Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis and Biological Applications of Coumarinyl-Chalcones

Author(s): Sayed K. Ramadan*, Sameh A. Rizk and Eman A.E. El-Helw

Volume 28, Issue 12, 2024

Published on: 10 May, 2024

Page: [897 - 904] Pages: 8

DOI: 10.2174/0113852728248318240418092208

Price: $65

conference banner
Abstract

This survey provides information on the synthesis and biological applications of coumarinyl-chalcones. Chalcones are unsaturated ketones involving the reactive ketoethylenic group (CO-CH=CH). Chalcones are naturally abundant in many medical plants, including vegetables, fruits, and foods. Natural and synthetic chalcone compounds exhibit a broad spectrum of biological properties like anticancer, anti-inflammatory, anti-HIV, antioxidant, antimalarial, and antimicrobial. Some conventional, microwave, and grinding techniques have been utilized for the synthesis of chalcones. Noteworthy, the Claisen- Schmidt condensation reaction remains the most popular and effective method for synthesis. It summarizes information about its synthetic methods as building blocks in some reactions like cyclization reactions and medical applications. This review article presents an overview of approaches and biological data for chalcones bearing a coumarin scaffold.

Next »
Graphical Abstract

[1]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[2]
Guida, A.; Lhouty, M.H.; Tichit, D.; Figueras, F.; Geneste, P. Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Appl. Catal. A Gen., 1997, 164(1-2), 251-264.
[http://dx.doi.org/10.1016/S0926-860X(97)00175-0]
[3]
Shalaby, M.A.; Rizk, S.A.; Fahim, A.M. Synthesis, reactions and application of chalcones: A systematic review. Org. Biomol. Chem., 2023, 21(26), 5317-5346.
[http://dx.doi.org/10.1039/D3OB00792H] [PMID: 37338020]
[4]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(2), 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[5]
Díaz-Tielas, C.; Graña, E.; Reigosa, M.; Sánchez-Moreiras, A. Biological activities and novel applications of chalcones. Planta Daninha, 2016, 34, 607-616.
[6]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[7]
Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177.
[http://dx.doi.org/10.3390/molecules26237177] [PMID: 34885754]
[8]
Ammaji, S.; Masthanamma, S.; Bhandare, R.R.; Annadurai, S.; Shaik, A.B. Antitubercular and antioxidant activities of hydroxy and chloro substituted chalcone analogues: Synthesis, biological and computational studies. Arab. J. Chem., 2022, 15(2), 103581.
[http://dx.doi.org/10.1016/j.arabjc.2021.103581]
[9]
Romanelli, G.; Pasquale, G.; Sathicq, Á.; Thomas, H.; Autino, J.; Vázquez, P. Synthesis of chalcones catalyzed by aminopropylated silica sol-gel under solvent-free conditions. J. Mol. Catal. Chem., 2011, 340(1-2), 24-32.
[http://dx.doi.org/10.1016/j.molcata.2011.03.004]
[10]
Climent, M.J.; Corma, A.; Iborra, S.; Mifsud, M.; Velty, A. New one-pot multistep process with multifunctional catalysts: Decreasing the E factor in the synthesis of fine chemicals. Green Chem., 2010, 12(1), 99-107.
[http://dx.doi.org/10.1039/B919660A]
[11]
Dhar, D.N. The chemistry of chalcones and related compounds; Wiley: New York, 1981.
[12]
Eddarir, S.; Cotelle, N.; Bakkour, Y.; Rolando, C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett., 2003, 44(28), 5359-5363.
[http://dx.doi.org/10.1016/S0040-4039(03)01140-7]
[13]
Bohm, B.A. Introduction to Flavonoids; Harwood academic publishers, 1998.
[14]
Fukui, K.; Matsumoto, T.; Nakamura, S.; Nakayama, M.; Horie, T. Synthetic studies of the flavone derivatives. VII. The synthesis of jaceidin. Bull. Chem. Soc. Jpn., 1968, 41(6), 1413-1417.
[http://dx.doi.org/10.1246/bcsj.41.1413]
[15]
Al-Masum, M.; Ng, E.; Wai, M.C. Palladium-catalyzed direct cross-coupling of potassium styryltrifluoroborates and benzoyl chlorides-a one step method for chalcone synthesis. Tetrahedron Lett., 2011, 52(9), 1008-1010.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.085]
[16]
Srivastava, Y.K. Ecofriendly microwave assisted synthesis of some chalcones. Rasayan J. Chem., 2008, 1(4), 884.
[17]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia-Kocienski olefination. Tetrahedron, 2010, 66(48), 9445-9449.
[http://dx.doi.org/10.1016/j.tet.2010.09.089]
[18]
Zangade, S.; Mokle, S.; Vibhute, A.; Vibhute, Y. An efficient and operationally simple synthesis of some new chalcones by using grinding technique. Chem. Sci. J., 2011, 2, 1.
[http://dx.doi.org/10.4172/2150-3494.1000011]
[19]
Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.C. Chalcone: A promising bioactive scaffold in medicinal chemistry. Pharmaceuticals, 2022, 15(10), 1250.
[http://dx.doi.org/10.3390/ph15101250] [PMID: 36297362]
[20]
Watson, R.; Preedy, V.R.; Zibadi, S. Polyphenols: Prevention and treatment of human disease; Academic press, 2018.
[21]
Qin, C.X.; Chen, X.; Hughes, R.A.; Williams, S.J.; Woodman, O.L. Understanding the cardioprotective effects of flavonols: Discovery of relaxant flavonols without antioxidant activity. J. Med. Chem., 2008, 51(6), 1874-1884.
[http://dx.doi.org/10.1021/jm070352h] [PMID: 18307286]
[22]
Abu, N.; Ho, W.Y.; Yeap, S.K.; Akhtar, M.N.; Abdullah, M.P.; Omar, A.R.; Alitheen, N.B. The flavokawains: Uprising medicinal chalcones. Cancer Cell Int., 2013, 13(1), 102.
[http://dx.doi.org/10.1186/1475-2867-13-102] [PMID: 23305405]
[23]
Feldman, M.; Tanabe, S.; Epifano, F.; Genovese, S.; Curini, M.; Grenier, D. Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: Potential therapeutic benefits. J. Nat. Prod., 2011, 74(1), 26-31.
[http://dx.doi.org/10.1021/np100547b] [PMID: 21158427]
[24]
Padmavathi, G.; Roy, N.K.; Bordoloi, D.; Arfuso, F.; Mishra, S.; Sethi, G.; Bishayee, A.; Kunnumakkara, A.B. Butein in health and disease: A comprehensive review. Phytomedicine, 2017, 25, 118-127.
[http://dx.doi.org/10.1016/j.phymed.2016.12.002] [PMID: 28190465]
[25]
Wang, H. Comprehensive Organic Name Reactions; Wiley Germany, 2010.
[http://dx.doi.org/10.1002/9780470638859]
[26]
Park, J.; Yun, J.; Kim, J.; Jang, D.J.; Park, C.H.; Lee, K. Brønsted acid-catalyzed meyer-schuster rearrangement for the synthesis of α, β-unsaturated carbonyl compounds. Synth. Commun., 2014, 44(13), 1924-1929.
[http://dx.doi.org/10.1080/00397911.2013.879314]
[27]
Kil, Y.S.; Pham, S.T.; Seo, E.K.; Jafari, M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch. Pharm. Res., 2017, 40(6), 655-675.
[http://dx.doi.org/10.1007/s12272-017-0892-3] [PMID: 28439780]
[28]
Hassaballah, A.I.; Ramadan, S.K.; Rizk, S.A.; El-Helw, E.A.E.; Abdelwahab, S.S. Ultrasonic promoted regioselective reactions of the novel spiro 3,1-benzoxazon-isobenzofuranone dye toward some organic base reagents. Polycycl. Aromat. Compd., 2023, 43(4), 2973-2989.
[http://dx.doi.org/10.1080/10406638.2022.2061021]
[29]
El-Naggar, A.M.; Ramadan, S.K. Efficient synthesis of some pyrimidine and thiazolidine derivatives bearing quinoline scaffold under microwave irradiation. Synth. Commun., 2020, 50(14), 2188-2198.
[http://dx.doi.org/10.1080/00397911.2020.1769673]
[30]
Halim, K.N.M.; Rizk, S.A.; El-Hashash, M.A.; Ramadan, S.K. Straightforward synthesis, antiproliferative screening, and density functional theory study of some pyrazolylpyrimidine derivatives. J. Heterocycl. Chem., 2021, 58(2), 636-645.
[http://dx.doi.org/10.1002/jhet.4204]
[31]
Ramadan, S.K.; El-Ziaty, A.K.; El-Helw, E.A.E. Synthesis and antioxidant evaluation of some heterocyclic candidates from 3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)propenonitrile. Synth. Commun., 2021, 51(8), 1-12.
[http://dx.doi.org/10.1080/00397911.2021.1879152]
[32]
Ramadan, S.K.; Ibrahim, N.A.; El-Kaed, S.A.; El-Helw, E.A.E. New potential fungicides pyrazole-based heterocycles derived from 2-cyano-3-(1,3-diphenyl-1H-pyrazol-4-yl) acryloyl isothiocyanate. J. Sulfur Chem., 2021, 42(5), 529-546.
[http://dx.doi.org/10.1080/17415993.2021.1909591]
[33]
Gad, N.M.; Abou-Elmagd, W.S.I.; Haneen, D.S.A.; Ramadan, S.K. Reactivity of 5-phenyl-3-[(2-chloroquinolin-3-yl)methylene] furan-2(3H)-one towards hydrazine and benzylamine: A comparative study. Synth. Commun., 2021, 51(9), 1384-1397.
[http://dx.doi.org/10.1080/00397911.2021.1882498]
[34]
Kaddah, M.M.; Morsy, A.R.I.; Fahmi, A.A.; Kamel, M.M.; Elsafty, M.M.; Rizk, S.A.; Ramadan, S.K. Synthesis and biological activity on IBD virus of diverse heterocyclic systems derived from 2-cyano-N'-((2-oxo-1,2-dihydroquinolin-3-yl)methylene)acetohydrazide. Synth. Commun., 2021, 51(22), 3366-3378.
[http://dx.doi.org/10.1080/00397911.2021.1970776]
[35]
Kaddah, M.M.; Fahmi, A.A.; Kamel, M.M.; Rizk, S.A.; Ramadan, S.K. Rodenticidal activity of some quinoline-based heterocycles derived from hydrazide-hydrazone derivative. Polycycl. Aromat. Compd., 2023, 43(5), 4231-4241.
[http://dx.doi.org/10.1080/10406638.2022.2088576]
[36]
Ramadan, S.K.; Abdel Haleem, D.R.; Abd-Rabboh, H.S.M.; Gad, N.M.; Abou-Elmagd, W.S.I.; Haneen, D.S.A. Synthesis, SAR studies, and insecticidal activities of certain N-heterocycles derived from 3-((2-chloroquinolin-3-yl)methylene)-5-phenylfuran-2(3H)-one against Culex pipiens L. larvae. RSC Advances, 2022, 12(22), 13628-13638.
[http://dx.doi.org/10.1039/D2RA02388A] [PMID: 35530392]
[37]
El-Helw, E.A.E.; El-Ziaty, A.K.; Ramadan, S.K. 3-Aryl/hetaryl-2-cyanoacryloyl chlorides: Synthesis and reactions with binucleophiles targeting heterocycles. Egypt. J. Chem., 2022, 65(11), 565-572.
[38]
Abou-Elmagd, W.S.I.; Hashem, A.I. Utilization of 2(3H)-furanone bearing a pyrazolyl side chain for the construction of a variety of thiazolidinone derivatives. J. Heterocycl. Chem., 2016, 53(5), 1512-1518.
[http://dx.doi.org/10.1002/jhet.2456]
[39]
Ramadan, S.K.; Abd-Rabboh, H.S.M.; Gad, N.M.; Abou-Elmagd, W.S.I.; Haneen, D.S.A. Synthesis and characterization of some chitosan-quinoline nanocomposites as potential insecticidal agents. Polycycl. Aromat. Compd., 2023, 43(8), 7013-7026.
[http://dx.doi.org/10.1080/10406638.2022.2128831]
[40]
Hamza, M.A.; Rizk, S.A.; Ezz-Elregal, E.E.M.; El-Rahman, S.A.A.; Ramadan, S.K.; Abou-Gamra, Z.M. Photosensitization of TiO2 microspheres by novel Quinazoline-derivative as visible-light-harvesting antenna for enhanced Rhodamine B photodegradation. Sci. Rep., 2023, 13(1), 12929.
[http://dx.doi.org/10.1038/s41598-023-38497-9] [PMID: 37558660]
[41]
El-Helw, E.A.E.; Asran, M.; Azab, M.E.; Helal, M.H.; Ramadan, S.K. Synthesis, cytotoxic, and antioxidant activity of some benzoquinoline-based heterocycles. Polycycl. Aromat. Compd., 2023, 1-13.
[http://dx.doi.org/10.1080/10406638.2023.2270767]
[42]
El-Sewedy, A.; El-Bordany, E.A.; Mahmoud, N.F.H.; Ali, K.A.; Ramadan, S.K. One-pot synthesis, computational chemical study, molecular docking, biological study, and in silico prediction ADME/pharmacokinetics properties of 5-substituted 1H-tetrazole derivatives. Sci. Rep., 2023, 13(1), 17869.
[http://dx.doi.org/10.1038/s41598-023-44615-4] [PMID: 37857636]
[43]
Asran, M.; El-Helw, E.A.E.; Azab, M.E.; Ramadan, S.K.; Helal, M.H. Synthesis and antioxidant activity of some benzoquinoline-based heterocycles derived from 2-((3-chlorobenzo[f]quinolin-2-yl)methylene)hydrazine-1-carbothioamide. J. Indian Chem. Soc., 2023, 20(12), 3023-3032.
[http://dx.doi.org/10.1007/s13738-023-02894-8]
[44]
Youssef, A.M. EL-Ziaty, A.K.; Abou-Elmagd, W.S.I.; Ramadan, S.K. Novel synthesis of some imidazolyl‐, benzoxazinyl‐, and quinazolinyl-2,4-dioxothiazolidine derivatives. J. Heterocycl. Chem., 2015, 52(1), 278-283.
[http://dx.doi.org/10.1002/jhet.1943]
[45]
Hashem, A.I.; Abou-Elmagd, W.S.I.; El-Ziaty, A.K.; Ramadan, S.K. Ring transformation of a 2(3H)-furanone derivative into oxazinone and pyrimidinone heterocycles. J. Heterocycl. Chem., 2017, 54(6), 3711-3715.
[http://dx.doi.org/10.1002/jhet.2937]
[46]
Ramadan, S.K.; Halim, K.N.M.; Rizk, S.A.; El-Hashash, M.A. Cytotoxic activity and density functional theory studies of some 1,3-diphenylpyrazolyltetrahydropyrimidine derivatives. J. Indian Chem. Soc., 2020, 17(7), 1575-1589.
[http://dx.doi.org/10.1007/s13738-020-01880-8]
[47]
Abdelrahman, A.M.; Fahmi, A.A.; Rizk, S.A.; El-Helw, E.A.E. Synthesis, DFT and antitumor activity screening of some new heterocycles derived from 2,2′-(2-(1,3-Diphenyl-1H-Pyrazol-4-yl)Ethene-1,1-Diyl)Bis(4H-Benzo [d][1,3]Oxazin-4-One). Polycycl. Aromat. Compd., 2023, 43(1), 721-739.
[http://dx.doi.org/10.1080/10406638.2021.2020310]
[48]
El-Helw, E.A.E.; Abdelrahman, A.M.; Fahmi, A.A.; Rizk, S.A. Synthesis, density functional theory, insecticidal activity, and molecular docking of some N-heterocycles derived from 2-((1,3-Diphenyl-1H-Pyrazol-4-yl)Methylene)Malonyl diisothiocyanate. Polycycl. Aromat. Compd., 2023, 43(9), 8265-8281.
[http://dx.doi.org/10.1080/10406638.2022.2149565]
[49]
Youssef, Y.M.; Azab, M.E.; Elsayed, G.A.; El-Sayed, A.A.; Hassaballah, A.I.; El-Safty, M.M.; Soliman, R.A.; El-Helw, E.A.E. Synthesis and antioxidant, antimicrobial, and antiviral activity of some pyrazole-based heterocycles using a 2(3H)-furanone derivative. J. Indian Chem. Soc., 2023, 20(9), 2203-2216.
[http://dx.doi.org/10.1007/s13738-023-02814-w]
[50]
Youssef, Y.M.; Azab, M.E.; Elsayed, G.A.; El-Sayed, A.A.; El-Helw, E.A.E. Synthesis and antiproliferative screening of some heterocycles derived from 4-((5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)-2-phenyloxaz-ol-5(4H)-one. Polycycl. Aromat. Compd., 2023, 43(8), 7152-7163.
[http://dx.doi.org/10.1080/10406638.2022.2130373]
[51]
Khatab, H.A.; Hammad, S.F.; El-Fakharany, E.M.; Hashem, A.I.; El-Helw, E.A.E. Synthesis and cytotoxicity evaluation of novel 1,8-acridinedione derivatives bearing phthalimide moiety as potential antitumor agents. Sci. Rep., 2023, 13(1), 15093.
[http://dx.doi.org/10.1038/s41598-023-41970-0] [PMID: 37699954]
[52]
Abdelrahman, A.M.; Fahmi, A.A.; El-Helw, E.A.E.; Rizk, S.A. Facile synthesis, biological evaluation, DFT studies and in silico prediction ADME/Pharmacokinetics properties of N-(1-(2-Chlorobenzo[h]quinolin-3-yl)-1-substituted-vin-2-yl) benzamide derivatives. Polycycl. Aromat. Compd., 2023, 43(7), 6597-6614.
[http://dx.doi.org/10.1080/10406638.2022.2123537]
[53]
Youssef, Y.M.; Azab, M.E.; Elsayed, G.A.; El-Sayed, A.A.; Hassaballah, A.I.; El-Helw, E.A.E. Synthesis and antioxidant activity of some pyrazole-based heterocycles using a 2(3H)-furanone building block. Synth. Commun., 2023, 53(5), 402-413.
[http://dx.doi.org/10.1080/00397911.2023.2175695]
[54]
El-Ziaty, A.K.; Abou-Elmagd, W.S.I.; Ramadan, S.K.; Hashem, A.I. Behavior of some 2(3H)-furanones bearing a chromone moiety as alkylating agents. Egypt. J. Chem., 2016, 59(4), 637-646.
[http://dx.doi.org/10.21608/ejchem.2016.1440]
[55]
Ramadan, S.K.; Abou-Elmagd, W.S.I.; Hashem, A.I. Alkylation of 2(3H)-furanones: Inter-versus intra-molecular. Lett. Org. Chem., 2020, 17(6), 430-433.
[http://dx.doi.org/10.2174/1570178617666191203102528]
[56]
Ramadan, S.K.; Sallam, H.A. Synthesis, spectral characterization, cytotoxic, and antimicrobial activities of some novel heterocycles utilizing 1,3-diphenylpyrazole-4-carboxaldehyde thiosemicarbazone. J. Heterocycl. Chem., 2018, 55(8), 1942-1954.
[http://dx.doi.org/10.1002/jhet.3232]
[57]
Ramadan, S.K.; Elrazaz, E.Z.; Abouzid, K.A.M.; El-Naggar, A.M. Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Advances, 2020, 10(49), 29475-29492.
[http://dx.doi.org/10.1039/D0RA05943A] [PMID: 35521104]
[58]
Ramadan, S.K.; El-Ziaty, A.K.; Ali, R.S. Synthesis, antiproliferative activity, and molecular docking of some N-heterocycles bearing a pyrazole scaffold against liver and breast tumors. J. Heterocycl. Chem., 2021, 58(1), 290-304.
[http://dx.doi.org/10.1002/jhet.4168]
[59]
Ramadan, S.K.; Abou-Elmagd, W.S.I. Synthesis and anti H5N1 activities of some novel fused heterocycles bearing pyrazolyl moiety. Synth. Commun., 2018, 48(18), 2409-2419.
[http://dx.doi.org/10.1080/00397911.2018.1491995]
[60]
Ramadan, S.K.; Abou-Elmagd, W.S.I.; Hashem, A.I. Reactions of 2(3H)-furanones. Synth. Commun., 2019, 49(22), 3031-3057.
[http://dx.doi.org/10.1080/00397911.2019.1647441]
[61]
Ramadan, S.K.; El-Helw, E.A.E.; Sallam, H.A. Cytotoxic and antimicrobial activities of some novel heterocycles employing 6-(1,3-diphenyl-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile. Heterocycl. Commun., 2019, 25(1), 107-115.
[http://dx.doi.org/10.1515/hc-2019-0008]
[62]
Pushpalatha, G.; Pramod, N.; Basha, G.M.; Deepa, M.; Neelaphar, P.; Swamy, B.H. Design, synthesis and anti-malarial activity of coumarin fused quinoline derivatives. J. Pharm. Res., 2016, 10, 437.
[63]
Kaddah, M.M.; Fahmi, A.A.; Kamel, M.M.; Ramadan, S.K.; Rizk, S.A. Synthesis, characterization, computational chemical studies and antiproliferative activity of some heterocyclic systems derived from 3-(3-(1,3-diphenyl-1H-pyrazol-4-yl)acryloyl)-2H-chromen-2-one. Synth. Commun., 2021, 51(12), 1798-1813.
[http://dx.doi.org/10.1080/00397911.2021.1904991]
[64]
Ramadan, S.K.; Rizk, S.A. Synthesis, density functional theory, and cytotoxic activity of some heterocyclic systems derived from 3-(3-(1,3-diphenyl-1H-pyrazol-4-yl)acryloyl)-2H-chromen-2-one. J. Indian Chem. Soc., 2022, 19(1), 187-201.
[http://dx.doi.org/10.1007/s13738-021-02298-6]
[65]
Thati, B.; Noble, A.; Rowan, R.; Creaven, B.S.; Walsh, M.; McCann, M.; Egan, D.; Kavanagh, K. Mechanism of action of coumarin and silver(I)-coumarin complexes against the pathogenic yeast Candida albicans. Toxicol. In Vitro, 2007, 21(5), 801-808.
[http://dx.doi.org/10.1016/j.tiv.2007.01.022] [PMID: 17350222]
[66]
Morsy, A.R.I.; Ramadan, S.K.; Elsafty, M.M. Synthesis and antiviral activity of some pyrrolonyl substituted heterocycles as additives to enhance inactivated Newcastle disease vaccine. Med. Chem. Res., 2020, 29(6), 979-988.
[http://dx.doi.org/10.1007/s00044-020-02538-z]
[67]
Bagihalli, G.B.; Avaji, P.G.; Patil, S.A.; Badami, P.S. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur. J. Med. Chem., 2008, 43(12), 2639-2649.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.013] [PMID: 18395942]
[68]
El-Helw, E.A.E.; Alzahrani, A.Y.A.; Ramadan, S.K. Synthesis and antimicrobial activity of thiophene-based heterocycles derived from thiophene-2-carbohydrazide. Future Med. Chem., 2024, 16(5), 439-451.
[http://dx.doi.org/10.4155/fmc-2023-0304] [PMID: 38318668]
[69]
Rehman, S.U.; Chohan, Z.H.; Gulnaz, F.; Supuran, C.T. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J. Enzyme Inhib. Med. Chem., 2005, 20(4), 333-340.
[http://dx.doi.org/10.1080/14756360500141911] [PMID: 16206827]
[70]
Huang, G.J.; Deng, J.S.; Liao, J.C.; Hou, W.C.; Wang, S.Y.; Sung, P.J.; Kuo, Y.H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory activity of imperatorin from Glehnia littoralis. J. Agric. Food Chem., 2012, 60(7), 1673-1681.
[http://dx.doi.org/10.1021/jf204297e] [PMID: 22188242]
[71]
Elgubbi, A.S.; El-Helw, E.A.E.; Alzahrani, A.Y.A.; Ramadan, S.K. Synthesis, computational chemical study, antiproliferative activity screening, and molecular docking of some thiophene-based oxadiazole, triazole, and thiazolidinone derivatives. RSC Advances, 2024, 14(9), 5926-5940.
[http://dx.doi.org/10.1039/D3RA07048D] [PMID: 38362078]
[72]
Rosselli, S.; Maggio, A.M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S.L.; Bastow, K.F.; Lee, K.H.; Bruno, M. The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat. Prod. Commun., 2009, 4(12), 19.
[73]
Choi, J.; Lee, K.T.; Ka, H.; Jung, W.T.; Jung, H.J.; Park, H.J. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch. Pharm. Res., 2001, 24(5), 418-423.
[http://dx.doi.org/10.1007/BF02975187] [PMID: 11693543]
[74]
Pechmann, V.H. New way of forming the coumarins. Synthesis of daphnetins. I. Eur. J. Inorg. Chem., 1884, 17(1), 929.
[75]
Manolov, I.; Danchev, N.D. Synthesis, toxicological and pharmacological assessment of some 4-hydroxycoumarin derivatives. Eur. J. Med. Chem., 1995, 30(6), 531-535.
[http://dx.doi.org/10.1016/0223-5234(96)88266-3]
[76]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[77]
Yuce, B.; Danis, O.; Ogan, A.; Sener, G.; Bulut, M.; Yarat, A. Antioxidative and lipid lowering effects of 7,8-dihydroxy-3-(4-methylphenyl) coumarin in hyperlipidemic rats. Arzneimittelforschung, 2009, 59(3), 129-134.
[PMID: 19402343]
[78]
Moodley, T.; Momin, M.; Mocktar, C.; Kannigadu, C.; Koorbanally, N.A. The synthesis, structural elucidation and antimicrobial activity of 2- and 4-substituted-coumarinyl chalcones. Magn. Reson. Chem., 2016, 54(7), 610-617.
[http://dx.doi.org/10.1002/mrc.4414] [PMID: 26867972]
[79]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7205-7211.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.116] [PMID: 21071221]
[80]
Vazquez-Rodriguez, S.; Lama López, R.; Matos, M.J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, synthesis and antibacterial study of new potent and selective coumarin-chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem., 2015, 23(21), 7045-7052.
[http://dx.doi.org/10.1016/j.bmc.2015.09.028] [PMID: 26433630]
[81]
Jayashree, B.S.; Yusuf, S.; Kumar, D.V. Synthesis of some coumarinyl chalcones of pharmacological interest. Chem. Asian J., 2009, 21(8), 5918.
[82]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[83]
Patel, K.; Karthikeyan, C.; Hari Narayana Moorthy, N.S.; Deora, G.S.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents. Med. Chem. Res., 2012, 21(8), 1780-1784.
[http://dx.doi.org/10.1007/s00044-011-9694-1]
[84]
Hafez, O.M.; Nassar, M.I.; El-Kousy, S.M.; Abdel-Razik, A.F.; Sherien, M.M.; El-Ghonemy, M.M. Synthesis of some new carbonitriles and pyrazole coumarin derivatives with potent antitumor and antimicrobial activities. Acta Pol. Pharm., 2014, 71(4), 594-601.
[PMID: 25272885]
[85]
Prasad, Y.R.; Rao, A.L.; Rambabu, R. Synthesis and antimicrobial activity of some chalcone derivatives. E-J. Chem., 2008, 5(3), 461-466.
[http://dx.doi.org/10.1155/2008/876257]
[86]
Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48(48), 8472-8474.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[87]
Balaji, P.N.; Kanaka, L.; Mohan, K.; Revathi, K.; Chamundeswari, A.; Indrani, M. In-vitro anti-inflammatory and antimicrobial activity of synthesized some novel pyrazole derivatives from coumarin chalcones. Der Pharma. Chem., 2012, 3(6), 685.
[88]
Siddiqui, Z.N. A convenient synthesis of coumarinyl chalcones using HClO4-SiO2: A green approach. Arab. J. Chem., 2019, 12(8), 2788-2797.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.013]
[89]
Sun, Y.F.; Cui, Y.P. The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes Pigments, 2008, 78(1), 65-76.
[http://dx.doi.org/10.1016/j.dyepig.2007.10.014]
[90]
El-Naggar, A.M.; Hemdan, M.M.; Atta-Allah, S.R. An efficient one-pot synthesis of new coumarin derivatives as potent anticancer agents under microwave irradiation. J. Heterocycl. Chem., 2017, 54(6), 3519-3526.
[http://dx.doi.org/10.1002/jhet.2975]
[91]
Jagtap, A.R.; Satam, V.S.; Rajule, R.N.; Kanetkar, V.R. Synthesis of highly fluorescent coumarinyl chalcones derived from 8-acetyl-1,4-diethyl-1,2,3,4-tetrahydro-7H-pyrano[2,3-g]quinoxalin-7-one and their spectral characteristics. Dyes Pigments, 2011, 91(1), 20-25.
[http://dx.doi.org/10.1016/j.dyepig.2011.01.011]
[92]
Wanare, G.; Aher, R.; Kawathekar, N.; Ranjan, R.; Kaushik, N.K.; Sahal, D. Synthesis of novel α-pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(15), 4675-4678.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.069] [PMID: 20576433]
[93]
Xi, G.L.; Liu, Z.Q. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron, 2014, 70(44), 8397-8404.
[http://dx.doi.org/10.1016/j.tet.2014.08.063]
[94]
Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem., 2013, 56(15), 6136-6145.
[http://dx.doi.org/10.1021/jm400546y] [PMID: 23859213]
[95]
Rodriguez, S.V.; Guíñez, R.F.; Matos, M.J.; Azar, C.O.; Maya, J.D. Synthesis and trypanocidal properties of new Coumarin-Chalcone derivatives. J. Med. Chem., 2015, 5, 173.
[96]
Mazzone, G.; Galano, A.; Alvarez-Idaboy, J.R.; Russo, N. Coumarin-chalcone hybrids as peroxyl radical scavengers: Kinetics and mechanisms. J. Chem. Inf. Model., 2016, 56(4), 662-670.
[http://dx.doi.org/10.1021/acs.jcim.6b00006] [PMID: 26998844]
[97]
Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(5), 1322-1325.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.096] [PMID: 23369537]
[98]
Yadav, D.K.; Ahmad, I.; Shukla, A.; Khan, F.; Negi, A.S.; Gupta, A. QSAR and docking studies on chalcone derivatives for antitubercular activity against M. tuberculosis H37 Rv. J. Chemometr., 2014, 28(6), 499-507.
[http://dx.doi.org/10.1002/cem.2606]
[99]
Muller, L.L. 1,2-Cycloaddition reactions yielding three-and four-membered heterocycles; Tulane University, 1965.
[100]
Li, X.; Zhao, Y.; Wang, T.; Shi, M.; Wu, F. Coumarin derivatives with enhanced two-photon absorption cross-sections. Dyes Pigments, 2007, 74(1), 108-112.
[http://dx.doi.org/10.1016/j.dyepig.2006.01.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy