Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis and Gas Permeation Properties of Functionalized Norbornene-Based Polymers

Author(s): Alejandro Onchi, Carlos Corona-García, Arlette A. Santiago, Mercedes Gabriela Téllez Arias, Ismeli Alfonso and Joel Vargas*

Volume 28, Issue 15, 2024

Published on: 08 December, 2023

Page: [1144 - 1153] Pages: 10

DOI: 10.2174/0113852728281173231124061737

Price: $65

conference banner
Abstract

Functionalized polynorbornenes are very important specialty materials for a wide variety of practical and industrial applications. In the membrane technology field, polynorbonene derivatives play a main role in gas transport since they can be systematically and easily functionalized, thus affecting the membrane performance in gas separation processes. Thus, several methodologies have been employed to yield macromolecular architectures with tailored gas permeation properties. This review is intended to provide different synthesis routes of substituted polynorbornenes as well as the effects of the polymer chemical structures on their gas permeation properties, among others.

Graphical Abstract

[1]
Stannett, V. The transport of gases in synthetic polymeric membranes - an historic perspective. J. Membr. Sci., 1978, 3(2), 97-115.
[http://dx.doi.org/10.1016/S0376-7388(00)83016-1]
[2]
Graham, T.L.V. On the absorption and dialytic separation of gases by colloid septa. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1866, 32(218), 401-420.
[http://dx.doi.org/10.1080/14786446608644207]
[3]
Lomax, M. Permeation of gases and vapours through polymer films and thin sheet-part I. Polym. Test., 1980, 1(2), 105-147.
[http://dx.doi.org/10.1016/0142-9418(80)90037-9]
[4]
Farnam, M.; Mukhtar, H.; Mohd Shariff, A. A review on glassy polymeric membranes for gas separation. Appl. Mech. Mater., 2014, 625, 701-703.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.625.701]
[5]
Mitchell, J.K. On the penetrativeness of fluids. J. Membr. Sci., 1995, 100(1), 11-16.
[http://dx.doi.org/10.1016/0376-7388(94)00227-P]
[6]
Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci., 1995, 107(1-2), 1-21.
[http://dx.doi.org/10.1016/0376-7388(95)00102-I]
[7]
Yasuda, H.; Peterlin, A. Diffusive and bulk flow transport in polymers. J. Appl. Polym. Sci., 1973, 17(2), 433-442.
[http://dx.doi.org/10.1002/app.1973.070170209]
[8]
Lonsdale, H.K.; Merten, U.; Riley, R.L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci., 1965, 9(4), 1341-1362.
[http://dx.doi.org/10.1002/app.1965.070090413]
[9]
Richard, W. Baker. Membrane Transport Theory. In: Membrane Technology and Applications; Wiley, 2004; pp. 15-87.
[10]
Paul, D.R. The solution-diffusion model for swollen membranes. Separ. Purif. Methods, 1976, 5(1), 33-50.
[http://dx.doi.org/10.1080/03602547608066047]
[11]
Drioli, E.; Giorno, L. Eds.; Membrane Operations; Wiley, 2009.
[http://dx.doi.org/10.1002/9783527626779]
[12]
Mulder, M.H.V.; Smolders, C.A. Pervaporation, solubility aspects of the solution-diffusion model. Separ. Purif. Methods, 1986, 15(1), 1-19.
[http://dx.doi.org/10.1080/03602548608068423]
[13]
Galizia, M.; Chi, W.S.; Smith, Z.P.; Merkel, T.C.; Baker, R.W.; Freeman, B.D. 50th Anniversary Perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules, 2017, 50(20), 7809-7843.
[http://dx.doi.org/10.1021/acs.macromol.7b01718]
[14]
Baker, R.W.; Lokhandwala, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res., 2008, 47(7), 2109-2121.
[http://dx.doi.org/10.1021/ie071083w]
[15]
Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res., 2002, 41(6), 1393-1411.
[http://dx.doi.org/10.1021/ie0108088]
[16]
Haider, S.; Lindbråthen, A.; Lie, J.A.; Hägg, M.B. Carbon membranes for oxygen enriched air - Part II: Techno-economic analysis. Separ. Purif. Tech., 2018, 205, 251-262.
[http://dx.doi.org/10.1016/j.seppur.2018.05.037]
[17]
Adhikari, B.; Orme, C.J.; Klaehn, J.R.; Stewart, F.F. Technoeconomic analysis of oxygen-nitrogen separation for oxygen enrichment using membranes. Separ. Purif. Tech., 2021, 268, 118703.
[http://dx.doi.org/10.1016/j.seppur.2021.118703]
[18]
Lemcoff, N.O. Nitrogen separation from air by pressure swing adsorption; , 1999, pp. 347-370.
[http://dx.doi.org/10.1016/S0167-2991(99)80557-6]
[19]
Sunarso, J.; Hashim, S.S.; Lin, Y.S.; Liu, S.M. Membranes for helium recovery: An overview on the context, materials and future directions. Separ. Purif. Tech., 2017, 176, 335-383.
[http://dx.doi.org/10.1016/j.seppur.2016.12.020]
[20]
Takht Ravanchi, M.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: A review. Desalination, 2009, 235(1-3), 199-244.
[http://dx.doi.org/10.1016/j.desal.2007.10.042]
[21]
Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci., B, Polym. Phys., 2010, 48(15), 1685-1718.
[http://dx.doi.org/10.1002/polb.22037]
[22]
Lokhandwala, K.A.; Pinnau, I.; He, Z.; Amo, K.D.; DaCosta, A.R.; Wijmans, J.G.; Baker, R.W. Membrane separation of nitrogen from natural gas: A case study from membrane synthesis to commercial deployment. J. Membr. Sci., 2010, 346(2), 270-279.
[http://dx.doi.org/10.1016/j.memsci.2009.09.046]
[23]
Kaur, P.; Chopra, H.K. Recent advances in supported ionic liquid membrane technology in gas/organic compounds separations. Curr. Org. Chem., 2022, 26(12), 1149-1184.
[http://dx.doi.org/10.2174/1385272826666220901145540]
[24]
Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci., 2014, 39(5), 817-861.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.01.003]
[25]
Matsuura, T. Synthetic Membranes and Membrane Separation Processes; CRC Press: Boca Raton, 2020.
[http://dx.doi.org/10.1201/9781003068037]
[26]
Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 1979, 356(6343), eaab0530.
[27]
Ghosh, S.K.; Das, T.K.; Ganguly, S.; Nath, K.; Paul, S.; Ganguly, D.; Das, N.C. Silane functionalization of sodium montmorillonite and halloysite (HNT) nanoclays by ‘grafting to’ method to improve physico-mechanical and barrier properties of LLDPE/clay nanocomposites. Polym. Bull., 2023, 80(4), 4307-4335.
[http://dx.doi.org/10.1007/s00289-022-04281-4]
[28]
Belov, N.A.; Pashkevich, D.S.; Alentiev, A.Y.; Tressaud, A. Effect of direct fluorination on the transport properties and swelling of polymeric materials: A review. Membranes, 2021, 11(9), 713.
[http://dx.doi.org/10.3390/membranes11090713] [PMID: 34564530]
[29]
Belov, N.A.; Nikiforov, R.Y.; Alentiev, A.Y.; Bezgin, D.A.; Blinov, I.A.; Suvorov, A.V.; Kostina, J.V.; Legkov, S.A.; Levin, I.S.; Gringolts, M.L.; Shapagin, A.V.; Aliev, A.D. Gas transport and separation properties of polynorbornene treated with elemental fluorine in a perfluorodecalin liquid. Memb. Memb. Technol., 2021, 3(6), 351-364.
[http://dx.doi.org/10.1134/S2517751621060020]
[30]
Belov, N.A.; Blinov, I.A.; Suvorov, A.V.; Nikiforov, R.Y.; Chirkov, S.V.; Alentiev, A.Y.; Kambur, M.P.; Kostina, Y.V.; Levin, I.S.; Shapagin, A.V.; Yampolskii, Y.P. Gas permeability of cellulose acetate films treated with fluorine in perfluorodecalin. Memb. Memb. Technol., 2021, 3(2), 114-123.
[http://dx.doi.org/10.1134/S2517751621020025]
[31]
Alent’ev, A.Y.; Volkov, A.V.; Vorotyntsev, I.V.; Maksimov, A.L.; Yaroslavtsev, A.B. Membrane technologies for decarbonization. Memb. Memb. Technol., 2021, 3(5), 255-273.
[http://dx.doi.org/10.1134/S2517751621050024]
[32]
Martínez-Izquierdo, L.; Perea-Cachero, A.; Malankowska, M.; Téllez, C.; Coronas, J. A comparative study between single gas and mixed gas permeation of polyether-block-amide type copolymer membranes. J. Environ. Chem. Eng., 2022, 10(5), 108324.
[http://dx.doi.org/10.1016/j.jece.2022.108324]
[33]
Bernardo, P.; Clarizia, G. Enhancing gas permeation properties of pebax® 1657 membranes via polysorbate nonionic surfactants doping. Polymers, 2020, 12(2), 253.
[http://dx.doi.org/10.3390/polym12020253] [PMID: 31973210]
[34]
Hassanzadeh, H.; Abedini, R.; Ghorbani, M. CO2 Separation over N2 and CH4 Light Gases in Sorbitol-Modified Poly(ether-block-amide) (Pebax 2533) Membrane. Ind. Eng. Chem. Res., 2022, 61(36), 13669-13682.
[http://dx.doi.org/10.1021/acs.iecr.2c02760]
[35]
Wu, Y.; Zhao, D.; Ren, J.; Qiu, Y.; Feng, Y.; Deng, M. Effect of triglyceride on the microstructure and gas permeation performance of Pebax-based blend membranes. Separ. Purif. Tech., 2021, 256, 117824.
[http://dx.doi.org/10.1016/j.seppur.2020.117824]
[36]
Yampolskii, Y.; Finkelshtein, E. Eds.; Membrane Materials for Gas and Vapor Separation; John Wiley & Sons, Ltd: Chichester, UK, 2017.
[http://dx.doi.org/10.1002/9781119112747]
[37]
Ghosal, K.; Freeman, B.D. Gas separation using polymer membranes: An overview. Polym. Adv. Technol., 1994, 5(11), 673-697.
[http://dx.doi.org/10.1002/pat.1994.220051102]
[38]
Wijmans, J. The role of permeant molar volume in the solution-diffusion model transport equations. J. Membr. Sci., 2004, 237(1-2), 39-50.
[39]
Fick, A. Ueber diffusion. Ann. Phys., 1855, 170(1), 59-86.
[http://dx.doi.org/10.1002/andp.18551700105]
[40]
Sukitpaneenit, P.; Chung, T.S.; Jiang, L.Y. Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol-water separation. J. Membr. Sci., 2010, 362(1-2), 393-406.
[http://dx.doi.org/10.1016/j.memsci.2010.06.062]
[41]
Mochizuki, S.; Zydney, A.L. Dextran transport through asymmetric ultrafiltration membranes: Comparison with hydrodynamic models. J. Membr. Sci., 1992, 68(1-2), 21-41.
[http://dx.doi.org/10.1016/0376-7388(92)80147-C]
[42]
Yampolskii, Y.; Pinnau, I.; Freeman, B. Eds.; Materials Science of Membranes for Gas and Vapor Separation; John Wiley & Sons, Ltd: Chichester, UK, 2006.
[http://dx.doi.org/10.1002/047002903X]
[43]
Paul, D. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci., 2004, 241(2), 371-386.
[http://dx.doi.org/10.1016/j.memsci.2004.05.026]
[44]
van Amerongen, G.J. Diffusion in elastomers. Rubber Chem. Technol., 1964, 37(5), 1065-1152.
[http://dx.doi.org/10.5254/1.3540396]
[45]
LLOYD DR. Membrane Materials Science. In: Materials Science of Synthetic Membrane; , 1985; pp. 1-21.
[46]
Herman, F. Encyclopedia of polymer science and technology, 3rd ed; Wiley-Interscience, 2004, pp. 208-211.
[47]
Lee, W.M. Selection of barrier materials from molecular structure. Polym. Eng. Sci., 1980, 20(1), 65-69.
[http://dx.doi.org/10.1002/pen.760200111]
[48]
Dorkenoo, K.D.; Pfromm, P.H.; Rezac, M.E. Gas transport properties of a series of high Tg polynorbornenes with aliphatic pendant groups. J. Polym. Sci., B, Polym. Phys., 1998, 36(5), 797-803.
[http://dx.doi.org/10.1002/(SICI)1099-0488(19980415)36:5<797:AID-POLB7>3.0.CO;2-I]
[49]
Dujardin, W.; Van Goethem, C.; Steele, J.A.; Roeffaers, M.; Vankelecom, I.F.J.; Koeckelberghs, G. Polyvinylnorbornene gas separation membranes. Polymers, 2019, 11(4), 704.
[http://dx.doi.org/10.3390/polym11040704] [PMID: 30999614]
[50]
Smith, S.; Paudel, L.; Cyrus, C.; Burgoon, H.; Fujita, K.; Thoresen, J.; Thomas, K.; Langsdorf, L.; Rhodes, L.F. Sugar-functional vinyl addition Poly(norbornene)-Photopatternable Poly(norbornenyl gluconamide) compositions developed with water. ACS Omega, 2018, 3(3), 2909-2917.
[http://dx.doi.org/10.1021/acsomega.8b00081] [PMID: 31458562]
[51]
Yoon, K.H.; Kim, K.O.; Schaefer, M.; Yoon, D.Y. Synthesis and characterization of hydrogenated poly(norbornene endo-dicarboximide)s prepared by ring opening metathesis polymerization. Polymer (Guildf.), 2012, 53(11), 2290-2297.
[http://dx.doi.org/10.1016/j.polymer.2012.02.047]
[52]
Ivin, K.J.; Mol, J.C. Olefin Metathesis and Metathesis Polymerization, 2nd ed; Academic Press: London, 1997.
[53]
Aranda-Suárez, I.; Corona-García, C.; Santiago, A.A.; López Morales, S.; Abatal, M.; López-González, M.; Vargas, J. Synthesis and gas permeability of chemically cross‐linked polynorbornene dicarboximides bearing fluorinated moieties. Macromol. Chem. Phys., 2019, 220(9), 1800481.
[http://dx.doi.org/10.1002/macp.201800481]
[54]
Ruiz, I.; Corona-García, C.; Santiago, A.A.; Abatal, M.; Téllez Arias, M.G.; Alfonso, I.; Vargas, J. Synthesis, characterization, and assessment of novel sulfonated polynorbornene dicarboximides as adsorbents for the removal of heavy metals from water. Environ. Sci. Pollut. Res. Int., 2021, 28(37), 52014-52031.
[http://dx.doi.org/10.1007/s11356-021-13757-1] [PMID: 33997932]
[55]
Guseva, M.A.; Alentiev, D.A.; Bermesheva, E.V.; Zamilatskov, I.A.; Bermeshev, M.V. The selective hydrosilylation of norbornadiene-2,5 by monohydrosiloxanes. RSC Advances, 2019, 9(57), 33029-33037.
[http://dx.doi.org/10.1039/C9RA06784A] [PMID: 35529130]
[56]
Gringolts, M.L.; Bermeshev, M.V.; Starannikova, L.E.; Rogan, Y.V.; Yampol’skii, Y.P.; Finkel’shtein, E.S. Synthesis and gas separation properties of metathesis polynorbornenes with different positions of one or two SiMe3 groups in a monomer unit. Polym. Sci. Ser. A, 2009, 51(11-12), 1233-1240.
[http://dx.doi.org/10.1134/S0965545X0911008X]
[57]
Vargas, J.; Santiago, A.A.; Tlenkopatchev, M.A.; Gaviño, R.; Laguna, M.F.; López-González, M.; Riande, E. Gas transport and ionic transport in membranes based on polynorbornenes with functionalized imide side groups. Macromolecules, 2007, 40(3), 563-570.
[http://dx.doi.org/10.1021/ma062522q]
[58]
Kang, B.G.; Kim, D.G.; Register, R.A. Vinyl addition copolymers of norbornylnorbornene and hydroxyhexafluoroisopropylnorbornene for efficient recovery of n-butanol from dilute aqueous solution via pervaporation. Macromolecules, 2018, 51(10), 3702-3710.
[http://dx.doi.org/10.1021/acs.macromol.8b00470]
[59]
Kim, D.G.; Bell, A.; Register, R.A. Living vinyl addition polymerization of substituted norbornenes by a t-Bu3 P-ligated methylpalladium complex. ACS Macro Lett., 2015, 4(3), 327-330.
[http://dx.doi.org/10.1021/acsmacrolett.5b00079] [PMID: 35596345]
[60]
Bermesheva, E.V.; Wozniak, A.I.; Andreyanov, F.A.; Karpov, G.O.; Nechaev, M.S.; Asachenko, A.F.; Topchiy, M.A.; Melnikova, E.K.; Nelyubina, Y.V.; Gribanov, P.S.; Bermeshev, M.V. Polymerization of 5-alkylidene-2-norbornenes with highly active Pd-N-heterocyclic carbene complex catalysts: Catalyst structure-activity relationships. ACS Catal., 2020, 10(3), 1663-1678.
[http://dx.doi.org/10.1021/acscatal.9b04686]
[61]
Purohit, P. Cationic ruthenium for C-H activation reactions. Curr. Org. Chem., 2023, 27(1), 55-61.
[http://dx.doi.org/10.2174/1385272827666230301144654]
[62]
Martínez, A.; Tlenkopatchev, M.A.; Gutiérrez, S.; Burelo, M.; Vargas, J.; Jiménez-Regalado, E. Synthesis of unsaturated esters by cross-metathesis of terpenes and natural rubber using ru-alkylidene catalysts. Curr. Org. Chem., 2019, 23(12), 1356-1364.
[http://dx.doi.org/10.2174/1385272823666190723125427]
[63]
Onchi, A.; Corona-García, C.; Santiago, A.A.; Abatal, M.; Soto, T.E.; Alfonso, I.; Vargas, J. Synthesis and characterization of thiol-functionalized polynorbornene dicarboximides for heavy metal adsorption from aqueous solution. Polymers (Basel), 2022, 14(12), 2344.
[http://dx.doi.org/10.3390/polym14122344] [PMID: 35745918]
[64]
Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed., 2006, 45(23), 3760-3765.
[http://dx.doi.org/10.1002/anie.200600680] [PMID: 16724297]
[65]
Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed., 2006, 45(23), 3748-3759.
[http://dx.doi.org/10.1002/anie.200600085] [PMID: 16703641]
[66]
Wang, X.; Wilson, T.J.; Alentiev, D.; Gringolts, M.; Finkelshtein, E.; Bermeshev, M.; Long, B.K. Substituted polynorbornene membranes: A modular template for targeted gas separations. Polym. Chem., 2021, 12(20), 2947-2977.
[http://dx.doi.org/10.1039/D1PY00278C]
[67]
Gringol’ts, M.L.; Bermeshev, M.V.; Syromolotov, A.V.; Starannikova, L.E.; Filatova, M.F.; Makovetskii, K.L.; Finkel’shtein, E.S. Highly permeable polymer materials based on silicon-substituted norbornenes. Petrol. Chem., 2010, 50(5), 352-361.
[http://dx.doi.org/10.1134/S0965544110050063]
[68]
Katsumata, T.; Shiotsuki, M.; Sanda, F.; Masuda, T. Synthesis and properties of polynorbornenes bearing oligomeric siloxane pendant groups. Polymer, 2009, 50(6), 1389-1394.
[http://dx.doi.org/10.1016/j.polymer.2009.01.039]
[69]
Alentiev, D.A.; Bermeshev, M.V.; Starannikova, L.E.; Bermesheva, E.V.; Shantarovich, V.P.; Bekeshev, V.G.; Yampolskii, Y.P.; Finkelshtein, E.S. Stereoselective synthesis and polymerization of Exo‐5‐trimethylsilyl-norbornene. J. Polym. Sci. A Polym. Chem., 2018, 56(12), 1234-1248.
[http://dx.doi.org/10.1002/pola.29003]
[70]
Finkelshtein, E.S.; Bermeshev, M.V.; Gringolts, M.L.; Starannikova, L.E.; Yampolskii, Y.P. Substituted polynorbornenes as promising materials for gas separation membranes. Russ. Chem. Rev., 2011, 80(4), 341-361.
[http://dx.doi.org/10.1070/RC2011v080n04ABEH004203]
[71]
Kim, D.; Hossain, I.; Kim, Y.; Choi, O.; Kim, T.H. PEG/PPG-PDMS-Adamantane-based crosslinked terpolymer using the romp technique to prepare a highly permeable and CO2-selective polymer membrane. Polymers , 2020, 12(8), 1674.
[http://dx.doi.org/10.3390/polym12081674] [PMID: 32727152]
[72]
Hossain, I.; Kim, D.; Al Munsur, A.Z.; Roh, J.M.; Park, H.B.; Kim, T.H. PEG/PPG-PDMS-based cross-linked copolymer membranes prepared by romp and in situ membrane casting for CO2 Separation: An approach to endow rubbery materials with properties of rigid polymers. ACS Appl. Mater. Interfaces, 2020, 12(24), 27286-27299.
[http://dx.doi.org/10.1021/acsami.0c06926] [PMID: 32453943]
[73]
Gringolts, M.L.; Bermeshev, M.V.; Makovetsky, K.L.; Finkelshtein, E.S. Effect of substituents on addition polymerization of norbornene derivatives with two Me3Si-groups using Ni(II)/MAO catalyst. Eur. Polym. J., 2009, 45(7), 2142-2149.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.02.013]
[74]
Alentiev, D.A.; Egorova, E.S.; Bermeshev, M.V.; Starannikova, L.E.; Topchiy, M.A.; Asachenko, A.F.; Gribanov, P.S.; Nechaev, M.S.; Yampolskii, Y.P.; Finkelshtein, E.S. Janus tricyclononene polymers bearing tri(n-alkoxy)silyl side groups for membrane gas separation. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(40), 19393-19408.
[http://dx.doi.org/10.1039/C8TA06034G]
[75]
Alentiev, D.A.; Nikiforov, R.Y.; Rudakova, M.A.; Zarezin, D.P.; Topchiy, M.A.; Asachenko, A.F.; Alentiev, A.Y.; Bolshchikov, B.D.; Belov, N.A.; Finkelshtein, E.S.; Bermeshev, M.V. Polynorbornenes bearing ether fragments in substituents: Promising membrane materials with enhanced CO2 permeability. J. Membr. Sci., 2022, 648, 120340.
[http://dx.doi.org/10.1016/j.memsci.2022.120340]
[76]
Belov, N.A.; Gringolts, M.L.; Morontsev, A.A.; Starannikova, L.E.; Yampolskii, Y.P.; Finkelstein, E.S. Gas-transport properties of epoxidated metathesis polynorbornenes. Polym. Sci. Ser. B, 2017, 59(5), 560-569.
[http://dx.doi.org/10.1134/S1560090417050025]
[77]
Morontsev, A.A.; Zhigarev, V.A.; Nikiforov, R.Y.; Belov, N.A.; Gringolts, M.L.; Finkelshtein, E.S.; Yampolskii, Y.P. A new approach to improvement of gas permeation properties of olefin metathesis derived poly(norbornenes): Gem-difluorocyclopropanation of backbone double bonds. Eur. Polym. J., 2018, 99, 340-349.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.020]
[78]
Steinhäusler, T.; Koros, W.J. Gas permeation and sorption studies on stereoregular polynorbornene. J. Polym. Sci., B, Polym. Phys., 1997, 35(1), 91-99.
[http://dx.doi.org/10.1002/(SICI)1099-0488(19970115)35:1<91:AID-POLB7>3.0.CO;2-Y]
[79]
Maroon, C.R.; Townsend, J.; Gmernicki, K.R.; Harrigan, D.J.; Sundell, B.J.; Lawrence, J.A., III; Mahurin, S.M.; Vogiatzis, K.D.; Long, B.K. Elimination of CO2/N2 langmuir sorption and promotion of “N2 -phobicity” within high- Tg glassy membranes. Macromolecules, 2019, 52(4), 1589-1600.
[http://dx.doi.org/10.1021/acs.macromol.8b02497]
[80]
Zhao, C.; do Rosário Ribeiro, M.; de Pinho, M.N.; Subrahmanyam, V.S.; Gil, C.L.; de Lima, A.P. Structural characteristics and gas permeation properties of polynorbornenes with retained bicyclic structure. Polymer , 2001, 42(6), 2455-2462.
[http://dx.doi.org/10.1016/S0032-3861(00)00554-1]
[81]
Finkelshtein, E.S.; Makovetskii, K.L.; Gringolts, M.L.; Rogan, Y.V.; Golenko, T.G.; Starannikova, L.E.; Yampolskii, Y.P.; Shantarovich, V.P.; Suzuki, T. Addition-type polynorbornenes with Si(CH3)3 side groups: Synthesis, gas permeability, and free volume. Macromolecules, 2006, 39(20), 7022-7029.
[http://dx.doi.org/10.1021/ma061215h]
[82]
Maroon, C.R.; Townsend, J.; Higgins, M.A.; Harrigan, D.J.; Sundell, B.J.; Lawrence, J.A., III; O’Brien, J.T.; O’Neal, D.; Vogiatzis, K.D.; Long, B.K. Addition-type alkoxysilyl-substituted polynorbornenes for post-combustion carbon dioxide separations. J. Membr. Sci., 2020, 595, 117532.
[http://dx.doi.org/10.1016/j.memsci.2019.117532]
[83]
Bermeshev, M.V.; Syromolotov, A.V.; Gringolts, M.L.; Starannikova, L.E.; Yampolskii, Y.P.; Finkelshtein, E.S. Synthesis of high molecular weight poly[3-tris(trimethylsiloxy)silyltricyclononenes-7] and their gas permeation properties. Macromolecules, 2011, 44(17), 6637-6640.
[http://dx.doi.org/10.1021/ma201486d]
[84]
Gringolts, M.; Bermeshev, M.; Yampolskii, Y.; Starannikova, L.; Shantarovich, V.; Finkelshtein, E. New high permeable addition poly(tricycle-nonenes) with Si(CH3)3 side groups. synthesis, gas permeation parameters, and free volume. Macromolecules, 2010, 43(17), 7165-7172.
[http://dx.doi.org/10.1021/ma100656e]
[85]
Alentiev, D.A.; Zarezin, D.P.; Rudakova, M.A.; Nikiforov, R.Y.; Belov, N.A.; Bermeshev, M.V. 5-(Methoxymethyl)norbornene-based addition polymer: Synthesis and gas-transport properties. Polym. Sci. Ser. B, 2021, 63(1), 68-77.
[http://dx.doi.org/10.1134/S1560090421010012]
[86]
Wozniak, A.I.; Bermesheva, E.V.; Andreyanov, F.A.; Borisov, I.L.; Zarezin, D.P.; Bakhtin, D.S.; Gavrilova, N.N.; Ilyasov, I.R.; Nechaev, M.S.; Asachenko, A.F.; Topchiy, M.A.; Volkov, A.V.; Finkelshtein, E.S.; Ren, X-K.; Bermeshev, M.V. Modifications of addition poly(5-vinyl-2-norbornene) and gas-transport properties of the obtained polymers. React. Funct. Polym., 2020, 149, 104513.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104513]
[87]
Yampol’skii, Y.P.; Bespalova, N.B.; Finkel’shtein, E.S.; Bondar, V.I.; Popov, A.V. Synthesis, gas permeability, and gas sorption properties of fluorine-containing norbornene polymers. Macromolecules, 1994, 27(10), 2872-2878.
[http://dx.doi.org/10.1021/ma00088a030]
[88]
Adzhieva, O.A.; Nikiforov, R.Y.; Gringolts, M.L.; Belov, N.A.; Filatova, M.P.; Denisova, Y.I.; Kudryavtsev, Y.V. Synthesis and gas separation properties of metathesis poly(5-perfluorobutyl-2-norbornene). Polym. Sci. Ser. A, 2022, 64(5), 424-433.
[http://dx.doi.org/10.1134/S0965545X22700262]
[89]
Karpov, G.O.; Bermeshev, M.V.; Borisov, I.L.; Sterlin, S.R.; Tyutyunov, A.A.; Yevlampieva, N.P.; Bulgakov, B.A.; Volkov, V.V.; Finkelshtein, E.S. Metathesis-type poly-exo-tricyclononenes with fluoroorganic side substituents: Synthesis and gas-transport properties. Polymer (Guildf.), 2018, 153, 626-636.
[http://dx.doi.org/10.1016/j.polymer.2018.08.055]
[90]
Bermeshev, M.V.; Starannikova, L.E.; Sterlin, S.R.; Tyutyunov, A.A.; Tavtorkin, A.N.; Yampolskii, Y.P.; Finkelshtein, E.S. Synthesis and gas-separation properties of metathesis poly(3-fluoro-3-pentafluoroethyl-4,4-bis(trifluoromethyl)tricyclonene-7). Petrol. Chem., 2015, 55(9), 753-758.
[http://dx.doi.org/10.1134/S0965544115050035]
[91]
Borisov, I.L.; Akmalov, T.R.; Ivanov, A.O.; Volkov, V.V.; Finkelshtein, E.S.; Bermeshev, M.V. A new cycloadduct based on quadricyclane and perfluorocyclohexene: Synthesis, metathesis polymerization and gas-transport properties of the obtained polymer. Mendeleev Commun., 2016, 26(2), 124-126.
[http://dx.doi.org/10.1016/j.mencom.2016.03.013]
[92]
Karpov, G.O.; Borisov, I.L.; Volkov, A.V. Synthesis and gas transport properties of addition polynorbornene with perfluorophenyl side groups. Polymers, 2020, 12(6), 1282.
[http://dx.doi.org/10.3390/polym12061282] [PMID: 32503334]
[93]
Cruz-Morales, J.A.; Vargas, J.; Santiago, A.A.; Vásquez-García, S.R.; Tlenkopatchev, M.A.; de Lys, T.; López-González, M. Synthesis and gas transport properties of new polynorbornene dicarboximides bearing trifluoromethyl isomer moieties. High Perform. Polym., 2016, 28(10), 1246-1262.
[http://dx.doi.org/10.1177/0954008315624954]
[94]
Vargas, J.; Santiago, A.A.; Cruz-Morales, J.A.; Tlenkopatchev, M.A.; de Lys, T.; López-González, M.; Riande, E. Gas transport properties of hydrogenated and fluorinated polynorbornene dicarboximides. Macromol. Chem. Phys., 2013, 214(22), 2607-2615.
[http://dx.doi.org/10.1002/macp.201300401]
[95]
Tlenkopatchev, M.A.; Vargas, J.; López-González, M.M.; Riande, E. Gas transport in polymers prepared via metathesis copolymerization of exo-N-phenyl-7-oxanorbornene-5,6-dicarboximide and norbornene. Macromolecules, 2003, 36(22), 8483-8488.
[http://dx.doi.org/10.1021/ma030285a]
[96]
Vargas, J.; Santiago, A.A.; Tlenkopatchev, M.A.; López-González, M.; Riande, E. Gas transport in membranes based on polynorbornenes with fluorinated dicarboximide side moieties. J. Membr. Sci., 2010, 361(1-2), 78-88.
[http://dx.doi.org/10.1016/j.memsci.2010.06.007]
[97]
Vargas, J.; Martínez, A.; Santiago, A.A.; Tlenkopatchev, M.A.; Gaviño, R.; Aguilar-Vega, M. The effect of fluorine atoms on gas transport properties of new polynorbornene dicarboximides. J. Fluor. Chem., 2009, 130(2), 162-168.
[http://dx.doi.org/10.1016/j.jfluchem.2008.09.011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy