Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Structurally Diverse and Biologically Promising Polyheterocycles Involving Benzo[a]phenazin-5-ols

Author(s): Bubun Banerjee*, Arvind Singh, Anu Priya, Manmeet Kaur and Aditi Sharma

Volume 28, Issue 12, 2024

Published on: 13 May, 2024

Page: [914 - 940] Pages: 27

DOI: 10.2174/0113852728310974240424080252

Price: $65

Abstract

Nowadays, polyheterocyclic moieties are playing an important role in drug discovery. Many natural products contain a wide variety of polyheterocycles. Very recently among many other polyheterocycles, benzo[a]phenazine skeleton has gained huge attention due to their broad range of pharmacological efficacies which include anti-plasmodial, antitumor, antimalarial, anticancer, etc. activities. Interestingly, benzo[a]phenazin-5-ol derivatives have been used further as a template for the synthesis of structurally diverse biologically promising polyheterocycles under various reaction conditions. In this review, we have summarized all the recent developments related to the synthesis of structurally diverse biologically promising polyheterocycles involving benzo[a]phenazin-5-ol as a starting reagent or as an intermediate.

Graphical Abstract

[1]
Laursen, J.B.; Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev., 2004, 104(3), 1663-1686.
[http://dx.doi.org/10.1021/cr020473j] [PMID: 15008629]
[2]
Bakthadoss, M.; Vinayagam, V. Construction of hybrid polycyclic quinolinobenzo[a]phenazinone architectures using solid-state melt reaction (SSMR). Mol. Divers., 2021, 25(4), 2447-2458.
[http://dx.doi.org/10.1007/s11030-020-10090-6] [PMID: 32367313]
[3]
Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem., 2017, 25(22), 6149-6166.
[http://dx.doi.org/10.1016/j.bmc.2017.01.002] [PMID: 28094222]
[4]
Huigens, R.W., III; Brummel, B.R.; Tenneti, S.; Garrison, A.T.; Xiao, T. Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery. Molecules, 2022, 27(3), 1112.
[http://dx.doi.org/10.3390/molecules27031112] [PMID: 35164376]
[5]
Dehghan, P.; Mohebat, R. A highly efficient and green synthesis of pyrimido-fused benzophenazines via microwave-assisted and H3PW12O40@Nano-ZnO catalyzed a sequential one-pot cyclization in aqueous medium. Polycycl. Aromat. Compd., 2020, 40(4), 1164-1174.
[http://dx.doi.org/10.1080/10406638.2018.1533874]
[6]
Taheri, M.; Mohebat, R.; Moslemin, M.H. Synthesis of benzo[a]furo[2, 3-c]phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H3PW12O40@Fe3O4-ZnO for high-performance removal of methylene blue. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 250-260.
[http://dx.doi.org/10.1080/21691401.2021.1894163] [PMID: 33703965]
[7]
Mishra, A.; Pandey, Y.K.; Tufail, F.; Singh, J.; Singh, J. A convenient and green synthetic approach for benzo[a]pyrano[2,3-c] phenazines via supramolecular catalysis. Catal. Lett., 2020, 150(6), 1659-1668.
[http://dx.doi.org/10.1007/s10562-019-03057-2]
[8]
Nazeef, M.; Saquib, M.; Tiwari, S.K.; Yadav, V.; Ansari, S.; Sagir, H.; Hussain, M.K.; Siddiqui, I.R. Catalyst free, multicomponent green approach to benzo[a]chromeno[2,3-c]phenazines using glycerol as a recyclable and biodegradable promoting medium. ChemistrySelect, 2020, 5(45), 14447-14454.
[http://dx.doi.org/10.1002/slct.202003732]
[9]
Yazdani-Elah-Abadi, A.; Lashkari, M.; Mohebat, R. DABCO-catalyzed five-component domino protocol for the synthesis of novel benzo[a]pyrazolo[4′,3′:5,6]pyrano[2,3-c]phenazines in PEG-400 as an efficient green reaction medium. Org. Prep. Proced. Int., 2020, 52(4), 261-273.
[http://dx.doi.org/10.1080/00304948.2020.1765297]
[10]
Chaudhary, A.; Khurana, J.M. Synthetic routes for phenazines: an overview. Res. Chem. Intermed., 2018, 44(2), 1045-1083.
[http://dx.doi.org/10.1007/s11164-017-3152-8]
[11]
Choudhary, A.S.; Sekar, N. Novel 6-(1H-benzo[d]imidazol-2-yl) benzo[a]phenazin-5-ol derivatives with dual emission and large stokes shift synthesis, photophysical properties and computational studies. J. Fluoresc., 2015, 25(4), 835-848.
[http://dx.doi.org/10.1007/s10895-015-1549-6] [PMID: 25863947]
[12]
Halicki, P.C.B.; da Silva, E.N.; Jardim, G.A.M.; Almeida, R.G.; Vicenti, J.R.M.; Gonçalves, B.L.; da Silva, P.E.A.; Ramos, D.F. Benzo[a]phenazine derivatives: Promising scaffolds to combat resistant Mycobacterium tuberculosis. Chem. Biol. Drug Des., 2021, 98(3), 352-362.
[http://dx.doi.org/10.1111/cbdd.13853] [PMID: 33932096]
[13]
Kostenko, A.A.; Bykova, K.A.; Kucherenko, A.S.; Komogortsev, A.N.; Lichitsky, B.V.; Zlotin, S.G. 2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions. Org. Biomol. Chem., 2021, 19(8), 1780-1786.
[http://dx.doi.org/10.1039/D0OB02283G] [PMID: 33543186]
[14]
Kumari, P.; Bharti, R.; Parvin, T. Synthesis of aminouracil-tethered tri-substituted methanes in water by iodine-catalyzed multicomponent reactions. Mol. Divers., 2019, 23(1), 205-213.
[http://dx.doi.org/10.1007/s11030-018-9862-z] [PMID: 30109557]
[15]
Banerjee, B.; Singh, A.; Sharma, A.; Priya, A.; Kaur, M.; Gupta, V.K. A simple and efficient method for the synthesis of benzo[3,4-a]phenazin-5-ols and benzo[f]pyrido[b]quinoxalin-5-ol derivatives using trisodium citrate as an efficient organo-catalyst at room temperature. Poly. Arom. Comp., 2023, 2023
[http://dx.doi.org/10.1080/10406638.2023.2238869]
[16]
Olyaei, A.; Sadeghpour, M. A review on lawsone-based benzo[a]phenazin-5-ol: synthetic approaches and reactions. RSC Advances, 2022, 12(22), 13837-13895.
[http://dx.doi.org/10.1039/D2RA02139K] [PMID: 35541431]
[17]
Rahimi, F.; Olyaei, A.; Ghasemzadeh, H. Multicomponent domino protocol for the one-pot synthesis of novel benzo[a]phenazin-5-ol derivatives. Res. Chem. Intermed., 2024, 50(1), 239-249.
[http://dx.doi.org/10.1007/s11164-023-05182-5]
[18]
Kaur, M.; Priya, A.; Sharma, A.; Singh, A.; Banerjee, B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. Synth. Commun., 2022, 52(16), 1635-1656.
[http://dx.doi.org/10.1080/00397911.2022.2090262]
[19]
Priya, A.; Sharma, A.; Kaur, M.; Singh, A.; Banerjee, B. Preyssler catalyst: A heterogeneous polyacidic catalyst for the efficient synthesis of diverse bioactive heterocyclic scaffolds. ARKIVOC, 2022, 2022(3), 85-111.
[http://dx.doi.org/10.24820/ark.5550190.p011.783]
[20]
Singh, A.; Kaur, B.; Sharma, A.; Priya, A.; Kaur, M.; Shamim, M.; Banerjee, B. 9 One-pot multi-component synthesis of diverse bioactive heterocyclic scaffolds involving 6-aminouracil or its N-methyl derivatives as a versatile reagent. Phy. Sci. Rev., 2022, 331-356.
[http://dx.doi.org/10.1515/9783110797428-009]
[21]
Banerjee, B.; Singh, A.; Kaur, G. 9 Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions. Phy. Sci. Rev., 2022, 7, 227-250.
[http://dx.doi.org/10.1515/9783110732542-009]
[22]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S-heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[23]
Banerjee, B.; Kaur, G.; Kaur, N. p-Sulfonic acid calix[n]arene catalyzed synthesis of bioactive heterocycles: A review. Curr. Org. Chem., 2021, 25(1), 209-222.
[http://dx.doi.org/10.2174/1385272824999201019162655]
[24]
Banik, B.K.; Banerjee, B.; Kaur, G.; Saroch, S.; Kumar, R. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles. Molecules, 2020, 25(24), 5918.
[http://dx.doi.org/10.3390/molecules25245918] [PMID: 33327504]
[25]
Banerjee, B.; Kaur, G. Microwave assisted catalyst-free synthesis of bioactive heterocycles. Curr. Microw. Chem., 2020, 7(1), 5-22.
[http://dx.doi.org/10.2174/2213335607666200226102010]
[26]
Singh, A.; Kaur, G.; Banerjee, B. Recent developments on the synthesis of biologically significant bis/tris(indolyl)methanes under various reaction conditions: A review. Curr. Org. Chem., 2020, 24(6), 583-621.
[http://dx.doi.org/10.2174/1385272824666200228092752]
[27]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23(16), 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]
[28]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5(3), 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[29]
Kaur, G.; Devi, M.; Kumari, A.; Devi, R.; Banerjee, B. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: A decade update. ChemistrySelect, 2018, 3(34), 9892-9910.
[http://dx.doi.org/10.1002/slct.201801887]
[30]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83(10), 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[31]
Mayakrishnan, S.; Arun, Y.; Balachandran, C.; Awale, S.; Maheswari, N.U.; Perumal, P.T. Ru(II)-Catalyzed regiospecific C−H/O−H oxidative annulation to access isochromeno[8,1-ab]phenazines: far-red fluorescence and live cancer cell imaging. ACS Omega, 2017, 2(6), 2694-2705.
[http://dx.doi.org/10.1021/acsomega.7b00335] [PMID: 30023674]
[32]
Mohebat, R.; Abadi, Y.E.A.; Maghsoodlou, M.T.; Hazeri, N. DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3H-benzo[a]pyrano[2,3-c]phenazine-1-carboxylate and 3-(5-hydroxybenzo[a]phenazin-6-yl)acrylate derivatives in water. Chin. Chem. Lett., 2017, 28(5), 943-948.
[http://dx.doi.org/10.1016/j.cclet.2016.12.042]
[33]
Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Conjugate addition of carbon acids to β,γ-unsaturated α-keto esters: product tautomerism and application for asymmetric synthesis of benzo[a]phenazin-5-ol derivatives. J. Org. Chem., 2019, 84(21), 13824-13831.
[http://dx.doi.org/10.1021/acs.joc.9b02021] [PMID: 31566387]
[34]
Choudhary, A.S.; Sekar, N. Phenazine fused benzo coumarins with negative solvatochromism and positive solvatochromic emission - Synthesis, photo physical properties, DFT and TDDFT studies. J. Fluoresc., 2015, 25(3), 675-684.
[http://dx.doi.org/10.1007/s10895-015-1553-x] [PMID: 25773710]
[35]
Mohebat, R.; Abadi, Y.E.A.; Maghsoodlou, M.T. A rapid and efficient domino protocol for the synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine and benzo[f]pyrano[2,3-h]quinoxaline derivatives. Res. Chem. Intermed., 2016, 42(6), 6039-6048.
[http://dx.doi.org/10.1007/s11164-016-2437-7]
[36]
Shaabani, A.; Ghadari, R.; Arabieh, M. Synthesis of a new library of pyrano-phenazine derivatives via a novel three-component protocol. Helv. Chim. Acta, 2014, 97(2), 228-236.
[http://dx.doi.org/10.1002/hlca.201300006]
[37]
Saluja, P.; Chaudhary, A.; Khurana, J.M. Synthesis of novel fluorescent benzo[a]pyrano[2,3-c]phenazine and benzo[a]chromeno[2,3-c]phenazine derivatives via facile four-component domino protocol. Tetrahedron Lett., 2014, 55(23), 3431-3435.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.072]
[38]
Reddy, M.V.; Valasani, K.R.; Lim, K.T.; Jeong, Y.T. Tetramethylguanidiniumchlorosulfonate ionic liquid (TMG IL): An efficient reusable catalyst for the synthesis of tetrahydro-1H-benzo[a]chromeno[2,3-c]phenazin-1-ones under solvent-free conditions and evaluation for their in vitro bioassay activity. New J. Chem., 2015, 39(12), 9931-9941.
[http://dx.doi.org/10.1039/C5NJ01866H]
[39]
Khurana, J.M.; Chaudhary, A.; Lumb, A.; Nand, B. An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies. Green Chem., 2012, 14(8), 2321-2327.
[http://dx.doi.org/10.1039/c2gc35644a]
[40]
Rajeswari, M.; Khanna, G.; Chaudhary, A.; Khurana, J.M. Multicomponent domino process for the synthesis of some novel benzo[a]chromenophenazine fused ring systems using H2SO4, phosphotungstic acid, and [NMP] H2PO4. Synth. Commun., 2015, 45(12), 1426-1432.
[http://dx.doi.org/10.1080/00397911.2015.1024324]
[41]
Abadi, Y.E.A.; Mohebat, R.; Maghsoodlou, M.T.; Heydari, R. One-pot, sequential four-component synthesis of benzo[a]chromeno[2,3-c]phenazine derivatives using SiO2-SO3H as an efficient and recoverable catalyst under conventional heating and microwave irradiation. Polycycl. Aromat. Compd., 2018, 38(1), 92-101.
[http://dx.doi.org/10.1080/10406638.2016.1164200]
[42]
Mohebat, R.; Simin, N.; Abadi, Y.E.A. A rapid and highly efficient microwave-promoted four-component domino reaction for the synthesis of novel spiro[benzo[a]chromeno[2,3-c]phenazine] derivatives under solvent-free conditions. Polycycl. Aromat. Compd., 2019, 39(2), 148-158.
[http://dx.doi.org/10.1080/10406638.2017.1293698]
[43]
Mohammadrezaei, M.; Mohebat, R.; Tabatabaee, M. Microwave-assisted multi-component domino reaction for the green synthesis of novel benzo[a]pyrano[3′,4′:5,6]pyrano[2,3-c]phenazines using H3PW12O40 as efficient, cost-effective and recyclable catalyst. Org. Prep. Proced. Int., 2019, 51(5), 477-485.
[http://dx.doi.org/10.1080/00304948.2019.1653128]
[44]
Mohebat, R.; Abadi, Y.E.A.; Maghsoodlou, M.T.; Mohammadi, M. PTSA-catalyzed four-component domino reactions for the one-pot synthesis of functionalized 11H-benzo[a]benzo[6,7]chromeno[2,3-c]phenazine-11,16(17H)-diones in PEG. Res. Chem. Intermed., 2016, 42(6), 5915-5926.
[http://dx.doi.org/10.1007/s11164-015-2413-7]
[45]
Pour, A.S.; Abadi, Y.E.A.; Afradi, M. Nanomagnetically modified thioglycolic acid (γ‐Fe2O3@SiO2&-SCH2CO2H): Efficient and reusable green catalyst for the one&-pot domino synthesis of spiro[benzo[a]benzo[6,7]chromeno[2,3&-c]phenazine] and benzo[a]benzo[6,7]chromeno[2,3&-c]phenazines. Appl. Organomet. Chem., 2017, 31(11), e3791.
[http://dx.doi.org/10.1002/aoc.3791]
[46]
Mohammadrezaei, M.; Mohebat, R.; Tabatabaee, M. H3PW12O40@nano&-ZnO: An efficient, recyclable, and eco&-friendly catalyst for the green synthesis of novel benzo[a]pyrimido[5′,4′:5,6]pyrano[2,3&-c]phenazines via sequential multicomponent reactions under microwave irradiation. J. Chin. Chem. Soc., 2018, 65(8), 1007-1013.
[http://dx.doi.org/10.1002/jccs.201700359]
[47]
Mohebat, R.; Abadi, A.Y.E.; Maghsoodlou, M.T.; Mohammadi, M.; Heydari, R. A green and efficient four-component sequential protocol for the synthesis of novel 16-(aryl)benzo[a]indeno[2′,1′:5,6]pyrano[2,3-c]phenazin-15(16H)-one derivatives using oxalic acid as a reusable and cost-effective organic catalyst. Res. Chem. Intermed., 2016, 42(9), 7121-7132.
[http://dx.doi.org/10.1007/s11164-016-2522-y]
[48]
Abadi, Y.E.A.; Mohebat, R.; Kangani, M. Microwave-assisted and L-proline catalysed domino cyclisation in an aqueous medium: A rapid, highly efficient and green synthesis of benzo[a]phenazine annulated heterocycles. J. Chem. Res., 2016, 40(12), 722-726.
[http://dx.doi.org/10.3184/174751916X14787124908891]
[49]
Yazdani-Elah-Abadi, A.; Mohebat, R.; Kangani, M. Microwave-assisted domino cyclization for the synthesis of novel spiro-benzo[a]phenazine annulated heterocycles catalyzed by a basic ionic liquid. J. Chin. Chem. Soc., 2017, 64(6), 690-698.
[http://dx.doi.org/10.1002/jccs.201700034]
[50]
Yazdi, M.S.A.; Abadi, Y.E.A.; Shams, N.; Mohebat, R. A rapid, efficient, and green synthesis of benzo[$a$]chromeno[2,3-$c$]phenazine derivatives via microwave assistance and DABCO~catalyzed a novel domino cyclization. Turk. J. Chem., 2017, 41, 567-576.
[http://dx.doi.org/10.3906/kim-1701-49]
[51]
Abadi, Z.H.M.; Mohebat, R.; Mosslemin, M.H. A novel eco-friendly catalyst- and solvent-free four-component synthesis of benzo[a]furo[2,3-c]phenazines under microwave conditions. Polycycl. Aromat. Compd., 2020, 40(1), 159-165.
[http://dx.doi.org/10.1080/10406638.2017.1385493]
[52]
Yazdani-Elah-Abadi, A.; Mohebat, R.; Maghsoodlou, M.T. Theophylline as the catalyst for the diastereoselective synthesis of trans-1,2-dihydrobenzo[a]furo[2,3-c]phenazines in water. RSC Advances, 2016, 6(87), 84326-84333.
[http://dx.doi.org/10.1039/C6RA18750A]
[53]
Aggarwal, K.; Khurana, J.M. Indeno- furan based colorimetric and on- off fluorescent pH sensors. J. Photochem. Photobiol. Chem., 2015, 307-308, 23-29.
[http://dx.doi.org/10.1016/j.jphotochem.2015.04.001]
[54]
Aggarwal, K.; Khurana, J.M. Phenazine containing indeno-furan based colorimetric and “on- off” fluorescent sensor for the detection of Cu2+ and Pb2+. J. Lumin., 2015, 167, 146-155.
[http://dx.doi.org/10.1016/j.jlumin.2015.06.027]
[55]
Harichandran, G.; Parameswari, P.; Shanmugam, P. Synthesis and photophysical properties of functionalized fluorescent 4H-chromenes and benzo[a]chromenophenazines as Fe3+ and Cu2+ ion sensor. Sens. Actuators B Chem., 2018, 272, 252-263.
[http://dx.doi.org/10.1016/j.snb.2018.05.134]
[56]
Wang, S.L.; Wu, F.Y.; Cheng, C.; Zhang, G.; Liu, Y.P.; Jiang, B.; Shi, F.; Tu, S.J. Multicomponent synthesis of poly-substituted benzo[a]pyrano[2,3-c]phenazine derivatives under microwave heating. ACS Comb. Sci., 2011, 13(2), 135-139.
[http://dx.doi.org/10.1021/co1000376] [PMID: 21218828]
[57]
Shaterian, H.R.; Moradi, F.; Mohammadnia, M. Nano copper(II) oxide catalyzed four-component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. C. R. Chim., 2012, 15(11-12), 1055-1059.
[http://dx.doi.org/10.1016/j.crci.2012.09.012]
[58]
Shaterian, H.R.; Mohammadnia, M. Mild basic ionic liquid catalyzed four component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. J. Mol. Liq., 2013, 177, 162-166.
[http://dx.doi.org/10.1016/j.molliq.2012.11.006]
[59]
Hasaninejad, A.; Firoozi, S. One-pot, sequential four-component synthesis of benzo[c]pyrano[3,2-a]phenazine, bis-benzo[c]pyrano[3,2-a]phenazine and oxospiro benzo[c]pyrano[3,2-a]phenazine derivatives using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient and reusable solid base catalyst. Mol. Divers., 2013, 17(3), 499-513.
[http://dx.doi.org/10.1007/s11030-013-9446-x] [PMID: 23665995]
[60]
Gao, J.; Chen, M.; Tong, X.; Zhu, H.; Yan, H.; Liu, D.; Li, W.; Qi, S.; Xiao, D.; Wang, Y.; Lu, Y.; Jiang, F. Synthesis, antitumor activity, and structure-activity relationship of some benzo[a]pyrano[2,3-c]phenazine derivatives. Comb. Chem. High Throughput Screen., 2015, 18(10), 960-974.
[http://dx.doi.org/10.2174/1386207318666150915113549] [PMID: 26369405]
[61]
Bharti, R.; Parvin, T. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Mol. Divers., 2016, 20(4), 867-876.
[http://dx.doi.org/10.1007/s11030-016-9681-z] [PMID: 27317166]
[62]
Abadi, A.Y.E.; Maghsoodlou, M.T.; Heydari, R.; Mohebat, R. An efficient four-component domino protocol for the rapid and green synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives using caffeine as a homogeneous catalyst. Res. Chem. Intermed., 2016, 42(2), 1227-1235.
[http://dx.doi.org/10.1007/s11164-015-2083-5]
[63]
Abadi, Y.E.A.; Maghsoodlou, M.T.; Mohebat, R.; Heydari, R. Theophylline as a new and green catalyst for the one-pot synthesis of spiro[benzo[a]pyrano[2,3-c]phenazine] and benzo[a]pyrano[2,3-c]phenazine derivatives under solvent-free conditions. Chin. Chem. Lett., 2017, 28(2), 446-452.
[http://dx.doi.org/10.1016/j.cclet.2016.09.016]
[64]
Esmaeilpour, M.; Sardarian, A.R.; Firouzabadi, H. Theophylline supported on modified silica-coated magnetite nanoparticles as a novel, efficient, reusable catalyst in green one-pot synthesis of spirooxindoles and phenazines. ChemistrySelect, 2018, 3(32), 9236-9248.
[http://dx.doi.org/10.1002/slct.201801506]
[65]
Zarabi, F.M.; Naeimi, H. Ultrasound promoted synthesis of benzo[a]pyrano-[2,3-c]phenazines using multisulfonic acid hyperbranched polyglycerol functionalized graphene oxide as a novel and reusable catalyst. Polycycl. Aromat. Compd., 2021, 41(6), 1299-1318.
[http://dx.doi.org/10.1080/10406638.2019.1672202]
[66]
Naeimi, H.; Zarabi, M.F. Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo[a]pyrano-[2,3-c]phenazines under solvent-free conditions. RSC Advances, 2019, 9(13), 7400-7410.
[http://dx.doi.org/10.1039/C8RA10180A] [PMID: 35519942]
[67]
Abolghassem, S.; Molaei, S.; Javanshir, S. Preparation of α-chitin-based nanocomposite as an effective biocatalyst for microwave aided domino reaction. Heliyon, 2019, 5(7), e02036.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02036] [PMID: 31334375]
[68]
Nikoorazm, M.; Khanmoradi, M.; Mohammadi, M. Guanine-La complex supported onto SBA-15: A novel efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component Tandem Knoevenagel condensation- Michael addition-cyclization reactions. Appl. Organomet. Chem., 2020, 34(4), e5504.
[http://dx.doi.org/10.1002/aoc.5504]
[69]
Nikoorazm, M.; Khanmoradi, M. Application of Cu (II)-guanine complexes anchored on SBA-15 and MCM-41 as efficient nanocatalysts for one-pot, four-component domino synthesis of phenazine derivatives and investigation of their antimicrobial behavior. Catal. Lett., 2020, 150(10), 2823-2840.
[http://dx.doi.org/10.1007/s10562-020-03185-0]
[70]
Daraie, M.; Tamoradi, T.; Heravi, M.M.; Karmakar, B. Ce immobilized 1H-pyrazole-3,5-dicarboxylic acid (PDA) modified CoFe2O4: A potential magnetic nanocomposite catalyst towards the synthesis of diverse benzo[a]pyrano[2,3-c]phenazine derivatives. J. Mol. Struct., 2020, 150, 2823-2840.
[71]
Choghamarani, G.A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed., 2019, 45(11), 5705-5723.
[http://dx.doi.org/10.1007/s11164-019-03930-0]
[72]
Mahdavinia, G.H.; Mirzazadeh, M.; Notash, B. A rapid and simple diversity-oriented synthesis of novel 3-amino-2′-oxospiro [benzo[c]pyrano[3,2-a]phenazine-1,3′-indoline]-2-carbonitrile/carboxylate derivatives via a one-pot, four-component domino reaction. Tetrahedron Lett., 2013, 54(27), 3487-3492.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.082]
[73]
Lu, Y.; Wang, L.; Wang, X.; Xi, T.; Liao, J.; Wang, Z.; Jiang, F. Design, combinatorial synthesis and biological evaluations of novel 3-amino-1′-((1-aryl-1H-1,2,3-triazol-5-yl)methyl)-2′-oxospiro[benzo[a] pyrano[2,3-c]phena-zine-1,3′-indoline]-2-carbonitrile antitumor hybrid molecules. Eur. J. Med. Chem., 2017, 135, 125-141.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.040] [PMID: 28441581]
[74]
Ghomi, S.J.; Bakhtiari, A. Preparation and characterization of new inorganic- organic hybrid catalyst H3PMo12O40/Hyd-SBA-15 and its application in the domino multi-component reaction. Appl. Organomet. Chem., 2019, 33(12), e5201.
[http://dx.doi.org/10.1002/aoc.5201]
[75]
Hasaninejad, A.; Firoozi, S.; Mandegani, F. An efficient synthesis of novel spiro[benzo[c]pyrano[3,2-a]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett., 2013, 54(22), 2791-2794.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.073]
[76]
Nagaraju, P.; Reddy, P.N.; Padmaja, P.; Ugale, V.G. Synthesis, antiproliferative activity and molecular docking studies of novel benzo[a]pyrano-[2,3-c]phenazine derivatives. Chem. Data Collect., 2020, 30, 100541.
[http://dx.doi.org/10.1016/j.cdc.2020.100541]
[77]
Amanpour, T.; Mirzaei, P.; Bazgir, A. Isocyanide-based four-component synthesis of benzo[a]pyrano[2,3-c]phenazines. Synthesis, 2012, 44, 235-240.
[78]
Mohebat, R.; Dehgan, P.; Abadi, Y.E.A. Green synthesis of novel pyrazolo-fused benzophenazines using H3PW12O40 as efficient and recyclable catalyst under microwave irradiation. J. Chin. Chem. Soc., 2018, 65(10), 1259-1265.
[http://dx.doi.org/10.1002/jccs.201800071]
[79]
Tabibian, M.; Mohebat, R.; Tabatabaee, M. A novel one-pot and rapid synthesis of polyfunctionalized benzo[a]pyrimido[5′4′5,6] pyrido[2,3-c]phenazine derivatives under microwave irradiation. Turk. J. Chem., 2018, 42(4), 1008-1017.
[http://dx.doi.org/10.3906/kim-1710-13]
[80]
Verma, K.; Tailor, Y.K.; Khandelwal, S.; Agarwal, M.; Rushell, E.; Kumari, Y.; Awasthi, K.; Kumar, M. An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Advances, 2018, 8(53), 30430-30440.
[http://dx.doi.org/10.1039/C8RA04919J] [PMID: 35546857]
[81]
Abadi, Y.E.A.; Pour, S.A.; Kangani, M.; Mohebat, R. l-Proline catalyzed domino cyclization for the green synthesis of novel 1,4-dihydrobenzo[a]pyrido[2,3-c]phenazines. Monatsh. Chem., 2017, 148(12), 2135-2142.
[http://dx.doi.org/10.1007/s00706-017-2008-7]
[82]
Abadi, Y.E.A.; Mohebat, R.; Lashkari, M. Nano-Fe3O4-promoted five-component domino reactions for the green synthesis of novel benzo[a]phthalazino[2′3′1,2]pyrazolo[3,4-c]phenazines in PEG-400 as an efficient ecofriendly reaction medium. Polycycl. Aromat. Compd., 2020, 40(2), 268-279.
[http://dx.doi.org/10.1080/10406638.2017.1411957]
[83]
Mohebat, R.; Abadi, Y.E.A. Caffeine catalyzed green synthesis of novel benzo[a][1,3]oxazino[6,5-c]phenazines via a one-pot multi-component sequential protocol in a basic ionic liquid. Chin. Chem. Lett., 2017, 28(6), 1340-1344.
[http://dx.doi.org/10.1016/j.cclet.2017.01.024]
[84]
Khanna, G.; Chaudhary, A.; Khurana, J.M. An efficient catalyst-free synthesis of novel benzo[a][1,3]oxazino[6,5-c]phenazine derivatives via one pot four-component domino protocol in water. Tetrahedron Lett., 2014, 55(49), 6652-6654.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.067]
[85]
Taheri, M.; Mohebat, R.; Mosslemin, M.H. Multi-component reaction synthesis of novel 3-phenyl-3,4-dihydro-2H-benzo[a][1,3] oxazino[5,6-c]phena-zine derivatives catalyzed by reusable ZnO-PTA@Fe3O4/EN-MIL-101(Cr) nanopowder at room temperature. Green Chem. Lett. Rev., 2020, 13(3), 179-191.
[http://dx.doi.org/10.1080/17518253.2020.1800830]
[86]
Taheri, M.; Mohebat, R. Synthesis of one-pot pyrazolo[4′3′5,6]pyrano[2,3-c]phenazin-15-yl) methanone derivatives via a multi-component using Fe3O4@TiO2-SO3 H as a recoverable magnetic catalyst under microwave irradiation. Green Chem. Lett. Rev., 2020, 13(3), 165-178.
[http://dx.doi.org/10.1080/17518253.2020.1794056]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy