Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Light-responsive Polymers: Developments in Drug Delivery Systems

Author(s): Chintan Aundhia*, Ghanshyam Parmar, Chitrali Talele, Sunil kardani and Rajesh Maheshwari

Volume 28, Issue 15, 2024

Published on: 20 May, 2024

Page: [1179 - 1189] Pages: 11

DOI: 10.2174/0113852728307241240430055059

Price: $65

conference banner
Abstract

Photoresponsive polymers have emerged as innovative tools in the domain of drug delivery, presenting advanced solutions for controlled and targeted release of therapeutic agents. This review explores recent advances in the design and application of photoresponsive polymers, focusing on their pivotal role in light-triggered drug delivery systems. It also encompasses organic synthesis methodologies, key advancements in polymer design, and the integration of photoresponsive elements into drug carriers. Moreover, this review also focuses on the applications, challenges, and future prospects, providing a comprehensive overview of the evolving landscape of light-responsive drug delivery technologies. The information about the synthesis presented herein aims to contribute to the understanding and advancement of this dynamic field, offering insights for researchers and practitioners engaged in the development of next-generation drug delivery systems.

Graphical Abstract

[1]
Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev., 2013, 42(17), 7468-7483.
[http://dx.doi.org/10.1039/C2CS35191A] [PMID: 22868906]
[2]
Huang, Y.; Dong, R.; Zhu, X.; Yan, D. Photo-responsive polymeric micelles. Soft Matter, 2014, 10(33), 6121-6138.
[http://dx.doi.org/10.1039/C4SM00871E] [PMID: 25046479]
[3]
Yang, M.F.; Tuchin, V.V.; Yaroslavsky, A.N. Principles of light-skin interactions;; Light-based therapies for skin of color, 2009, pp. 1-44.
[4]
Sanchis, A.; Salvador, J.P.; Marco, M.P. Light-induced mechanisms for nanocarrier’s cargo release. Colloids Surf. B Biointerfaces, 2019, 173, 825-832.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.056] [PMID: 30551298]
[5]
Fernández, M.; Orozco, J. Advances in functionalized photosensitive polymeric nanocarriers. Polymers (Basel), 2021, 13(15), 2464.
[http://dx.doi.org/10.3390/polym13152464] [PMID: 34372067]
[6]
Mahmoud, B.H.; Hexsel, C.L.; Hamzavi, I.H.; Lim, H.W. Effects of visible light on the skin. Photochem. Photobiol., 2008, 84(2), 450-462.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00286.x] [PMID: 18248499]
[7]
Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci., 2010, 35(1-2), 278-301.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008]
[8]
Karisma, V.W.; Wu, W.; Lei, M.; Liu, H.; Nisar, M.F.; Lloyd, M.D.; Pourzand, C.; Zhong, J.L. UVA-triggered drug release and photo-protection of skin. Front. Cell Dev. Biol., 2021, 9, 598717.
[http://dx.doi.org/10.3389/fcell.2021.598717] [PMID: 33644041]
[9]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[10]
Ruskowitz, E.R.; DeForest, C.A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater., 2018, 3(2), 17087.
[http://dx.doi.org/10.1038/natrevmats.2017.87]
[11]
Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-responsive drug release from smart polymers. J. Funct. Biomater., 2019, 10(3), 34.
[http://dx.doi.org/10.3390/jfb10030034] [PMID: 31370252]
[12]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[13]
Pokharel, M.; Park, K. Light mediated drug delivery systems: A review. J. Drug Target., 2022, 30(4), 368-380.
[http://dx.doi.org/10.1080/1061186X.2021.2005610] [PMID: 34761711]
[14]
Rapp, T.L.; DeForest, C.A. Targeting drug delivery with light: A highly focused approach. Adv. Drug Deliv. Rev., 2021, 171, 94-107.
[http://dx.doi.org/10.1016/j.addr.2021.01.009] [PMID: 33486009]
[15]
Ouyang, J.; Xie, A.; Zhou, J.; Liu, R.; Wang, L.; Liu, H.; Kong, N.; Tao, W. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev., 2022, 51(12), 4996-5041.
[http://dx.doi.org/10.1039/D1CS01148K] [PMID: 35616098]
[16]
Guidi, L.; Cascone, M.G.; Rosellini, E. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives. Heliyon, 2024, 10(5), e26616.
[http://dx.doi.org/10.1016/j.heliyon.2024.e26616] [PMID: 38434257]
[17]
Pierini, F.; Nakielski, P.; Urbanek, O.; Pawłowska, S.; Lanzi, M.; De Sio, L.; Kowalewski, T.A. Polymer-based nanomaterials for photothermal therapy: from light-responsive to multifunctional nanoplatforms for synergistically combined technologies. Biomacromolecules, 2018, 19(11), 4147-4167.
[http://dx.doi.org/10.1021/acs.biomac.8b01138] [PMID: 30230317]
[18]
Zhang, H. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. Eur. Polym. J., 2013, 49(3), 579-600.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.016]
[19]
Satoh, K.; Kamigaito, M. Stereospecific living radical polymerization: Dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev., 2009, 109(11), 5120-5156.
[http://dx.doi.org/10.1021/cr900115u] [PMID: 19715302]
[20]
Matyjaszewski, K. Controlled/living radical polymerization: State of the art in 2005. ACS Symposium Series, 2006, 854, 2-9.
[21]
Truong, N.P.; Jones, G.R.; Bradford, K.G.E.; Konkolewicz, D.; Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem., 2021, 5(12), 859-869.
[http://dx.doi.org/10.1038/s41570-021-00328-8] [PMID: 37117386]
[22]
Ventura, C.; Byrne, R.; Audouin, F.; Heise, A. Atom transfer radical polymerization synthesis and photoresponsive solution behavior of spiropyran end‐functionalized polymers as simplistic molecular probes. J. Polym. Sci. A Polym. Chem., 2011, 49(16), 3455-3463.
[http://dx.doi.org/10.1002/pola.24778]
[23]
Pan, X.; Tasdelen, M.A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci., 2016, 62, 73-125.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.06.005]
[24]
Boyer, C.; Corrigan, N.A.; Jung, K.; Nguyen, D.; Nguyen, T.K.; Adnan, N.N.M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper (0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev., 2016, 116(4), 1803-1949.
[http://dx.doi.org/10.1021/acs.chemrev.5b00396] [PMID: 26535452]
[25]
Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev., 2018, 47(14), 5457-5490.
[http://dx.doi.org/10.1039/C8CS00259B] [PMID: 29868657]
[26]
Szczepaniak, G.; Fu, L.; Jafari, H.; Kapil, K.; Matyjaszewski, K. Making ATRP more practical: Oxygen tolerance. Acc. Chem. Res., 2021, 54(7), 1779-1790.
[http://dx.doi.org/10.1021/acs.accounts.1c00032] [PMID: 33751886]
[27]
Matyjaszewski, K.; Spanswick, J. Controlled/living radical polymerization. In: Handbook of Polymer Synthesis; CRC Press, 2004; pp. 907-954.
[28]
Zhou, Y.N.; Zhang, Q.; Luo, Z.H. A light and pH dual-stimuli-responsive block copolymer synthesized by copper(0)-mediated living radical polymerization: Solvatochromic, isomerization, and “schizophrenic” behaviors. Langmuir, 2014, 30(6), 1489-1499.
[http://dx.doi.org/10.1021/la402948s] [PMID: 24472031]
[29]
Li, S.; Han, G.; Zhang, W. Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym. Chem., 2020, 11(11), 1830-1844.
[http://dx.doi.org/10.1039/D0PY00054J]
[30]
Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem., 2017, 8(1), 177-219.
[http://dx.doi.org/10.1039/C6PY01849A]
[31]
Semsarilar, M.; Abetz, V. Polymerizations by RAFT: Developments of the technique and its application in the synthesis of tailored (Co)polymers. Macromol. Chem. Phys., 2021, 222(1), 2000311.
[http://dx.doi.org/10.1002/macp.202000311]
[32]
Bingham, N.M.; Rezvani, A.Z.; Collins, K.; Roth, P.J. Thiocarbonyl chemistry in polymer science. Polym. Chem., 2022, 13(20), 2880-2901.
[http://dx.doi.org/10.1039/D2PY00050D]
[33]
Gruendling, T.; Kaupp, M.; Blinco, J.P.; Kowollik, B.C. Photoinduced conjugation of dithioester-and trithiocarbonate-functional RAFT polymers with Alkenes. Macromolecules, 2011, 44(1), 166-174.
[http://dx.doi.org/10.1021/ma101893u]
[34]
Barner, L.; Perrier, S. Polymer with well-defined and group via RAFTsynthesis, applications and post modifications. Handbook of RAFT polymerization , 2008, pp. 455-452.
[35]
Lowe, A.B.; McCormick, C.L. Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci., 2007, 32(3), 283-351.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.11.003]
[36]
Favier, A.; Charreyre, M.T. Experimental requirements for an efficient control of free‐radical polymerizations via the reversible addition‐fragmentation chain transfer (RAFT) process. Macromol. Rapid Commun., 2006, 27(9), 653-692.
[http://dx.doi.org/10.1002/marc.200500839]
[37]
Akeroyd, N.; Klumperman, B. The combination of living radical polymerization and click chemistry for the synthesis of advanced macromolecular architectures. Eur. Polym. J., 2011, 47(6), 1207-1231.
[http://dx.doi.org/10.1016/j.eurpolymj.2011.02.003]
[38]
Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun., 2020, 41(8), 1900430.
[http://dx.doi.org/10.1002/marc.201900430] [PMID: 32134540]
[39]
Corrigan, N. Advancing macromolecular synthesis through photomediated reversible deactivation radical polymerisation in flow. Doctoral dissertation, UNSW Sydney, 2018.
[40]
Yang, R.; Wang, X.; Yan, S.; Dong, A.; Luan, S.; Yin, J. Advances in design and biomedical application of hierarchical polymer brushes. Prog. Polym. Sci., 2021, 118, 101409.
[http://dx.doi.org/10.1016/j.progpolymsci.2021.101409]
[41]
Kumar, G.S.; Lin, Q. Light-triggered click chemistry. Chem. Rev., 2021, 121(12), 6991-7031.
[http://dx.doi.org/10.1021/acs.chemrev.0c00799] [PMID: 33104332]
[42]
Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click chemistry in materials science. Adv. Funct. Mater., 2014, 24(18), 2572-2590.
[http://dx.doi.org/10.1002/adfm.201302847]
[43]
Zetterlund, P.B.; Thickett, S.C.; Perrier, S.; Lami, B.E.; Lansalot, M. Controlled/living radical polymerization in dispersed systems: An update. Chem. Rev., 2015, 115(18), 9745-9800.
[http://dx.doi.org/10.1021/cr500625k] [PMID: 26313922]
[44]
Yeow, J. Visible light mediated polymerization-induced self-assembly: New insights and opportunities. Doctoral dissertation, UNSW Sydney, 2017.
[45]
Coiai, S.; Passaglia, E.; Cicogna, F. Post‐polymerization modification by nitroxide radical coupling. Polym. Int., 2019, 68(1), 27-63.
[http://dx.doi.org/10.1002/pi.5664]
[46]
Chen, M.; Zhong, M.; Johnson, J.A. Light-controlled radical polymerization: Mechanisms, methods, and applications. Chem. Rev., 2016, 116(17), 10167-10211.
[http://dx.doi.org/10.1021/acs.chemrev.5b00671] [PMID: 26978484]
[47]
Asua, J.M. Nitroxide-mediated polymerization. In: Nitroxides: Synthesis Properties and Applications; The Royal Society of Chemistry, 2021; p. 263.
[48]
Silab, D.S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev., 2016, 116(17), 10212-10275.
[http://dx.doi.org/10.1021/acs.chemrev.5b00586] [PMID: 26745441]
[49]
Hanssens, G.A.; Barrett, C.J. Photo‐control of biological systems with azobenzene polymers. J. Polym. Sci. A Polym. Chem., 2013, 51(14), 3058-3070.
[http://dx.doi.org/10.1002/pola.26735]
[50]
Mahimwalla, Z.; Yager, K.G.; Mamiya, J.; Shishido, A.; Priimagi, A.; Barrett, C.J. Azobenzene photomechanics: Prospects and potential applications. Polym. Bull., 2012, 69(8), 967-1006.
[http://dx.doi.org/10.1007/s00289-012-0792-0]
[51]
Wang, D.; Wang, X. Amphiphilic azo polymers: Molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci., 2013, 38(2), 271-301.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.07.003]
[52]
Ravve, A. Polymeric materials for special applications. In: Principles of Polymer Chemistry; Springer, 2012; pp. 695-790.
[53]
Lucas Rodrigues, L. Advanced photochemical reactions induced by visible light. PhD Thesis; Queensland University of Technology, 2022.
[54]
Mirmahalleh, S.S.A.; Golshan, M.; Gheitarani, B.; Hosseini, S.M.; Kalajahi, S.M. A review on applications of coumarin and its derivatives in preparation of photo-responsive polymers. Eur. Polym. J., 2023, 198, 112430.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112430]
[55]
Seoane-Rivero, R.; Ruiz-Bilbao, E.; Navarro, R.; Laza, J.M.; Cuevas, J.M.; Artetxe, B.; Zorrilla, G.J.M.; Vilela, V.J.L.; Fernandez, M.Á. Structural characterization of mono and dihydroxylated umbelliferone derivatives. Molecules, 2020, 25(15), 3497.
[http://dx.doi.org/10.3390/molecules25153497] [PMID: 32751979]
[56]
Šolomek, T.; Wirz, J.; Klán, P. Searching for improved photoreleasing abilities of organic molecules. Acc. Chem. Res., 2015, 48(12), 3064-3072.
[http://dx.doi.org/10.1021/acs.accounts.5b00400] [PMID: 26569596]
[57]
Haldar, R.; Heinke, L.; Wöll, C. Advanced photoresponsive materials using the metal–organic framework approach. Adv. Mater., 2020, 32(20), 1905227.
[http://dx.doi.org/10.1002/adma.201905227] [PMID: 31763731]
[58]
Cazin, I.; Rossegger, E.; de la Cruz, G.G.; Griesser, T.; Schlögl, S. Recent advances in functional polymers containing coumarin chromophores. Polymers, 2020, 13(1), 56.
[http://dx.doi.org/10.3390/polym13010056] [PMID: 33375724]
[59]
Sana, B.; Wistrand, F.A.; Pappalardo, D. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater. Today Chem., 2022, 25, 100963.
[http://dx.doi.org/10.1016/j.mtchem.2022.100963]
[60]
Li, C.; Liu, S. Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics. Chem. Commun., 2012, 48(27), 3262-3278.
[http://dx.doi.org/10.1039/c2cc17695e] [PMID: 22367463]
[61]
Rad, K.J.; Balzade, Z.; Mahdavian, A.R. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. Photochem. Rev., 2022, 51, 100487.
[http://dx.doi.org/10.1016/j.jphotochemrev.2022.100487]
[62]
Stoychev, G.; Kirillova, A.; Ionov, L. Light‐responsive shape‐changing polymers. Adv. Opt. Mater., 2019, 7(16), 1900067.
[http://dx.doi.org/10.1002/adom.201900067]
[63]
Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev., 2014, 43(1), 148-184.
[http://dx.doi.org/10.1039/C3CS60181A] [PMID: 23979515]
[64]
Towns, A. Spiropyran dyes. Phys. Sci. Rev., 2021, 6(8), 341-368.
[http://dx.doi.org/10.1515/psr-2020-0197]
[65]
Xiao, P.; Zhang, J.; Zhao, J.; Stenzel, M.H. Light-induced release of molecules from polymers. Prog. Polym. Sci., 2017, 74, 1-33.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.06.002]
[66]
Florea, L.; Diamond, D.; Lopez, B.F. Photo‐responsive polymeric structures based on spiropyran. Macromol. Mater. Eng., 2012, 297(12), 1148-1159.
[http://dx.doi.org/10.1002/mame.201200306]
[67]
Zhu, M.Q.; Zhu, L.; Han, J.J.; Wu, W.; Hurst, J.K.; Li, A.D.Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc., 2006, 128(13), 4303-4309.
[http://dx.doi.org/10.1021/ja0567642] [PMID: 16569006]
[68]
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev., 2014, 114(24), 12174-12277.
[http://dx.doi.org/10.1021/cr500249p] [PMID: 25514509]
[69]
Yao, X.; Li, T.; Wang, J.; Ma, X.; Tian, H. Recent progress in photoswitchable supramolecular self‐assembling systems. Adv. Opt. Mater., 2016, 4(9), 1322-1349.
[http://dx.doi.org/10.1002/adom.201600281]
[70]
Wang, L.; Li, Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem. Soc. Rev., 2018, 47(3), 1044-1097.
[http://dx.doi.org/10.1039/C7CS00630F] [PMID: 29251304]
[71]
Zhang, J.; Tian, H. The endeavor of diarylethenes: New structures, high performance, and bright future. Adv. Opt. Mater., 2018, 6(6), 1701278.
[http://dx.doi.org/10.1002/adom.201701278]
[72]
Ercole, F.; Davis, T.P.; Evans, R.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 2010, 1(1), 37-54.
[http://dx.doi.org/10.1039/B9PY00300B]
[73]
Mamaqani, R.H.; Tajmoradi, Z. Photoresponsive polymers. In: Smart Stimuli‐Responsive Polymers, Films, and Gels; Wiley, 2022; pp. 53-134.
[74]
Miyasaka, H.; Sotome, H.; Ito, S. Advanced control of photochemical reactions leading to synergetic responses in molecules and mesoscopic materials. In: Photosynergetic Responses in Molecules and Molecular Aggregates; Miyasaka, H.; Matsuda, K.; Abe, J.; Kawai, T., Eds.; Springer: Singapore, 2020; pp. 3-27.
[http://dx.doi.org/10.1007/978-981-15-5451-3_1]
[75]
Ikeda, T.; Mamiya, J.; Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed., 2007, 46(4), 506-528.
[http://dx.doi.org/10.1002/anie.200602372] [PMID: 17212377]
[76]
Volarić, J.; Szymanski, W.; Simeth, N.A.; Feringa, B.L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev., 2021, 50(22), 12377-12449.
[http://dx.doi.org/10.1039/D0CS00547A] [PMID: 34590636]
[77]
Tang, Y.; Wang, G. NIR light-responsive nanocarriers for controlled release. J. Photochem. Photobiol. Photochem. Rev., 2021, 47, 100420.
[http://dx.doi.org/10.1016/j.jphotochemrev.2021.100420]
[78]
Giménez, M.V.M.; Arya, G.; Zucchi, I.A.; Galante, M.J.; Manucha, W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. Soft Matter, 2021, 17(38), 8577-8584.
[http://dx.doi.org/10.1039/D1SM00999K] [PMID: 34580698]
[79]
Zhou, Y.; Ye, H.; Chen, Y.; Zhu, R.; Yin, L. Photoresponsive drug/gene delivery systems. Biomacromolecules, 2018, 19(6), 1840-1857.
[http://dx.doi.org/10.1021/acs.biomac.8b00422] [PMID: 29701952]
[80]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[81]
Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Mamaqani, R.H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[82]
Pethe, A.M.; Yadav, K.S. Polymers, responsiveness and cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 395-405.
[http://dx.doi.org/10.1080/21691401.2018.1559176] [PMID: 30688110]
[83]
Yang, Y.; Xie, X.; Yang, Y.; Li, Z.; Yu, F.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z.; Mei, X. Polymer nanoparticles modified with photo-and pH-dual-responsive polypeptides for enhanced and targeted cancer therapy. Mol. Pharm., 2016, 13(5), 1508-1519.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00977] [PMID: 27043442]
[84]
Lan, J.S.; Zeng, R.F.; Li, Z.; Wu, Y.; Liu, L.; Chen, L.X.; Liu, Y.; He, Y.T.; Zhang, T.; Ding, Y. CD44-targeted photoactivatable polymeric nanosystem with on-demand drug release as a “photoactivatable bomb” for combined photodynamic therapy–chemotherapy of cancer. ACS Appl. Mater. Interfaces, 2023, 15(29), 34554-34569.
[http://dx.doi.org/10.1021/acsami.3c05645] [PMID: 37462246]
[85]
Guan, S.; Li, J.; Zhang, K.; Li, J. Environmentally responsive hydrogels for repair of cardiovascular tissue. Heart Fail. Rev., 2021, 26(5), 1273-1285.
[http://dx.doi.org/10.1007/s10741-020-09934-y] [PMID: 32076909]
[86]
Vishnu, J.; Manivasagam, G. Perspectives on smart stents with sensors: From conventional permanent to novel bioabsorbable smart stent technologies. Med. Devices Sens., 2020, 3(6), e10116.
[http://dx.doi.org/10.1002/mds3.10116]
[87]
Cecen, B.; Hassan, S.; Li, X.; Zhang, Y.S. Smart biomaterials in biomedical applications: Current advances and possible future directions. Macromol. Biosci., 2024, 24(3), 2200550.
[PMID: 37728061]
[88]
Zhang, J.; Lin, Y.; Lin, Z.; Wei, Q.; Qian, J.; Ruan, R.; Jiang, X.; Hou, L.; Song, J.; Ding, J.; Yang, H. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci., 2022, 9(5), 2103444.
[http://dx.doi.org/10.1002/advs.202103444] [PMID: 34927373]
[89]
Song, Y.; Chen, Y.; Li, P.; Dong, C.M. Photoresponsive polypeptide-glycosylated dendron amphiphiles: UV-triggered polymersomes, OVA release, and in vitro enhanced uptake and immune response. Biomacromolecules, 2020, 21(12), 5345-5357.
[http://dx.doi.org/10.1021/acs.biomac.0c01465] [PMID: 33307698]
[90]
Bruneau, M.; Bennici, S.; Brendle, J.; Dutournie, P.; Limousy, L.; Pluchon, S. Systems for stimuli-controlled release: Materials and applications. J. Control. Release, 2019, 294, 355-371.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.038] [PMID: 30590097]
[91]
Alaei, H.S.; Tehrani, M.S.; Husain, S.W.; Panahi, H.A.; Mehramizi, A. Photo-regulated ultraselective extraction of Azatioprine using a novel photoresponsive molecularly imprinted polymer conjugated hyperbranched polymers based magnetic nano-particles. Polymer, 2018, 148, 191-201.
[http://dx.doi.org/10.1016/j.polymer.2018.06.013]
[92]
Alaei, H.S.; Tehrani, M.S.; Husain, S.W.; Panahi, H.A.; Mehramizi, A. Photoresponsive molecularly imprinted dendrimer-based magnetic nanoparticles for photo-regulated selective separation of azathioprine. React. Funct. Polym., 2019, 136, 58-65.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.12.022]
[93]
Liu, J.; Kang, W.; Wang, W. Photocleavage‐based photoresponsive drug delivery. Photochem. Photobiol., 2022, 98(2), 288-302.
[http://dx.doi.org/10.1111/php.13570] [PMID: 34861053]
[94]
Abdelmohsen, H.A.M.; Copeland, N.A.; Hardy, J.G. Light-responsive biomaterials for ocular drug delivery. Drug Deliv. Transl. Res., 2023, 13(8), 2159-2182.
[http://dx.doi.org/10.1007/s13346-022-01196-5] [PMID: 35751001]
[95]
Wells, L.A.; Sheardown, H. 20 photoresponsive polymers for ocular drug delivery. In: Ocular Drug Delivery Systems; Barriers and Application of Nanoparticulate Systems, 2012; p. 383.
[96]
Lin, X.; Wu, X.; Chen, X.; Wang, B.; Xu, W. Intellective and stimuli-responsive drug delivery systems in eyes. Int. J. Pharm., 2021, 602, 120591.
[PMID: 33845152]
[97]
Bisht, R.; Jaiswal, J.K.; Chen, Y.S.; Jin, J.; Rupenthal, I.D. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv., 2016, 13(7), 953-962.
[http://dx.doi.org/10.1517/17425247.2016.1163334] [PMID: 26967153]
[98]
Amer, M.; Ni, X.; Xian, M.; Chen, R.K. Photo-responsive hydrogel microneedles with interlocking control for easy extraction in sustained ocular drug delivery. J. Eng. Sci. Med. Diagn. Ther., 2022, 5(1), 011001.
[http://dx.doi.org/10.1115/1.4052627]
[99]
Bagshaw, K.R.; Hanenbaum, C.L.; Carbone, E.J.; Lo, K.W.H.; Laurencin, C.T.; Walker, J.; Nair, L.S. Pain management via local anesthetics and responsive hydrogels. Ther. Deliv., 2015, 6(2), 165-176.
[http://dx.doi.org/10.4155/tde.14.95] [PMID: 25690085]
[100]
Xie, Y.; Tuguntaev, R.G.; Mao, C.; Chen, H.; Tao, Y.; Wang, S.; Yang, B.; Guo, W. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophys. Rep., 2020, 6(5), 193-210.
[http://dx.doi.org/10.1007/s41048-020-00117-8] [PMID: 37288306]
[101]
Yu, L.; Dong, A.; Guo, R.; Yang, M.; Deng, L.; Zhang, J. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect. ACS Biomater. Sci. Eng., 2018, 4(7), 2424-2434.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00379] [PMID: 33435106]
[102]
Zhou, Q.; Zhang, L.; Yang, T.; Wu, H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int. J. Nanomedicine, 2018, 13, 2921-2942.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[103]
Mohanty, S.; Swarup, J.; Priya, S.; Jain, R.; Singhvi, G. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review. Int. J. Biol. Macromol., 2024, 256(Pt 1), 128348.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.128348] [PMID: 38007021]
[104]
Campos, F.L.; de Lemos, A.J.; Oda, C.M.R.; de Silva, O.J.; Fernandes, R.S.; Miranda, S.E.M.; Cavalcante, C.H.; Cassali, G.D.; Townsend, D.M.; Leite, E.A.; de Barros, A.L.B. Irinotecan-loaded polymeric micelles as a promising alternative to enhance antitumor efficacy in colorectal cancer therapy. Polymers, 2022, 14(22), 4905.
[http://dx.doi.org/10.3390/polym14224905] [PMID: 36433032]
[105]
Rahim, M.A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z.; Aziz, H.C.; Sohail, M.; Khan, M.; Thu, H.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers, 2021, 13(4), 670.
[http://dx.doi.org/10.3390/cancers13040670] [PMID: 33562376]
[106]
Sazali, N.; Ibrahim, H.; Jamaludin, A.S.; Mohamed, M.A.; Salleh, W.N.W.; Abidin, M.N.Z. Eds.; Degradation and stability of polymer: A mini review; IOP Publishing, 2020.
[107]
Pospíšil, J.; Pilař, J.; Billingham, N.C.; Marek, A.; Horák, Z.; Nešpůrek, S. Factors affecting accelerated testing of polymer photostability. Polym. Degrad. Stabil., 2006, 91(3), 417-422.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.049]
[108]
Hansen, M.J.; Velema, W.A.; Lerch, M.M.; Szymanski, W.; Feringa, B.L. Wavelength-selective cleavage of photoprotecting groups: Strategies and applications in dynamic systems. Chem. Soc. Rev., 2015, 44(11), 3358-3377.
[http://dx.doi.org/10.1039/C5CS00118H] [PMID: 25917924]
[109]
Brown, A.A.; Azzaroni, O.; Huck, W.T.S. Photoresponsive polymer brushes for hydrophilic patterning. Langmuir, 2009, 25(3), 1744-1749.
[http://dx.doi.org/10.1021/la8032308] [PMID: 19132832]
[110]
Decker, C. Kinetic study and new applications of UV radiation curing. Macromol. Rapid Commun., 2002, 23(18), 1067-1093.
[http://dx.doi.org/10.1002/marc.200290014]
[111]
Kruk, T.; Górka, C.K.; Sojka, K.M.; Zapotoczny, S. Stimuli-responsive polyelectrolyte multilayer films and microcapsules. Adv. Colloid Interface Sci., 2022, 310, 102773.
[http://dx.doi.org/10.1016/j.cis.2022.102773] [PMID: 36327587]
[112]
Allen, N.S.; Edge, M. Perspectives on additives for polymers. Part 2. Aspects of photostabilization and role of fillers and pigments. J. Vinyl Additive Technol., 2021, 27(2), 211-239.
[http://dx.doi.org/10.1002/vnl.21810]
[113]
Masai, H.; Nakagawa, T.; Terao, J. Recent progress in photoreactive crosslinkers in polymer network materials toward advanced photocontrollability. Polym. J., 2024, 56(4), 297-307.
[http://dx.doi.org/10.1038/s41428-023-00875-5]
[114]
Cheng, H.B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future‐oriented advanced diarylethene photoswitches: From molecular design to spontaneous assembly systems. Adv. Mater., 2022, 34(16), 2108289.
[http://dx.doi.org/10.1002/adma.202108289] [PMID: 34866257]
[115]
Wells, L.A.; Lasowski, F.; Fitzpatrick, S.D.; Sheardown, H. Responding to change: Thermo-and photoresponsive polymers as unique biomaterials. Crit. Rev. Biomed. Eng., 2010, 38(6)
[116]
Liu, G.; Liu, W.; Dong, C.M. UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym. Chem., 2013, 4(12), 3431-3443.
[http://dx.doi.org/10.1039/c3py21121e]
[117]
Jia, Z.; Wen, M.; Cheng, Y.; Zheng, Y. Strategic advances in spatiotemporal control of bioinspired phenolic chemistries in materials science. Adv. Funct. Mater., 2021, 31(14), 2008821.
[http://dx.doi.org/10.1002/adfm.202008821]
[118]
Sanchez, C.; Arribart, H.; Guille, G.M.M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater., 2005, 4(4), 277-288.
[http://dx.doi.org/10.1038/nmat1339] [PMID: 15875305]
[119]
Fernandez-Yague, M.A.; Abbah, S.A.; McNamara, L.; Zeugolis, D.I.; Pandit, A.; Biggs, M.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev., 2015, 84, 1-29.
[http://dx.doi.org/10.1016/j.addr.2014.09.005] [PMID: 25236302]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy