Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis, Thermotropic Properties, and Applications of Porphyrin-based Liquid Crystals: A Comprehensive Review

Author(s): Tapas Ghosh*

Volume 28, Issue 11, 2024

Published on: 26 April, 2024

Page: [857 - 889] Pages: 33

DOI: 10.2174/0113852728313247240417080211

Price: $65

conference banner
Abstract

Research on novel discotic molecules, which consist of a rigid core with flexible peripheral chains, has gained much attention due to their crucial role as organic photovoltaic materials, organic field-effect transistors, and semiconductors for photocurrent generation, as well as the possibility of their other optoelectronic applications. This review article describes the developments in fundamental design ideas and synthetic approaches of porphyrin- based meso and beta-substituted liquid crystals. In addition, the current review highlights the various structural alterations made by the researchers in the field of porphyrinbased mesogens and changes in properties, both for materials intended for commercially successful liquid crystal displays, including other applications, and for more basic purposes of demonstrating structure-property relationships.

Graphical Abstract

[1]
Iino, H.; Hanna, J. Liquid crystalline organic semiconductors for organic transistor applications. Polym. J., 2017, 49(1), 23-30.
[http://dx.doi.org/10.1038/pj.2016.101]
[2]
Chandrasekhar, S.; Sadashiva, B.K.; Suresh, K.A. Liquid crystals of disc-like molecules. Pramana, 1977, 9(5), 471-480.
[http://dx.doi.org/10.1007/BF02846252]
[3]
Eichhorn, H. Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials. J. Porphyr. Phthalocyanines, 2000, 4(1), 88-102.
[http://dx.doi.org/10.1002/(SICI)1099-1409(200001/02)4:1<88:AID-JPP208>3.0.CO;2-6]
[4]
Closs, F.; Siemensmeyer, K.; Frey, T.; Funhoff, D. Liquid crystalline photoconductors. Liq. Cryst., 1993, 14(3), 629-634.
[http://dx.doi.org/10.1080/02678299308027741]
[5]
Gregg, B.A.; Fox, M.A.; Bard, A.J. Photovoltaic effect in symmetrical cells of a liquid crystal porphyrin. J. Phys. Chem., 1990, 94(4), 1586-1598.
[http://dx.doi.org/10.1021/j100367a068]
[6]
a) Wendorff, J.H.; Christ, T.; Glüsen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stümpflen, V.; Tsukruk, V.V. Columnar discotics for light emitting diodes. Adv. Mater., 1997, 9(1), 48-52.
[http://dx.doi.org/10.1002/adma.19970090110];
b) Tapff, I.H.S.; Stumpflen, V.; Wendorff, J.H.; Spohn, D.B.; Mobius, D. Preliminary communication Multilayer light emitting diodes based on columnar discotics. Liq. Cryst., 1997, 23(4), 613-617.
[http://dx.doi.org/10.1080/026782997208226]
[7]
Hügel, M.; Dechant, M.; Scheuring, N.; Ghosh, T.; Lehmann, M. Fullerene‐filled stilbene stars: The balance between isolated C60 helices and 3D networks in liquid‐crystal self‐assemblies. Chemistry, 2019, 25(13), 3352-3361.
[http://dx.doi.org/10.1002/chem.201805606] [PMID: 30624836]
[8]
Majumdar, K.C.; Ghosh, T.; Shyam, P.K. Ferrocene-based novel calamitic metallomesogens containing a 2-phenylbenzoxazole unit: Synthesis and characterisation. Liq. Cryst., 2011, 38(5), 567-573.
[http://dx.doi.org/10.1080/02678292.2011.558218]
[9]
Kang, S.W.; Li, Q.; Chapman, B.D.; Pindak, R.; Cross, J.O.; Li, L.; Nakata, M.; Kumar, S. Microfocus X-ray diffraction study of the columnar phase of porphyrin-based mesogens. Chem. Mater., 2007, 19(23), 5657-5663.
[http://dx.doi.org/10.1021/cm702063a]
[10]
Ohta, K.; Yamaguchi, N.; Yamamoto, I. Discotic liquid crystals of transition metal complexes. Part 24 Synthesis and mesomorphism of porphyrin derivatives substituted with two or four bulky groups. J. Mater. Chem., 1998, 8(12), 2637-2650.
[http://dx.doi.org/10.1039/a805715j]
[11]
Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Schuhmacher, P.; Siemensmeyer, K. Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett., 1993, 70(4), 457-460.
[http://dx.doi.org/10.1103/PhysRevLett.70.457] [PMID: 10054117]
[12]
Adam, D.; Schuhmacher, P.; Simmerer, J.; Häussling, L.; Siemensmeyer, K.; Etzbachi, K.H.; Ringsdorf, H.; Haarer, D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature, 1994, 371(6493), 141-143.
[http://dx.doi.org/10.1038/371141a0]
[13]
Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science, 2001, 293(5532), 1119-1122.
[http://dx.doi.org/10.1126/science.293.5532.1119] [PMID: 11498585]
[14]
Bushby, R.J.; Lozman, O.R. Photoconducting liquid crystals. Curr. Opin. Solid State Mater. Sci., 2002, 6(6), 569-578.
[http://dx.doi.org/10.1016/S1359-0286(03)00007-X]
[15]
Forrest, S.R. The limits to organic photovoltaic cell efficiency. MRS Bull., 2005, 30(1), 28-32.
[http://dx.doi.org/10.1557/mrs2005.5]
[16]
O’Neill, M.; Kelly, S.M. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater., 2003, 15(14), 1135-1146.
[http://dx.doi.org/10.1002/adma.200300009]
[17]
Majumdar, K.C.; Ghosh, T. Synthesis and mesomorphic behavior of novel calamitic liquid crystalline dimesogens possessing a cholesteryl moiety connected to a pyrimidine core. Mol. Cryst. Liq. Cryst., 2013, 577(1), 15-24.
[http://dx.doi.org/10.1080/15421406.2013.779180]
[18]
Majumdar, K.C.; Ghosh, T.; Rao, D.S.S.; Prasad, S.K. Unsymmetrical tetracatenar liquid crystals containing 2-phenylbenzoxazole: Synthesis and characterisation. Liq. Cryst., 2013, 40(3), 305-313.
[http://dx.doi.org/10.1080/02678292.2012.745906]
[19]
Majumdar, K.C.; Ghosh, T.; Rao, D.S.S.; Prasad, S.K. Unsymmetrical cholesterol and benzoxazole-based liquid crystalline dimers: Synthesis and characterisation. Liq. Cryst., 2011, 38(10), 1269-1277.
[http://dx.doi.org/10.1080/02678292.2011.606041]
[20]
Majumdar, K.C.; Mondal, S.; Ghosh, T. Synthesis and mesomorphic behavior of novel liquid-crystalline thiophene derivatives. Mol. Cryst. Liq. Cryst., 2010, 524(1), 17-25.
[http://dx.doi.org/10.1080/15421400903568112]
[21]
a) Tang, M.; Liang, Y.; Liu, J.; Bian, L.; Liu, Z. Mechanical trapping of the phlorin intermediate. CCS Chem., 2022, 4(10), 3230-3237.
[http://dx.doi.org/10.31635/ccschem.022.202101679];
b) Tang, M.; Liang, Y.; Lu, X.; Miao, X.; Jiang, L.; Liu, J.; Bian, L.; Wang, S.; Wu, L.; Liu, Z. Molecular-strain engineering of double-walled tetrahedra. Chem, 2021, 7(8), 2160-2174.
[http://dx.doi.org/10.1016/j.chempr.2021.05.004];
c) Ghosh, T.; Lehmann, M. Recent advances in heterocycle-based metal-free calamitics. J. Mater. Chem. C Mater., 2017, 5(47), 12308-12337.;
d) Di Natale, C.; Monti, D.; Paolesse, R. Chemical sensitivity of porphyrin assemblies. Mater. Today, 2010, 13(7-8), 46-52.
[http://dx.doi.org/10.1016/S1369-7021(10)70127-9]
[22]
Nguyen, D.D.; Labella, J.; Laforga-Martín, J.; Folcia, C.L.; Ortega, J.; Torres, T.; Sierra, T.; Sessler, J.L. Columnar liquid crystals based on antiaromatic expanded porphyrins. Chem. Commun., 2024, 60(25), 3401-3404.
[http://dx.doi.org/10.1039/D3CC05414D] [PMID: 38440812]
[23]
Lugger, J.; Mulder, D.; Sijbesma, R.; Schenning, A. Nanoporous polymers based on liquid crystals. Materials, 2018, 11(1), 104.
[http://dx.doi.org/10.3390/ma11010104] [PMID: 29324669]
[24]
He, L.; Ye, J.; Shuai, M.; Zhu, Z.; Zhou, X.; Wang, Y.; Li, Y.; Su, Z.; Zhang, H.; Chen, Y.; Liu, Z.; Cheng, Z.; Bao, J. Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale, 2015, 7(5), 1616-1622.
[http://dx.doi.org/10.1039/C4NR06008C] [PMID: 25521071]
[25]
Majumdar, K.C.; Ghosh, T.; Chakravorty, S.; Pal, N.; Shankar Rao, D.S.; Prasad, S.K. Cholesterol-based unsymmetrical Schiff’s base dimer terminated with 4-alkoxy-5-phenylthiophene unit: Synthesis and characterisation. Liq. Cryst., 2010, 37(12), 1539-1547.
[http://dx.doi.org/10.1080/02678292.2010.526721]
[26]
Majumdar, K.C.; Ghosh, T.; Shankar Rao, D.S.; Krishna Prasad, S. 2-phenylbenzoxazole-containing calamitic liquid crystals: Synthesis and characterisation. Liq. Cryst., 2011, 38(5), 625-632.
[http://dx.doi.org/10.1080/02678292.2011.564662]
[27]
Senge, M.; Ryan, A.; Letchford, K.; MacGowan, S.; Mielke, T. Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry, 2014, 6(3), 781-843.
[http://dx.doi.org/10.3390/sym6030781]
[28]
Shimizu, Y.; Miya, M.; Nagata, A.; Ohta, K.; Yamamoto, I.; Kusabayashi, S. Mesomorphic phase transitions of tetraphenylporphyrins with four long aliphatic chains. Liq. Cryst., 1993, 14(3), 795-805.
[http://dx.doi.org/10.1080/02678299308027756]
[29]
Iqbal, M.A.; Malik, M.; Shahid, W.; Din, S.Z.; Anwar, N.; Ikram, M. Materials for photovoltaics: Overview, generations, recent advancements and future prospects. In: Thin Films Photovoltaics; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.101449]
[30]
Balagurusamy, V.S.K.; Prasad, S.K.; Chandrasekhar, S.; Kumar, S.; Manickam, M.; Yelamaggad, C.V. Quasi-one dimensional electrical conductivity and thermoelectric power studies on a discotic liquid crystal. Pramana, 1999, 53(1), 3-11.
[http://dx.doi.org/10.1007/s12043-999-0136-2]
[31]
Bruce, D.W.; Wali, M.A.; Wang, Q.M. Calamitic nematic liquid crystal phases from Zn II complexes of 5, 15-disubstituted porphyrins. J. Chem. Soc. Chem. Commun., 1994, (18), 2089.
[http://dx.doi.org/10.1039/c39940002089]
[32]
Wang, Q.M.; Bruce, D.W. Synthesis of calamitic, liquid crystalline porphyrins with lateral aromatic branches. Tetrahedron Lett., 1996, 37(42), 7641-7644.
[http://dx.doi.org/10.1016/0040-4039(96)01701-7]
[33]
Li, J.; Xin, H.; Li, M. Synthesis and mesomorphic behaviour of novel discotic meso‐tetra(3,4,5‐n‐trialkoxybenzoylaminophenyl)porphyrins. Liq. Cryst., 2006, 33(8), 913-919.
[http://dx.doi.org/10.1080/02678290500502392]
[34]
Shi, Y.; Zhang, F.; Linhardt, R.J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigments, 2021, 188, 109136.
[http://dx.doi.org/10.1016/j.dyepig.2021.109136]
[35]
Qi, Z.L.; Cheng, Y.H.; Xu, Z.; Chen, M.L. Recent advances in porphyrin-based materials for metal ions detection. Int. J. Mol. Sci., 2020, 21(16), 5839.
[http://dx.doi.org/10.3390/ijms21165839] [PMID: 32823943]
[36]
Mahmood, A.; Hu, J.Y.; Xiao, B.; Tang, A.; Wang, X.; Zhou, E. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(35), 16769-16797.
[http://dx.doi.org/10.1039/C8TA06392C]
[37]
Gu, J.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy, 2022, 1, e9120009.
[http://dx.doi.org/10.26599/NRE.2022.9120009]
[38]
Kumar, M.; Kumar, S. Liquid crystals in photovoltaics: A new generation of organic photovoltaics. Polym. J., 2017, 49(1), 85-111.
[http://dx.doi.org/10.1038/pj.2016.109]
[39]
Sasaki, T.; Naka, Y. Photorefractive effect in ferroelectric liquid crystals. Opt. Rev., 2014, 21(2), 99-109.
[http://dx.doi.org/10.1007/s10043-014-0016-y]
[40]
Guo, Q.; Yan, K.; Chigrinov, V.; Zhao, H.; Tribelsky, M. Ferroelectric liquid crystals: Physics and applications. Crystals, 2019, 9(9), 470.
[http://dx.doi.org/10.3390/cryst9090470]
[41]
Hui, J.K-H.; Kishida, H.; Ishiba, K.; Takemasu, K.; Morikawa, M.; Kimizuka, N. Cover picture: Sandmeyer-type trifluoromethylthiolation and trifluoromethylselenolation of (hetero)aromatic amines catalyzed by copper. Chem. Eur. J., 2016, 22(1), 1.
[http://dx.doi.org/10.1002/chem.201504553]
[42]
Wilson, C.J.; Wilson, D.A.; Boyle, R.W.; Mehl, G.H. The design and investigation of porphyrins with liquid crystal properties at room temperature. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(1), 144-150.
[http://dx.doi.org/10.1039/C2TC00286H]
[43]
Lehmann, M.; Dechant, M.; Lambov, M.; Ghosh, T. Free space in liquid crystals-molecular design, generation, and usage. Acc. Chem. Res., 2019, 52(6), 1653-1664.
[http://dx.doi.org/10.1021/acs.accounts.9b00078] [PMID: 31135131]
[44]
Ramamoorthy, A. Ed Thermotropic Liquid Crystals; Springer Netherlands: Dordrecht, 2007.
[http://dx.doi.org/10.1007/1-4020-5354-1]
[45]
Dechant, M.; Lehmann, M.; Uzurano, G.; Fujii, A.; Ozaki, M. The liquid crystal click procedure for oligothiophene-tethered phthalocyanines – self-assembly, alignment and photocurrent. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(17), 5689-5698.
[http://dx.doi.org/10.1039/D1TC00710F]
[46]
Li, L.; Kang, S.W.; Harden, J.; Sun, Q.; Zhou, X.; Dai, L.; Jakli, A.; Kumar, S.; Li, Q. Nature‐inspired light‐harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst., 2008, 35(3), 233-239.
[http://dx.doi.org/10.1080/02678290701806584]
[47]
Burmistrov, V.A.; Novikov, I.V.; Aleksandriiskii, V.V.; Semeikin, A.S.; Koifman, O.I. Favourable combination of axial coordination and inclusion for effective chiral transfer from metal porphyrin to nematic liquid crystals. Liq. Cryst., 2021, 48(6), 794-805.
[http://dx.doi.org/10.1080/02678292.2020.1817583]
[48]
Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.H.; Wu, W.; Xie, Y. Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy Environ. Sci., 2020, 13(6), 1617-1657.
[http://dx.doi.org/10.1039/C9EE04200H]
[49]
Guo, H.; Zheng, S.; Chen, S.; Han, C.; Yang, F. A first porphyrin liquid crystal with strong fluorescence in both solution and aggregated states based on the AIE-FRET effect. Soft Matter, 2019, 15(41), 8329-8337.
[http://dx.doi.org/10.1039/C9SM01174A] [PMID: 31566635]
[50]
Hernández-Fernández, F.; Pavanello, M.; Visscher, L. Effect of metallation, substituents and inter/intra-molecular polarization on electronic couplings for hole transport in stacked porphyrin dyads. Phys. Chem. Chem. Phys., 2016, 18(31), 21122-21132.
[http://dx.doi.org/10.1039/C6CP00516K] [PMID: 27053092]
[51]
Schmidt-Mende, L.; Watson, M.; Müllen, K.; Friend, R.H. Organic thin film photovoltaic devices from discotic materials. Mol. Cryst. Liq. Cryst., 2003, 396(1), 73-90.
[http://dx.doi.org/10.1080/15421400390213203]
[52]
Fox, M.A.; Grant, J.V.; Melamed, D.; Torimoto, T.; Liu, C.; Bard, A.J. Effect of structural variation on photocurrent efficiency in Alkyl-substituted porphyrin solid-state thin layer photocells. Chem. Mater., 1998, 10(7), 1771-1776.
[http://dx.doi.org/10.1021/cm970491v]
[53]
Freudenmann, R.; Behnisch, B.; Hanack, M. Synthesis of conjugated¬bridged triphenylenes and application in OLEDs. J. Mater. Chem., 2001, 11(6), 1618-1624.
[http://dx.doi.org/10.1039/b100083g]
[54]
Tschesche, R. Die Chemie des Pyrrols. Von H. Fischer u. H. Orth. II. Band: Pyrrolfarbstoffe. 1. Hälfte: Porphyrine – Hämin – Bilirubin und ihre Abkömmlinge. 764 Seiten. Akademische Verlagsgesellschaft m. b. H., Leipzig 1937. Preis geh. RM. 42, —, geb. RM. 44, —. Angew. Chem., 1938, 51(1), 27.
[http://dx.doi.org/10.1002/ange.19380510110]
[55]
Moss, G.P. Nomenclature of tetrapyrroles (Recommendations 1986). Pure Appl. Chem., 1987, 59(6), 779-832.
[http://dx.doi.org/10.1351/pac198759060779]
[56]
Otero, L.; Osora, H.; Li, W.; Fox, M.A. Photosensitization of thin SnO2 nanocrystalline semiconductor film electrodes with metalloporphyrins and alkyl-substituted metalloporphyrins. J. Porphyr. Phthalocyanines, 1998, 2(2), 123-131.
[http://dx.doi.org/10.1002/(SICI)1099-1409(199803/04)2:2<123::AID-JPP56>3.0.CO;2-U]
[57]
Monobe, H.; Mima, S.; Miyagawa, Y.; Sugino, T.; Uchida, K.; Shimizu, Y. Photoconductive properties of a mesogenic long-chain tetraphenylporphyrin oxovanadium(iv) complex in a symmetrical sandwich-type ITO cell. Mol. Cryst. Liq. Cryst. Sci., 2001, 368(1), 311-318.
[http://dx.doi.org/10.1080/10587250108029960]
[58]
Zhao, Z.; Liu, G. The first lanthanide(III) monoporphyrin complex liquid crystal. Liq. Cryst., 2002, 29(10), 1335-1337.
[http://dx.doi.org/10.1080/713935612]
[59]
Maeda, Y.; Shimizu, Y.O. Phase behaviour of the discotic mesogen 5,10,15,20-tetrakis (4-n-dodecylphenyl)porphyrin under pressure. Liq. Cryst., 1999, 26(7), 1067-1078.
[http://dx.doi.org/10.1080/026782999204426]
[60]
Kroeze, J.E.; Koehorst, R.B.M.; Savenije, T.J. Singlet and triplet exciton diffusion in a self‐organizing porphyrin antenna layer. Adv. Funct. Mater., 2004, 14(10), 992-998.
[http://dx.doi.org/10.1002/adfm.200305181]
[61]
Yu, M.; Liu, G.F.; Cui, X.L. Synthesis, spectroscopy, surface photovoltage, and electrochemical properties of porphyrin compound liquid crystals. J. Porphyr. Phthalocyanines, 2005, 9(4), 231-239.
[http://dx.doi.org/10.1142/S1088424605000290]
[62]
Haase, W.; Wrobel, S.; Falk, K. Recent results on some columnar paramagnetic metallomesogens. Pramana, 2003, 61(2), 189-198.
[http://dx.doi.org/10.1007/BF02708301]
[63]
Moriuchi-Kawakami, T.; Nishimura, H.; Shibutani, Y.; Sugino, T.; Shimizu, Y. Mesomorphic effect of discotic-type liquid-crystalline compounds as neutral carriers on potentiometric ion-sensing membranes. Chem. Lett., 2008, 37(4), 450-451.
[http://dx.doi.org/10.1246/cl.2008.450]
[64]
Usol’tseva, N.; Bykova, V.; Zharnikova, N.; Alexandrov, A.; Semeikin, A.; Kazak, A. Influence of Meso-substituted porphyrins molecular structure on their mesogenity. Mol. Cryst. Liq. Cryst., 2010, 525(1), 184-193.
[http://dx.doi.org/10.1080/15421401003799557]
[65]
Kazak, A.V.; Usol’tseva, N.V.; Bykova, V.V.; Semeikin, A.S.; Yudin, S.G. Influence of Meso-substituted porphyrins molecular structure on their self-organization in floating layers. Mol. Cryst. Liq. Cryst., 2011, 541(1), 28/[266]-34/[272].
[http://dx.doi.org/10.1080/15421406.2011.569529]
[66]
Monobe, H.; Mima, S.; Shimizu, Y. Carrier mobility of discotic lamellar mesophases of 5,10,15,20-Tetrakis(4-n-pentadecylphenyl)porphyrin. Chem. Lett., 2000, 29(9), 1004-1005.
[http://dx.doi.org/10.1246/cl.2000.1004]
[67]
Wróbel, D. Łukasiewicz, J.; Goc, J.; Waszkowiak, A.; Ion, R. Photocurrent generation in an electrochemical cell with substituted metalloporphyrins. J. Mol. Struct., 2000, 555(1-3), 407-417.
[http://dx.doi.org/10.1016/S0022-2860(00)00627-X]
[68]
Adler, A.D.; Longo, F.R.; Finarelli, J.D.; Goldmacher, J.; Assour, J.; Korsakoff, L. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem., 1967, 32(2), 476.
[http://dx.doi.org/10.1021/jo01288a053]
[69]
Akopova, O.B.; Zdanovich, S.A.; Akopov, D.A.; Aleksandrov, A.I.; Pashkova, T.V. Forecasting columnar mesophases. Synthesis and structure of porphin derivatives. J. Struct. Chem., 2001, 42(1), 43-50.
[http://dx.doi.org/10.1023/A:1010463820903]
[70]
Li, J.; Tang, T.; Li, F.; Li, M. The synthesis and characterization of novel liquid crystalline, meso-tetra[4-(3,4,5-trialkoxybenzoate)phenyl]porphyrins. Dyes Pigments, 2008, 77(2), 395-401.
[http://dx.doi.org/10.1016/j.dyepig.2007.07.008]
[71]
Miao, J.; Zhu, L. Hydrogen bonding induced supramolecular self-assembly of linear doubly discotic triad supermolecules. Chem. Asian J., 2010, 5(7), 1634-1641.
[http://dx.doi.org/10.1002/asia.201000017] [PMID: 20491138]
[72]
Li, T.; Ying, X.; Shi, L.P.; Huang, J.W.; Ziyang, L.; Shi, J.; Ji, L.N. Preliminary communication: Magnetic-field-induced Freedericksz transition of a planar aligned liquid crystal doped with porphyrinatozinc(II): Influence of the substituent of the porphyrin ring. Liq. Cryst., 2000, 27(4), 551-553.
[http://dx.doi.org/10.1080/026782900202741]
[73]
Lettieri, R.; Monti, D.; Zelenka, K.; Trnka, T.; Drašar, P.; Venanzi, M. Glucosylated steroid-porphyrins as new tools for nanotechnology applications. New J. Chem., 2012, 36(5), 1246.
[http://dx.doi.org/10.1039/c2nj20982a]
[74]
Poddutoori, P.K.; Zarrabi, N.; Moiseev, A.G.; Gumbau-Brisa, R.; Vassiliev, S.; van der Est, A. Long-lived charge separation in novel axial donor-porphyrin-acceptor triads based on tetrathiafulvalene, aluminum(III) porphyrin and naphthalenediimide. Chemistry, 2013, 19(9), 3148-3161.
[http://dx.doi.org/10.1002/chem.201202995] [PMID: 23319392]
[75]
van der Est, A.; Poddutoori, P.K. Light-induced spin polarization in porphyrin-based donor–acceptor dyads and triads. Appl. Magn. Reson., 2013, 44(1-2), 301-318.
[http://dx.doi.org/10.1007/s00723-012-0420-z]
[76]
Zhang, X.; Zhu, B.; Zhou, L.; Liu, P.; Deng, W. Synthesis of novel porphyrin derivatives with mesogenic properties. Synth. Commun., 2015, 45(23), 2730-2739.
[http://dx.doi.org/10.1080/00397911.2015.1103873]
[77]
Yu, G.; Ye, Y.; Tong, Z.; Yang, J.; Li, Z.; Hua, B.; Shao, L.; Li, S. A porphyrin‐based discrete tetragonal prismatic cage: Host–guest complexation and its application in tuning liquid‐crystalline behavior. Macromol. Rapid Commun., 2016, 37(18), 1540-1547.
[http://dx.doi.org/10.1002/marc.201600280] [PMID: 27465623]
[78]
Hui, J.K.H.; Kishida, H.; Ishiba, K.; Takemasu, K.; Morikawa, M.; Kimizuka, N. Ferroelectric coordination polymers self‐assembled from mesogenic Zinc(II) porphyrin and dipolar bridging ligands. Chemistry, 2016, 22(40), 14213-14218.
[http://dx.doi.org/10.1002/chem.201602175] [PMID: 27527513]
[79]
Vela, S.; Berrocal, J.A.; Atienza, C.; Meijer, E.W.; Martín, N. Mesoscopic helical architectures via self-assembly of porphyrin-based discotic systems. Chem. Commun., 2017, 53(29), 4084-4087.
[http://dx.doi.org/10.1039/C7CC01670K] [PMID: 28352860]
[80]
Zhang, R.; Gao, H.; Ren, Y.; Xiao, Y.; Hu, J.; Cheng, X. Syntheses and properties of meso‐substituted porphyrin mesogens with triazole linkages and peripheral alkyl chains. Chem. Asian J., 2018, 13(5), 536-544.
[http://dx.doi.org/10.1002/asia.201701666] [PMID: 29328555]
[81]
Zarate, X.; Schott, E.; Alvarado-Soto, L.; Sutherland, T.C. A molecular study of tetrakis(p-methoxyphenyl)porphyrin and its Zn(II) complex as discotic liquid crystals. Int. J. Quantum Chem., 2013, 113(20), 2287-2294.
[http://dx.doi.org/10.1002/qua.24450]
[82]
Jenni, S.; Picci, G.; Fornasier, M.; Mamusa, M.; Schmidt, J.; Talmon, Y.; Sour, A.; Heitz, V.; Murgia, S.; Caltagirone, C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem. Photobiol. Sci., 2020, 19(5), 674-680.
[http://dx.doi.org/10.1039/c9pp00449a] [PMID: 32314755]
[83]
Park, M.; Kang, D.G.; Ko, H.; Rim, M.; Tran, D.T.; Park, S.; Kang, M.; Kim, T.W.; Kim, N.; Jeong, K.U. Molecular engineering of a porphyrin-based hierarchical superstructure: Planarity control of a discotic metallomesogen for high thermal conductivity. Mater. Horiz., 2020, 7(10), 2635-2642.
[http://dx.doi.org/10.1039/D0MH00966K]
[84]
Ghosh, T.; Gerbig, L.; Lambov, M.; Dechant, M.; Lehmann, M. Liquid crystals from shape-persistent porphyrin stars with intrinsic free space. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(16), 5562-5571.
[http://dx.doi.org/10.1039/C9TC07086A]
[85]
Concellón, A.; Termine, R.; Golemme, A.; Romero, P.; Marcos, M.; Serrano, J.L. High hole mobility and light-harvesting in discotic nematic dendrimers prepared via ‘click’ chemistry. J. Mater. Chem. C, 2019, 7, 2911-2918.
[86]
Concellón, A.; Termine, R.; Golemme, A.; Romero, P.; Marcos, M.; Serrano, J.L. Semiconducting and electropolymerizable liquid crystalline carbazole-containing porphyrin-core dendrimers. Org. Chem. Front., 2020, 7(15), 2008-2015.
[http://dx.doi.org/10.1039/D0QO00537A]
[87]
Rodríguez-Abreu, C.; Kolen’ko, Y.V.; Kovnir, K.; Sanchez-Dominguez, M.; Shrestha, R.G.; Bairi, P.; Ariga, K.; Shrestha, L.K. 1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Phys. Chem. Chem. Phys., 2020, 22(40), 23276-23285.
[http://dx.doi.org/10.1039/D0CP04348F] [PMID: 33030486]
[88]
Wang, R.; Chen, S.; Chen, Q.; Guo, H.; Yang, F. Porphyrin with circularly polarized luminescence in aggregated states. Dyes Pigments, 2021, 190, 109332.
[http://dx.doi.org/10.1016/j.dyepig.2021.109332]
[89]
Kobayashi, Y.; Muranaka, A.; Kato, K.; Saeki, A.; Tanaka, T.; Uchiyama, M.; Osuka, A.; Aida, T.; Sakurai, T. A structural parameter to link molecular geometry to macroscopic orientation in discotic liquid crystals: Study of metalloporphyrin tapes. Chem. Commun., 2021, 57(10), 1206-1209.
[http://dx.doi.org/10.1039/D0CC07241A] [PMID: 33427261]
[90]
Friedlein, R.; Crispin, X.; Osikowicz, W.; Braun, S.; de Jong, M.P.; Simpson, C.D.; Watson, M.D.; von Kieseritzky, F.; Samorí, P.; Jönsson, S.K.M.; Fahlman, M.; Jäckel, F.; Rabe, J.P.; Hellberg, J.; Müllen, K.; Salaneck, W.R. Surface-induced vertical alignment of self-assembled supramolecular columns of large polycyclic aromatic hydrocarbons and porphyrins. Synth. Met., 2004, 147(1-3), 79-83.
[http://dx.doi.org/10.1016/j.synthmet.2004.07.009]
[91]
Yu, M.; Zhang, W.; Fan, Y.; Jian, W.; Liu, G. [5‐(p‐alkoxy)phenyl‐10, 15, 20‐tri‐phenyl] porphyrin and their rare earth complex liquid crystalline. J. Phys. Org. Chem., 2007, 20(4), 229-235.
[http://dx.doi.org/10.1002/poc.1132]
[92]
Jakob, M.; Berg, A.; Rubin, R.; Levanon, H.; Li, K.; Schuster, D.I. Photoinduced electron transfer in porphyrin- and fullerene/porphyrin-based rotaxanes as studied by time-resolved EPR spectroscopy. J. Phys. Chem. A, 2009, 113(20), 5846-5854.
[http://dx.doi.org/10.1021/jp900331j] [PMID: 19402685]
[93]
Tanaka, S.; Sakurai, T.; Honsho, Y.; Saeki, A.; Seki, S.; Kato, K.; Takata, M.; Osuka, A.; Aida, T. Toward ultralow-bandgap liquid crystalline semiconductors: Use of triply fused metalloporphyrin trimer-pentamer as extra-large π-extended mesogenic motifs. Chemistry, 2012, 18(34), 10554-10561.
[http://dx.doi.org/10.1002/chem.201201101] [PMID: 22791554]
[94]
Kong, X.; Gong, H.; Dai, S.; Yao, W.; Mu, L.; Zhang, S.; Wang, G. Mesogenic complementary absorbing dyads based on porphyrin and perylene units. J. Porphyr. Phthalocyanines, 2018, 22(01n03), 221-232.
[http://dx.doi.org/10.1142/S1088424618500165]
[95]
Yuan, Y.; Gregg, B.A.; Lawrence, M.F. Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(β-octoxyethyl) porphyrin films. J. Mater. Res., 2000, 15(11), 2494-2498.
[http://dx.doi.org/10.1557/JMR.2000.0358]
[96]
Facci, P.; Fontana, M.P.; Dalcanale, E.; Costa, M.; Sacchelli, T. Molecular reorganization in langmuir−blodgett films of mesogenic Zn−porphyrin octaesters. Langmuir, 2000, 16(20), 7726-7730.
[http://dx.doi.org/10.1021/la000275s]
[97]
Warman, J.M.; Van De Craats, A.M. Charge mobility in discotic materials studied by Pr-Trmc. Mol. Cryst. Liq. Cryst., 2003, 396(1), 41-72.
[http://dx.doi.org/10.1080/15421400390213186]
[98]
Warman, J.M.; Kroeze, J.E.; Schouten, P.G.; van de Craats, A.M. Charge mobility in discotic liquid crystalline porphyrins and phthalocyanines measured by PR-TRMC. J. Porphyr. Phthalocyanines, 2003, 7(5), 342-350.
[http://dx.doi.org/10.1142/S1088424603000446]
[99]
Segade, A.; López-Calahorra, F.; Velasco, D. Mesomorphic behaviour of hemin based porphyrin liquid crystals: Structure and temperature dependent intracolumnar order. Mol. Cryst. Liq. Cryst., 2005, 439(1), 201/[2067]-208/[2074].
[http://dx.doi.org/10.1080/15421400590955640]
[100]
Segade, A.; López-Calahorra, F.; Velasco, D. Multiple interactions in the self-association of porphyrin discotic mesogens. J. Phys. Chem. B, 2008, 112(25), 7395-7402.
[http://dx.doi.org/10.1021/jp800475f] [PMID: 18512894]
[101]
Bykova, V.; Usol’tseva, N.; Kudrik, E.; Galanin, N.; Shaposhnikov, G.; Yakubov, L. Synthesis and induction of mesomorphic properties of tetrabenzoporphine derivatives. Mol. Cryst. Liq. Cryst., 2008, 494(1), 38-47.
[http://dx.doi.org/10.1080/15421400802429986]
[102]
Bhyrappa, P.; Arunkumar, C.; Varghese, B.; Rao, D.S.S.; Prasad, S.K. Synthesis and mesogenic properties of β-tetrabrominated tetraalkyloxyporphyrins. J. Porphyr. Phthalocyanines, 2008, 12(1), 54-64.
[http://dx.doi.org/10.1142/S108842460800008X]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy