dx.doi.org/10.1039/C5PY00874C]
[69]
Liang, J.; Zhi, X.; Zhou, Q.; Yang, J. Binaphthol-derived phosphoric acids as efficient organocatalysts for the controlled ring-opening polymerization of g-benzyl-L-glutamate N-carboxyanhydrides. Polymer, 2019, 165, 83-90.
[70]
Zhang, J.Q.; Ye, J.; Huang, T.; Shinohara, H.; Fujino, H.; Han, L.B. Conversion of triphenylphosphine oxide to organophosphorus via selective cleavage of C-P, O-P, and C-H bonds with sodium. Commun. Chem., 2020, 3(1), 1-7.
[http://dx.doi.org/10.1038/s42004-019-0249-6] [PMID: 36703346]
[71]
Zhang, H.; Nie, Y.; Zhi, X.; Du, H.; Yang, J. Controlled ring-opening polymerization of α-amino acid N-carboxy-anhydride by frustrated amine/borane Lewis pairs. Chem. Commun., 2017, 53(37), 5155-5158.
[http://dx.doi.org/10.1039/C7CC01440F] [PMID: 28439585]
[72]
Nie, Y.; Zhi, X.; Du, H.; Yang, J. Zn(OAc)2-catalyzing ring-opening polymerization of N-carboxyanhydrides for the synthesis of well-defined polypeptides. Molecules, 2018, 23(4), 760.
[http://dx.doi.org/10.3390/molecules23040760] [PMID: 29587473]
[73]
Gowda, R.R.; Chakraborty, D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J. Mol. Catal. Chem., 2010, 333(1-2), 167-172.
[http://dx.doi.org/10.1016/j.molcata.2010.10.013]
[74]
Goodwin, A.A.; Bu, X.; Deming, T.J. Reactions of α-amino acid-N-carboxy-anhydrides (NCAs) with organometallic palladium(0) and platinum(0) compounds: Structure of a metallated NCA product and its role in polypeptide synthesis. J. Organomet. Chem., 1999, 589(1), 111-114.
[http://dx.doi.org/10.1016/S0022-328X(99)00299-5]
[75]
McCoy, D.E.; Feo, T.; Harvey, T.A.; Prum, R.O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun., 2018, 9(1), 1-10.
[http://dx.doi.org/10.1038/s41467-017-02088-w] [PMID: 29317637]
[76]
Lu, H.; Cheng, J. Hexamethyldisilazane-mediated controlled polymerization of alpha-amino acid N-carboxyanhydrides. J. Am. Chem. Soc., 2007, 129(46), 14114-14115.
[http://dx.doi.org/10.1021/ja074961q] [PMID: 17963385]
[77]
Lu, H.; Cheng, J. N-Trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J. Am. Chem. Soc., 2008, 130(38), 12562-12563.
[http://dx.doi.org/10.1021/ja803304x] [PMID: 18763770]
[78]
Salas-Ambrosio, P.; Tronnet, A.; Since, M.; Bourgeade-Delmas, S.; Stigliani, J.L.; Vax, A.; Lecommandoux, S.; Dupuy, B.; Verhaeghe, P.; Bonduelle, C. Cyclic poly(α-peptoid)s by lithium bis(trimethylsilyl)amide (LiHMDS)-mediated ring-expansion polymerization: Simple access to bioactive backbones. J. Am. Chem. Soc., 2021, 143(10), 3697-3702.
[http://dx.doi.org/10.1021/jacs.0c13231] [PMID: 33651603]
[79]
Yuan, J.; Sun, Y.; Wang, J.; Lu, H. Phenyl trimethylsilyl sulfide-mediated controlled ring-opening polymerization of α-amino acid N-carboxyanhydri-des. Biomacromolecules, 2016, 17(3), 891-896.
[http://dx.doi.org/10.1021/acs.biomac.5b01588] [PMID: 26796118]
[80]
Yuan, J.; Zhang, Y.; Li, Z.; Wang, Y.; Lu, H. A S-Sn lewis pair-mediated ring-opening polymerization of α-amino acid N-carboxyanhydrides: Fast kinetics, high molecular weight, and facile bioconjugation. ACS Macro Lett., 2018, 7(8), 892-897.
[http://dx.doi.org/10.1021/acsmacrolett.8b00465] [PMID: 35650961]
[81]
Chan, B.A.; Xuan, S.; Horton, M.; Zhang, D. 1,1,3,3-tetramethylguanidine-promoted ring-opening polymerization of N-butyl N-carboxyanhydride using alcohol initiators. Macromolecules, 2016, 49(6), 2002-2012.
[http://dx.doi.org/10.1021/acs.macromol.5b02520]
[82]
Lv, W.; Wang, Y.; Li, M.; Wang, X.; Tao, Y. Precision synthesis of polypeptides via living anionic ring-opening polymerization of N-carboxyanhydrides by tri-thiourea catalysts. J. Am. Chem. Soc., 2022, 144(51), 23622-23632.
[http://dx.doi.org/10.1021/jacs.2c10950] [PMID: 36533423]
[83]
Yamashita, S.; Tani, H. Polymerization of γ-benzyl l-glutamate N-carboxy-anhydride with metal acetate-tri-n-butylphosphine catalyst system. Macromolecules, 1974, 7(4), 406-409.
[http://dx.doi.org/10.1021/ma60040a002]
[84]
Deming, T.J. Facile synthesis of block copolypeptides of defined architecture. Nature, 1997, 390(6658), 386-389.
[http://dx.doi.org/10.1038/37084] [PMID: 9389476]
[85]
Deming, T.J. Cobalt and iron initiators for the controlled polymerization of α-amino acid-N-carboxyanhydrides. Macromolecules, 1999, 32(13), 4500-4502.
[http://dx.doi.org/10.1021/ma9902899]
[86]
Deming, T.J. Amino acid derived nickelacycles: intermediates in nickel-mediated polypeptide synthesis. J. Am. Chem. Soc., 1998, 120(17), 4240-4241.
[http://dx.doi.org/10.1021/ja980313i]
[87]
Deming, T.J.; Curtin, S.A.; Barbara, S. Living polymerization of α-amino acid-N-carboxyanhydrides. J. Polym. Sci., 2000, 38(17), 3011-3018.
[88]
Curtin, S.A.; Deming, T.J. Initiators for End-group functionalized polypeptides via tandem addition reactions. J. Am. Chem. Soc., 1999, 121(32), 7427-7428.
[http://dx.doi.org/10.1021/ja990905g]
[89]
Seidel, S.W.; Deming, T.J. Use of chiral ruthenium and iridium amido-sulfonamidate complexes for controlled, enantioselective polypeptide synthesis. Macromolecules, 2003, 36(4), 969-972.
[90]
Peng, Y.L.; Lai, S.L.; Lin, C.C. Preparation of polypeptide via living polymerization of Z-Lys-NCA initiated by platinum complexes. Macromolecules, 2008, 41(10), 3455-3459.
[http://dx.doi.org/10.1021/ma7025836]
[91]
Bhaw-Luximon, A.; Jhurry, D.; Belleney, J.; Goury, V. Polymerization of γ-methylglutamate N-carboxyanhydride using al−schiff’s base complexes as initiators. Macromolecules, 2003, 36(4), 977-982.
[http://dx.doi.org/10.1021/ma0214310]
[92]
Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem. Rev., 2009, 109(11), 5528-5578.
[http://dx.doi.org/10.1021/cr900049t] [PMID: 19691359]
[93]
Coleman, D.; Farthing, A.C. Synthetic polypeptides. Part II. Properties of oxazolid-2: 5-diones and an initial study of the preparation of polypeptides there-from. J. Chem. Soc., 1950, (3218), 3218.
[http://dx.doi.org/10.1039/jr9500003218]
[94]
Wu, Y.; Chen, K.; Wu, X.; Liu, L.; Zhang, W.; Ding, Y.; Liu, S.; Zhou, M.; Shao, N.; Ji, Z.; Chen, J.; Zhu, M.; Liu, R. Superfast and water‐insensitive polymerization on α‐amino acid N‐carboxyanhydrides to prepare polypeptides using tetraalkylammonium carboxylate as the initiator. Angew. Chem. Int. Ed., 2021, 60(50), 26063-26071.
[http://dx.doi.org/10.1002/anie.202103540]
[95]
Xia, Y.; Song, Z.; Tan, Z.; Xue, T.; Wei, S.; Zhu, L.; Yang, Y.; Fu, H.; Jiang, Y.; Lin, Y.; Lu, Y.; Ferguson, A.L.; Cheng, J. Accelerated polymerization of N-carboxyanhydrides catalyzed by crown ether. Nat. Commun., 2021, 12(1), 732.
[http://dx.doi.org/10.1038/s41467-020-20724-w] [PMID: 33531482]
[96]
Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L.A.; Yan, H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; Rodríguez-López, J.; Ferguson, A.L.; Lin, Y.; Cheng, J. Synthesis of polypeptides via bioinspired polymerization of in situ purified N-carboxyanhydrides. Proc. Natl. Acad. Sci., 2019, 116(22), 10658-10663.
[http://dx.doi.org/10.1073/pnas.1901442116] [PMID: 31088971]
[97]
Song, Z.; Fu, H.; Baumgartner, R.; Zhu, L.; Shih, K.C.; Xia, Y.; Zheng, X.; Yin, L.; Chipot, C.; Lin, Y. Cheng. J. Nat. Commun., 2019, 10(1), 1-7.
[http://dx.doi.org/10.1038/s41467-018-07882-8] [PMID: 30602773]
[98]
Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M.W.; Lecommandoux, S.; Bonduelle, C. Aqueous ring‐opening polymerization‐induced self‐assembly (ROPISA) of N‐carboxyanhydrides. Angew. Chem. Int. Ed., 2020, 59(2), 622-626.
[http://dx.doi.org/10.1002/anie.201912028]
[99]
Becker, R.R.; Stahmann, M.A. Polypeptide formation by reaction of N-carboxy amino acid anhydrides in buffered aqueous solutions. J. Biol. Chem., 1953, 204(2), 737-744.
[http://dx.doi.org/10.1016/S0021-9258(18)66075-2] [PMID: 13117849]
[100]
Hurd, C.D.; Buess, C.M. The formation of polypeptides by rearrangement of α-carboxy hydroxamic acids. J. Am. Chem. Soc., 1951, 73(6), 2409-2412.
[http://dx.doi.org/10.1021/ja01150a001]
[101]
Ehler, K.W.; Orgel, L.E. Biochimica et biophysica acta (BBA) protein structure. Protein Struct., 1976, 491(1), 1-359.
[102]
Kamei, Y.; Nagai, A.; Sudo, A.; Nishida, H.; Kikukawa, K.; Endo, T. Convenient synthesis of poly(γ‐benzyl‐L‐glutamate) from activated urethane derivatives of γ‐benzyl‐L‐glutamate. J. Polym. Sci. A Polym. Chem., 2008, 46(8), 2649-2657.
[http://dx.doi.org/10.1002/pola.22595]
[103]
Kamei, Y.; Sudo, A.; Nishida, H.; Kikukawa, K.; Endo, T. Synthesis of polypeptides from activated urethane derivatives of α‐amino acids. J. Polym. Sci. A Polym. Chem., 2008, 46(7), 2525-2535.
[http://dx.doi.org/10.1002/pola.22584]
[104]
Yamada, S.; Koga, K.; Sudo, A.; Goto, M.; Endo, T. Phosgene‐free synthesis of polypeptides: Useful synthesis for hydrophobic polypeptides through polycondensation of activated urethane derivatives of α‐amino acids. J. Polym. Sci. A Polym. Chem., 2013, 51(17), 3726-3731.
[http://dx.doi.org/10.1002/pola.26775]
[105]
Yamada, S.; Sudo, A.; Goto, M.; Endo, T. Erratum: Facile synthesis of poly(L‐tryptophan) through polycondensation of activated urethane derivatives. J. Polym. Sci. A Polym. Chem., 2015, 53(6), 829-829.
[http://dx.doi.org/10.1002/pola.27536]
[106]
Akbulut, H.; Ando, S.; Yamada, S.; Endo, T. Synthesis of poly(Nε‐phenoxycarbonyl‐L‐lysine) by polycondensation of activated urethane derivative and its application for selective modification of side chain with amines. J. Polym. Sci. A Polym. Chem., 2018, 56(22), 2522-2530.
[http://dx.doi.org/10.1002/pola.29230]
[107]
Yang, Z.; Bai, T.; Ling, J.; Shen, Y. Hydroxyl‐tolerated polymerization of N‐phenoxycarbonyl α‐amino acids: A simple way to polypeptides bearing hydroxyl groups. J. Polym. Sci. A Polym. Chem., 2019, 57(8), 907-916.
[http://dx.doi.org/10.1002/pola.29343]
[108]
Li, L.; Cen, J.; Pan, W.; Zhang, Y.; Leng, X.; Tan, Z.; Yin, H.; Liu, S. Engineering polymer-based porous membrane for sustainable lithium-ion battery separators. Res, 2021, 2021, 1-16.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy