Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

A Review on Piezoelectric-mediated Mechanoredox Reactions by Ball Milling in Organic Synthesis

Author(s): Shan Jiang and Miao Wang*

Volume 28, Issue 12, 2024

Published on: 03 May, 2024

Page: [905 - 913] Pages: 9

DOI: 10.2174/0113852728306541240409034052

Price: $65

Abstract

Recently, the concept of mechanoredox chemistry has been proposed and welldeveloped in organic synthesis. Mechanoredox chemistry is conceptually similar to a photocatalyst reaction system, where piezoelectric materials are introduced to the reaction system in a manner analogous to photoredox catalysis. These reactions feature the ability to generate high-value radicals that do not require harsh reaction conditions of anhydrous and anaerobic conditions, an expensive photocatalyst, and the use of solvents, which renders these transformations highly industrially applicable. In addition, mechanoredox chemistry is also an emerging interdisciplinary research field that combines material chemistry with synthetic chemistry to create more useful reactions. This review provides a comprehensive summary of progress to date in the specific transformation and related mechanisms of piezoelectric- mediated mechanoredox reactions by ball milling in organic synthesis.

Graphical Abstract

[1]
Wang, G.W.; Dong, Y.W.; Wu, P.; Yuan, T.T.; Shen, Y.B. Unexpected solvent-free cycloadditions of 1,3-cyclohexanediones to 1-(pyridin-2-yl)-enones mediated by manganese(III) acetate in a ball mill. J. Org. Chem., 2008, 73(18), 7088-7095.
[http://dx.doi.org/10.1021/jo800870z] [PMID: 18710288]
[2]
Dong, Y.W.; Wang, G.W.; Wang, L. Solvent-free synthesis of naphthopyrans under ball-milling conditions. Tetrahedron, 2008, 64(44), 10148-10154.
[http://dx.doi.org/10.1016/j.tet.2008.08.047]
[3]
Mashkouri, S.; Reza Naimi-Jamal, M. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with quantitative yields. Molecules, 2009, 14(1), 474-479.
[http://dx.doi.org/10.3390/molecules14010474] [PMID: 19158656]
[4]
Schneider, F.; Stolle, A.; Ondruschka, B.; Hopf, H. The Suzuki-Miyaura reaction under mechanochemical conditions. Org. Process Res. Dev., 2009, 13(1), 44-48.
[http://dx.doi.org/10.1021/op800148y]
[5]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[6]
Shelke, R.; Velagacherla, V.; Nayak, U.Y. Recent advances in dual-drug co-amorphous systems. Drug Discov. Today, 2024, 29(2), 103863.
[http://dx.doi.org/10.1016/j.drudis.2023.103863] [PMID: 38141778]
[7]
Solares-Briones, M.; Coyote-Dotor, G.; Páez-Franco, J.C.; Zermeño-Ortega, M.R. de la O Contreras, C.M.; Canseco-González, D.; Avila-Sorrosa, A.; Morales-Morales, D.; Germán-Acacio, J.M. Mechanochemistry: A green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics, 2021, 13(6), 790-839.
[http://dx.doi.org/10.3390/pharmaceutics13060790] [PMID: 34070646]
[8]
Muñoz Tecocoatzi, M.F.; Páez-Franco, J.C.; Rubio-Carrasco, K.; Núñez-Pineda, A.; Dorazco-González, A.; Fuentes-Noriega, I.; Vilchis-Néstor, A.R.; Olvera, L.I.; Morales-Morales, D.; Germán-Acacio, J.M. Ball-milling preparation of the drug–drug solid form of pioglitazone-rosuvastatin at different molar ratios: Characterization and intrinsic dissolution rates evaluation. Pharmaceutics, 2023, 15(2), 630-650.
[http://dx.doi.org/10.3390/pharmaceutics15020630] [PMID: 36839951]
[9]
Childs, S.L.; Stahly, G.P.; Park, A. The salt-cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm., 2007, 4(3), 323-338.
[http://dx.doi.org/10.1021/mp0601345] [PMID: 17461597]
[10]
Nisar, M.; Sung, H.H.Y.; Puschmann, H.; Lakerveld, R.; Haynes, R.K.; Williams, I.D. 11-Azaartemisinin cocrystals with preserved lactam: Acid heterosynthons. CrystEngComm, 2018, 20(9), 1205-1219.
[http://dx.doi.org/10.1039/C7CE01875D]
[11]
Bruckmann, A.; Rodríguez, B.; Bolm, C. Nonlinear effects in proline-catalysed aldol reactions under solvent-free conditions based on the ternary phase behaviour of scalemic proline. CrystEngComm, 2009, 11(3), 404-407.
[http://dx.doi.org/10.1039/b821415h]
[12]
Rodríguez, B.; Bruckmann, A.; Bolm, C. A highly efficient asymmetric organocatalytic aldol reaction in a ball mill. Chemistry, 2007, 13(17), 4710-4722.
[http://dx.doi.org/10.1002/chem.200700188] [PMID: 17506051]
[13]
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem., 2010, 12(6), 985-991.
[http://dx.doi.org/10.1039/c000674b]
[14]
Fulmer, D.A.; Shearouse, W.C.; Medonza, S.T.; Mack, J. Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem., 2009, 11(11), 1821-1825.
[http://dx.doi.org/10.1039/b915669k]
[15]
Okino, T.; Takemoto, Y. Asymmetric alkylation of tert-butyl glycinate Schiff base with chiral quaternary ammonium salt under micellar conditions. Org. Lett., 2001, 3(10), 1515-1517.
[http://dx.doi.org/10.1021/ol015829c] [PMID: 11388855]
[16]
Jörres, M.; Mersmann, S.; Raabe, G.; Bolm, C. Organocatalytic solvent-free hydrogen bonding-mediated asymmetric Michael additions under ball milling conditions. Green Chem., 2013, 15(3), 612-616.
[http://dx.doi.org/10.1039/c2gc36906k]
[17]
Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: From mystical to practical. Green Chem., 2018, 20(7), 1435-1443.
[http://dx.doi.org/10.1039/C7GC03797J]
[18]
Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[19]
Cao, Q.; Howard, J.L.; Crawford, D.E.; James, S.L.; Browne, D.L. Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruder. Green Chem., 2018, 20(19), 4443-4447.
[http://dx.doi.org/10.1039/C8GC02036A]
[20]
Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: An efficient and green approach for asymmetric organic syntheses. Green Chem., 2020, 22(2), 302-315.
[http://dx.doi.org/10.1039/C9GC03414E]
[21]
Roy, K.; Sahoo, S.; Saha, A.; Adak, L. Ball milling in organic transformations. Curr. Org. Chem., 2023, 27(3), 153-165.
[http://dx.doi.org/10.2174/1385272827666221223143844]
[22]
Achar, T.K.; Maiti, S.; Mal, P. IBX works efficiently under solvent free conditions in ball milling. RSC Advances, 2014, 4(25), 12834-12839.
[http://dx.doi.org/10.1039/C4RA00415A]
[23]
Beyer, M.K.; Clausen-Schaumann, H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev., 2005, 105(8), 2921-2948.
[http://dx.doi.org/10.1021/cr030697h] [PMID: 16092823]
[24]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[25]
Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev., 2013, 42(18), 7649-7659.
[http://dx.doi.org/10.1039/c2cs35442j] [PMID: 23344926]
[26]
Ribas-Arino, J.; Marx, D. Covalent mechanochemistry: Theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev., 2012, 112(10), 5412-5487.
[http://dx.doi.org/10.1021/cr200399q] [PMID: 22909336]
[27]
Obst, M.; König, B. Organic synthesis without conventional solvents. Eur. J. Org. Chem., 2018, 2018(31), 4213-4232.
[http://dx.doi.org/10.1002/ejoc.201800556]
[28]
Hernández, J.G.; Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem., 2017, 82(8), 4007-4019.
[http://dx.doi.org/10.1021/acs.joc.6b02887] [PMID: 28080050]
[29]
Chauhan, P.; Chimni, S.S. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein J. Org. Chem., 2012, 8, 2132-2141.
[http://dx.doi.org/10.3762/bjoc.8.240] [PMID: 23243475]
[30]
Bruckmann, A.; Krebs, A.; Bolm, C. Organocatalytic reactions: Effects of ball milling, microwave and ultrasound irradiation. Green Chem., 2008, 10(11), 1131-1141.
[http://dx.doi.org/10.1039/b812536h]
[31]
Rodríguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal., 2007, 349(14-15), 2213-2233.
[http://dx.doi.org/10.1002/adsc.200700252]
[32]
Zhang, Z.; Wang, G.W.; Miao, C.B.; Dong, Y.W.; Shen, Y.B. Solid-state radical reactions of 1,3-cyclohexanediones with in situ generated imines mediated by manganese(III) acetate under mechanical milling conditions. Chem. Commun. (Camb.), 2004, (16), 1832-1833.
[http://dx.doi.org/10.1039/B406402J] [PMID: 15306906]
[33]
Wang, G.W.; Yang, H.T.; Miao, C.B.; Xu, Y.; Liu, F. Radical reactions of [60]fullerene with β-enamino carbonyl compounds mediated by manganese(III) acetate. Org. Biomol. Chem., 2006, 4(13), 2595-2599.
[http://dx.doi.org/10.1039/B604626F] [PMID: 16791324]
[34]
Liu, Z.; Fan, G.P.; Wang, G.W. Unexpected manganese(iii) acetate-mediated reactions of β-enamino carbonyl compounds with 1-(pyridin-2-yl)-enones under mechanical milling conditions. Chem. Commun. (Camb.), 2012, 48(95), 11665-11667.
[http://dx.doi.org/10.1039/c2cc36360g] [PMID: 23095765]
[35]
Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366(6472), 1500-1504.
[http://dx.doi.org/10.1126/science.aay8224] [PMID: 31857482]
[36]
Leitch, J.A.; Browne, D.L. Mechanoredox chemistry as an emerging strategy in synthesis. Chemistry, 2021, 27(38), 9721-9726.
[http://dx.doi.org/10.1002/chem.202100348] [PMID: 33792102]
[37]
Martinez, V.; Stolar, T.; Karadeniz, B.; Brekalo, I. Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem., 2022, 7(1), 51-65.
[http://dx.doi.org/10.1038/s41570-022-00442-1] [PMID: 37117822]
[38]
Hari, D.P.; Schroll, P.; König, B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc., 2012, 134(6), 2958-2961.
[http://dx.doi.org/10.1021/ja212099r] [PMID: 22296099]
[39]
Yu, J.; Zhang, L.; Yan, G. Metal-free, visible light-induced borylation of aryldiazonium salts: A simple and green synthetic route to arylboronates. Adv. Synth. Catal., 2012, 354(14-15), 2625-2628.
[http://dx.doi.org/10.1002/adsc.201200416]
[40]
Schumacher, C.; Hernández, J.G.; Bolm, C. Electro-mechanochemical atom transfer radical cyclizations using piezoelectric BaTiO3. Angew. Chem. Int. Ed., 2020, 59(38), 16357-16360.
[http://dx.doi.org/10.1002/anie.202003565] [PMID: 32515540]
[41]
Clark, A.J. Copper catalyzed atom transfer radical cyclization reactions. Eur. J. Org. Chem., 2016, 2016(13), 2231-2243.
[http://dx.doi.org/10.1002/ejoc.201501571]
[42]
Pang, Y.; Lee, J.W.; Kubota, K.; Ito, H. Solid-state radical C-H trifluoromethylation reactions using ball milling and piezoelectric materials. Angew. Chem. Int. Ed., 2020, 59(50), 22570-22576.
[http://dx.doi.org/10.1002/anie.202009844] [PMID: 32914933]
[43]
Yasu, Y.; Koike, T.; Akita, M. Three-component oxytrifluoromethylation of alkenes: Highly efficient and regioselective difunctionalization of C=C bonds mediated by photoredox catalysts. Angew. Chem. Int. Ed., 2012, 51(38), 9567-9571.
[http://dx.doi.org/10.1002/anie.201205071] [PMID: 22936394]
[44]
Koike, T.; Akita, M. Fine design of photoredox systems for catalytic fluoromethylation of carbon–carbon multiple bonds. Acc. Chem. Res., 2016, 49(9), 1937-1945.
[http://dx.doi.org/10.1021/acs.accounts.6b00268] [PMID: 27564676]
[45]
Herrera, O.S.; Nieto, J.D.; Lane, S.I.; Oexler, E.V. The gas-phase reaction of the CF3 radical with thiophene. Can. J. Chem., 2003, 81(12), 1477-1481.
[http://dx.doi.org/10.1139/v03-155]
[46]
Maruyama, K.; Sakai, A.; Goto, T. Measurement of the CF3 radical using infrared diode laser absorption spectroscopy. J. Phys. D Appl. Phys., 1993, 26(2), 199-202.
[http://dx.doi.org/10.1088/0022-3727/26/2/005]
[47]
Koji Maruyama, K.M.; Katsunori Ohkouchi, K.O.; Yasunori Ohtsu, Y.O.; Toshio Goto, T.G. CF3, CF2 and CF radical measurements in RF CHF3 etching plasma using infrared diode laser absorption spectroscopy. Jpn. J. Appl. Phys., 1994, 33(7S), 4298-4302.
[http://dx.doi.org/10.1143/JJAP.33.4298]
[48]
Wang, Y.; Zhang, Z.; Deng, L.; Lao, T.; Su, Z.; Yu, Y.; Cao, H. Mechanochemical synthesis of 1,2-diketoindolizine derivatives from indolizines and epoxides using piezoelectric materials. Org. Lett., 2021, 23(18), 7171-7176.
[http://dx.doi.org/10.1021/acs.orglett.1c02575] [PMID: 34459619]
[49]
Huang, M.; Deng, L.; Lao, T.; Zhang, Z.; Su, Z.; Yu, Y.; Cao, H. Mechanochemically induced dehydrogenation coupling and [3+2] cycloaddition of indolizines with allenes using piezoelectric materials. J. Org. Chem., 2022, 87(5), 3265-3275.
[http://dx.doi.org/10.1021/acs.joc.1c02940] [PMID: 35080180]
[50]
Liang, Y.; Teng, L.; Wang, Y.; He, Q.; Cao, H. A visible-light-induced intermolecular [3 + 2] alkenylation–cyclization strategy: Metal-free construction of pyrrolo[2,1,5-cd]indolizine rings. Green Chem., 2019, 21(15), 4025-4029.
[http://dx.doi.org/10.1039/C9GC01766F]
[51]
Zhang, Y.; Yu, Y.; Liang, B.; Pei, Y.; Liu, X.; Yao, H.; Cao, H. Synthesis of Pyrrolo[2,1,5-cd]indolizine rings via visible-light-induced intermolecular [3+2] cycloaddition of indolizines and alkynes. J. Org. Chem., 2020, 85(16), 10719-10727.
[http://dx.doi.org/10.1021/acs.joc.0c01253] [PMID: 32664733]
[52]
Lv, H.; Xu, X.; Li, J.; Huang, X.; Fang, G.; Zheng, L. Mechanochemical divergent syntheses of oxindoles and α‐arylacylamides via controllable construction of C-C and C-N bonds by copper and piezoelectric materials. Angew. Chem. Int. Ed., 2022, 61(34), e202206420.
[http://dx.doi.org/10.1002/anie.202206420] [PMID: 35764532]
[53]
Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. Copper-catalyzed one-pot trifluoromethylation/aryl migration/desulfonylation and C(sp2)-N bond formation of conjugated tosyl amides. J. Am. Chem. Soc., 2013, 135(39), 14480-14483.
[http://dx.doi.org/10.1021/ja403954g] [PMID: 24047140]
[54]
Liu, F.; Chen, L.N.; Chen, A.M.; Ye, Z.P.; Wang, Z.W.; Liu, Z.L.; He, X.C.; Li, S.H.; Xia, P.J. Mechanochemical synthesis of 2‐arylquinoxalines and 3‐arylquinoxalin‐2(1H)‐ones via aryldiazonium salts. Adv. Synth. Catal., 2022, 364(6), 1080-1084.
[http://dx.doi.org/10.1002/adsc.202101293]
[55]
Jiang, J.; Song, S.; Guo, J.; Zhou, J.; Li, J. Mechanically induced transition metal free C(sp)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett., 2022, 98, 153820.
[http://dx.doi.org/10.1016/j.tetlet.2022.153820]
[56]
Wang, G.; Jia, J.; He, Y.; Wei, D.; Song, M.; Zhang, L.; Li, G.; Li, H.; Yuan, B. Solid-state molecular oxygen activation using ball milling and a piezoelectric material for aerobic oxidation of thiols. RSC Advances, 2022, 12(29), 18407-18411.
[http://dx.doi.org/10.1039/D2RA02255A] [PMID: 35799932]
[57]
Amer, M.M.; Hommelsheim, R.; Schumacher, C.; Kong, D.; Bolm, C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss., 2023, 241, 79-90.
[http://dx.doi.org/10.1039/D2FD00075J] [PMID: 36128995]
[58]
He, Y.; Wang, G.; Hu, W.; Wei, D.; Jia, J.; Li, H.; Yuan, B. Piezocatalyzed decarboxylative acylation of quinoxalin-2(1H)-ones using ball milling. ACS Sustain. Chem.& Eng., 2023, 11(3), 910-920.
[http://dx.doi.org/10.1021/acssuschemeng.2c04720]
[59]
Aganda, K.C.C.; Hong, B.; Lee, A. Visible-light-promoted switchable synthesis of c-3-functionalized quinoxalin-2(1H)-ones. Adv. Synth. Catal., 2021, 363(5), 1443-1448.
[http://dx.doi.org/10.1002/adsc.202001396]
[60]
Teng, Q.H.; Yao, Y.; Wei, W.X.; Tang, H.T.; Li, J.R.; Pan, Y.M. Direct C–H sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. Green Chem., 2019, 21(23), 6241-6245.
[http://dx.doi.org/10.1039/C9GC03045J]
[61]
Niu, S.L.; Yuan, W.; Gong, X.; Bao, B.; Wu, Z.W.; Xu, B.; Zeng, R.; Yang, Q.W.; Ouyang, Q. Mechanoredox Enabled the difunctionalization of unactivated alkenes via distal functional group migration. ACS Sustain. Chem.& Eng., 2023, 11(50), 17816-17825.
[http://dx.doi.org/10.1021/acssuschemeng.3c06118]
[62]
Seo, T.; Kubota, K.; Ito, H. Dual Nickel(II)/mechanoredox catalysis: Mechanical-force-driven aryl-amination reactions using ball milling and piezoelectric materials. Angew. Chem. Int. Ed., 2023, 62(42), e202311531.
[http://dx.doi.org/10.1002/anie.202311531] [PMID: 37638843]
[63]
Ding, R.; Liu, Q.; Zheng, L. Piezoelectric metal-organic frameworks mediated mechanoredox borylation and arylation reactions by ball milling. Chemistry, 2023, 29(20), e202203792.
[http://dx.doi.org/10.1002/chem.202203792] [PMID: 36620944]
[64]
Bu, M.; Lu, G.; Jiang, J.; Cai, C. Merging visible-light photoredox and micellar catalysis: Arylation reactions with anilines nitrosated in situ. Catal. Sci. Technol., 2018, 8(15), 3728-3732.
[http://dx.doi.org/10.1039/C8CY01221K]
[65]
Shaaban, S.; Jolit, A.; Petkova, D.; Maulide, N. A family of low molecular-weight, organic catalysts for reductive C–C bond formation. Chem. Commun. (Camb.), 2015, 51(73), 13902-13905.
[http://dx.doi.org/10.1039/C5CC03580E] [PMID: 26239300]
[66]
Liu, J.; Wang, H.; Bai, J.; Li, T.; Yang, Y.; Peng, Y.; Wang, B. Gram-scale synthesis of aligned C3N4–polypyrrole heterojunction aerogels with tunable band structures as efficient visible and near infrared light-driven metal-free photocatalysts. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(47), 24920-24928.
[http://dx.doi.org/10.1039/C7TA08389K]
[67]
Wang, H.; Ding, W.; Zou, G. Mechanoredox/Nickel co-catalyzed cross electrophile coupling of benzotriazinones with alkyl (Pseudo)halides. J. Org. Chem., 2023, 88(18), 12891-12901.
[http://dx.doi.org/10.1021/acs.joc.3c00681] [PMID: 37615491]
[68]
Yang, X.; Wang, H.; Zhang, Y.; Su, W.; Yu, J. Generation of aryl radicals from in situ activated homolytic scission: Driving radical reactions by ball milling. Green Chem., 2022, 24(11), 4557-4565.
[http://dx.doi.org/10.1039/D2GC00910B]
[69]
Gu, X.; Wang, T.; Yan, K. Solvent-free mechanoradical-mediated minisci-type C–H alkylation of N-heteroarenes. Org. Lett., 2023, 25(40), 7287-7292.
[http://dx.doi.org/10.1021/acs.orglett.3c02480] [PMID: 37787464]
[70]
Chakma, P.; Zeitler, S.M.; Baum, F.; Yu, J.; Shindy, W.; Pozzo, L.D.; Golder, M.R. Mechanoredox catalysis enables a sustainable and versatile reversible addition-fragmentation chain transfer polymerization process. Angew. Chem. Int. Ed., 2023, 62(2), e202215733.
[http://dx.doi.org/10.1002/anie.202215733] [PMID: 36395245]
[71]
Nothling, M.D.; Daniels, J.E.; Vo, Y.; Johan, I.; Stenzel, M.H. Mechanically activated solid-state radical polymerization and cross-linking via piezocatalysis. Angew. Chem. Int. Ed., 2023, 62(20), e202218955.
[http://dx.doi.org/10.1002/anie.202218955] [PMID: 36919238]
[72]
Zeitler, S.M.; Chakma, P.; Golder, M.R. Diaryliodonium salts facilitate metal-free mechanoredox free radical polymerizations. Chem. Sci. (Camb.), 2022, 13(14), 4131-4138.
[http://dx.doi.org/10.1039/D2SC00313A] [PMID: 35440983]
[73]
Zeitler, S.M.; Golder, M.R. Shake, shear, and grind! – the evolution of mechanoredox polymerization methodology. Chem. Commun. (Camb.), 2023, 60(1), 26-35.
[http://dx.doi.org/10.1039/D3CC04323A] [PMID: 38018257]
[74]
Wang, X.; Zhang, X.; Xue, L.; Wang, Q.; You, F.; Dai, L.; Wu, J.; Kramer, S.; Lian, Z. Mechanochemical synthesis of aryl fluorides by using ball milling and a piezoelectric material as the redox catalyst. Angew. Chem. Int. Ed., 2023, 62(39), e202307054.
[http://dx.doi.org/10.1002/anie.202307054] [PMID: 37523257]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy