Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Polysubstituted Pyridines via Nitrogen-doped Graphene Catalyzed One-Pot Multicomponent Reaction under Solvent-Free Conditions

Author(s): Zahra Movahed, Hassan Valizadeh* and Farzaneh Mirzaei

Volume 28, Issue 11, 2024

Published on: 08 May, 2024

Page: [890 - 895] Pages: 6

DOI: 10.2174/0113852728297985240408062346

Price: $65

conference banner
Abstract

Polysubstituted pyridine derivatives were produced with high to excellent yields in the presence of nitrogen-doped graphene (NDG) as a dual acid-based catalyst. NDG efficiently catalyzes the multicomponent reaction between arylaldehydes, diethyl-acetylene dicarboxylates, malononitrile, and ammonium acetate under solvent-free conditions at 80°C to afford the polysubstituted pyridines in short reaction times. The structures of the synthesized pyridines were established by Ft-IR, 1H, and 13C NMR spectroscopic analysis. The advantages of this method include the in-situ oxidation of prepared 1,4-dihydropyridines, one-pot procedure, solventless system, operational simplicity, and no column chromatography. Additionally, neither toxic solvents nor catalysts are needed, and the procedure can be very reliable among the reported methodologies. The yields and reaction times in the presence of four times recycled catalyst are in comparable to the fresh catalyst.

« Previous
Graphical Abstract

[1]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 1(23), 3154-3190.
[2]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[3]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[4]
Zárate, Z.D.; Aguilar, R.; Benitez, H.R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron, 2015, 71(38), 6961-6978.
[http://dx.doi.org/10.1016/j.tet.2015.07.010]
[5]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem, 2015, 29(1), 1-1.
[6]
Abdel-Raheem, S.A.A.; El-Dean, A.M.K. ul-Malik, M.A.A.; Abd-Ella, A.A.; Al-Taifi, E.A.; Hassanien, R.; El-Sayed, M.E.A.; Mohamed, S.K.; Zawam, S.A.; Bakhite, E.A. A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 2021, 10(4), 337-362.
[http://dx.doi.org/10.5267/j.ccl.2021.7.001]
[7]
Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B.; Lavanya, P. Reusable Ce‐V loaded alumina catalyst for multicomponent synthesis of substituted pyridines in green media. J. Heterocycl. Chem., 2016, 53(2), 658-664.
[http://dx.doi.org/10.1002/jhet.2430]
[8]
Shrestha, A.; Park, S.; Shin, S.; Man Kadayat, T.; Bist, G.; Katila, P.; Kwon, Y.; Lee, E.S. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem., 2018, 79(79), 1-18.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.033] [PMID: 29715635]
[9]
Finch, N.; Campbell, T.R.; Gemenden, C.W.; Antonaccio, M.J.; Povalski, H.J. Synthesis and antihypertensive activity of 5-thio-2-pyridinecarboxylic acid derivatives. J. Med. Chem., 1978, 21(12), 1269-1274.
[http://dx.doi.org/10.1021/jm00210a018] [PMID: 102795]
[10]
Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in vitro anti-HIV-1 evaluation of novel pyrazolo[4,3-c]pyridin-4-one derivatives. Eur. J. Med. Chem., 2019, 183 111714-, 183, 111714
[http://dx.doi.org/10.1016/j.ejmech.2019.111714] [PMID: 31557609]
[11]
Hantzsch, A. On the synthesis of pyridine-like compounds from acetoacetic ether and aldehyde ammonia. Justus Liebigs Ann. Chem., 1882, 215(1), 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[12]
Vijesh, A.M.; Isloor, A.M.; Peethambar, S.K.; Shivananda, K.N.; Arulmoli, T.; Isloor, N.A. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur. J. Med. Chem., 2011, 46(11), 5591-5597.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.026] [PMID: 21968373]
[13]
Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62(31), 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[14]
Lin, C.C.; Hsieh, C.C.; Yu, Y.C.; Lai, C.H.; Huang, C.N.; Kuo, P.Y.; Lin, C.H.; Yang, D.Y.; Chou, P.T. Dual fluorescent photochromic colorants bearing pyrano[3,2-c]chromen-5-one moiety. J. Phys. Chem. A, 2009, 113(33), 9321-9328.
[http://dx.doi.org/10.1021/jp904076s] [PMID: 19642653]
[15]
Dinparast, L.; Valizadeh, H. ZnO nanoparticles as an efficient catalyst for the selective synthesis of 4-hydroxychromenes via the reaction of salicylaldehydes with dimethyl or diethyl acetylenedicarboxylate in [bmim]BF4. Monatsh. Chem., 2015, 146(2), 313-319.
[http://dx.doi.org/10.1007/s00706-014-1323-5]
[16]
Kharkar, P.S.; Desai, B.; Gaveria, H.; Varu, B.; Loriya, R.; Naliapara, Y.; Shah, A.; Kulkarni, V.M. Three-dimensional quantitative structure-activity relationship of 1,4-dihydropyridines as antitubercular agents. J. Med. Chem., 2002, 45(22), 4858-4867.
[http://dx.doi.org/10.1021/jm020217z] [PMID: 12383011]
[17]
Desai, B.; Sureja, D.; Naliapara, Y.; Shah, A.; Saxena, A.K. Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3,5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bioorg. Med. Chem., 2001, 9(8), 1993-1998.
[http://dx.doi.org/10.1016/S0968-0896(01)00141-9] [PMID: 11504636]
[18]
Pati, P.; Sethy, S.P.; Sameena, T.; Shailaja, K. Pyridine and its biological activity: A review. Asian J. Res. Chem, 2013, 6, 888-899.
[19]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[20]
Hamada, Y. Role of Pyridines in Medicinal Chemistry and Design of BACE1 Inhibitors Possessing a Pyridine Scaffold; InTech: Rijeka, 2018, pp. 9-21.
[http://dx.doi.org/10.5772/intechopen.74719]
[21]
Kishbaugh, T.L. Pyridines and imidazopyridines with medicinal significance. Curr. Top. Med. Chem., 2016, 16(28), 3274-3302.
[http://dx.doi.org/10.2174/1568026616666160506145141] [PMID: 27150370]
[22]
Mohamed, H.S.; Hamza, Z.S.; Nagdy, A.M.; Mageed, A.E.H.R. Computational studies and DFT calculations of synthesized triazolo pyrimidine derivatives: A review. J. Chem. Rev, 2022, 4, 156-190.
[23]
Patel, N.B.; Agravat, S.N.; Shaikh, F.M. Synthesis and antimicrobial activity of new pyridine derivatives-I. Med. Chem. Res., 2011, 20(7), 1033-1041.
[http://dx.doi.org/10.1007/s00044-010-9440-0]
[24]
Klimešová, V.; Svoboda, M.; Waisser, K.; Pour, M.; Kaustová, J. New pyridine derivatives as potential antimicrobial agents. Farmaco, 1999, 54(10), 666-672.
[http://dx.doi.org/10.1016/S0014-827X(99)00078-6] [PMID: 10575735]
[25]
All, A.E.A.S.; Osman, S.A.; Roaiah, H.M.F.; Abdalla, M.M.; Aty, A.E.A.A.; Hady, A.E.W.H. Potent anticancer and antimicrobial activities of pyrazole, oxazole and pyridine derivatives containing 1,2,4-triazine moiety. Med. Chem. Res., 2015, 24(12), 4093-4104.
[http://dx.doi.org/10.1007/s00044-015-1460-3]
[26]
Alizadeh, S.R.; Ebrahimzadeh, M.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev. Med. Chem., 2021, 21(17), 2584-2611.
[http://dx.doi.org/10.2174/18755607MTEzvNjcu0] [PMID: 33573543]
[27]
Mavel, S.; Renou, J.L.; Galtier, C.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis of imidazo[1,2-a]pyridine derivatives as antiviral agents. Arzneimittelforschung, 2001, 51(4), 304-309.
[PMID: 11367871]
[28]
Bassyouni, F.A.; Tawfik, H.A.; Soliman, A.M.; Rehim, M.A. Synthesis and anticancer activity of some new pyridine derivatives. Res. Chem. Intermed., 2012, 38(7), 1291-1310.
[http://dx.doi.org/10.1007/s11164-011-0413-9]
[29]
Song, Y.L.; Tian, C.P.; Wu, Y.; Jiang, L.; Shen, L.Q. Design, synthesis and antitumor activity of steroidal pyridine derivatives based on molecular docking. Steroids, 2019, 143, 53-61.
[http://dx.doi.org/10.1016/j.steroids.2018.12.007] [PMID: 30590064]
[30]
Temple, C., Jr; Rener, G.A.; Waud, W.R.; Noker, P.E. Antimitotic agents: Structure-activity studies with some pyridine derivatives. J. Med. Chem., 1992, 35(20), 3686-3690.
[http://dx.doi.org/10.1021/jm00098a014] [PMID: 1433180]
[31]
Fathy, U.; Younis, A.; Awad, H. Ultrasonic assisted synthesis, anticancer and antioxidant activity of some novel pyrazolo[3,4-b]pyridine derivatives. J. Chem. Pharm. Res., 2015, 7, 4-12.
[32]
Shi, F.; Li, C.; Xia, M.; Miao, K.; Zhao, Y.; Tu, S.; Zheng, W.; Zhang, G.; Ma, N. Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg. Med. Chem. Lett., 2009, 19(19), 5565-5568.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.046] [PMID: 19729303]
[33]
Antoci, V.; Cucu, D.; Zbancioc, G.; Moldoveanu, C.; Mangalagiu, V.; Mantu, A.D.; Aricu, A.; Mangalagiu, I.I. Bis-(imidazole/benzimidazole)-pyridine derivatives: Synthesis, structure and antimycobacterial activity. Future Med. Chem., 2020, 12(3), 207-222.
[http://dx.doi.org/10.4155/fmc-2019-0063] [PMID: 31916456]
[34]
Klimešová, V.; Palát, K.; Waisser, K.; Klimeš, J. Combination of molecular modeling and quantitative structure-activity relationship analysis in the study of antimycobacterial activity of pyridine derivatives. Int. J. Pharm., 2000, 207(1-2), 1-6.
[http://dx.doi.org/10.1016/S0378-5173(00)00498-1] [PMID: 11036224]
[35]
Bekhit, A.A.; Hymete, A.; Damtew, A.; Mohamed, A.M.I.; Bekhit, A.E.D.A. Synthesis and biological screening of some pyridine derivatives as anti-malarial agents. J. Enzyme Inhib. Med. Chem., 2012, 27(1), 69-77.
[http://dx.doi.org/10.3109/14756366.2011.575071] [PMID: 21612373]
[36]
Dias, L.R.; Freitas, A.C.; Barreiro, E.J.; Goins, D.K.; Nanayakkara, D.; McChesney, J.D. Synthesis and biological activity of new potential antimalarial: 1H-pyrazolo[3,4-b]pyridine derivatives. Boll. Chim. Farm., 2000, 139(1), 14-20.
[PMID: 10829547]
[37]
El Kaïm, L.; Grimaud, L.; Pravin, P. Ugi-Smiles couplings of 4-substituted pyridine derivatives: A fast access to chloroquine analogues. Org. Lett., 2012, 14(2), 476-478.
[http://dx.doi.org/10.1021/ol202974w] [PMID: 22206231]
[38]
Norcross, B.E.; Klinedinst, P.E.; Westheimer, F.H. The reduction of olefinic double bonds with dihydropyridines. J. Am. Chem. Soc., 1962, 84(5), 797-802.
[http://dx.doi.org/10.1021/ja00864a024]
[39]
Gujjarappa, R.; Vodnala, N.; Malakar, C.C. Decarboxylative cyclization of amino acids towards the Regioselective synthesis of 2, 4-diarylpyridines via relay Fe (III)/In (III)-catalysis. Tet. lett., 2020, 61(7), 151495.
[40]
Gujjarappa, R.; Vodnala, N.; Kumar, M.; Malakar, C.C.; Malakar, C.C. Pd-catalyzed decarboxylation and dual C(sp3)-H functionalization protocols for the synthesis of 2,4-diarylpyridines. J. Org. Chem., 2019, 84(9), 5005-5020.
[http://dx.doi.org/10.1021/acs.joc.8b02971] [PMID: 30900889]
[41]
Gujjarappa, R.; Vodnala, N.; Musib, D.; Malakar, C.C. Organocatalytic decarboxylation and dual C(sp3)−H bond functionalization toward facile access to divergent 2,6-diarylpyridines. Asian J. Org. Chem., 2022, 11(1), e202100627.
[http://dx.doi.org/10.1002/ajoc.202100627]
[42]
Ma, X.; Gang, D.R. The lycopodium alkaloids. Nat. Prod. Rep., 2004, 21(6), 752-772.
[http://dx.doi.org/10.1039/b409720n] [PMID: 15565253]
[43]
Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev., 2001, 53(4), 527-552.
[PMID: 11734617]
[44]
Chang, L.C.; von Künzel, J.F.D.; Krieger, T.M.; Spanjersberg, R.F.; Roerink, S.F.; van den Hout, G.; Beukers, M.W.; Brussee, J.; Ijzerman, A.P. A series of ligands displaying a remarkable agonistic−ntagonistic profile at the adenosine A1 receptor. J. Med. Chem., 2005, 48(6), 2045-2053.
[http://dx.doi.org/10.1021/jm049597+] [PMID: 15771447]
[45]
Shahabi, D.; Amrollahi, M.A.; Jafari, A.A. NaI readily mediated oxidative aromatization of Hantzsch 1,4-dihydropyridines with hydrogen peroxide at room temperature: A green procedure. J. Indian Chem. Soc., 2011, 8(4), 1052-1057.
[http://dx.doi.org/10.1007/BF03246562]
[46]
Chen, Z.Y.; Zhang, W. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid. Chin. Chem. Lett., 2007, 18(12), 1443-1446.
[http://dx.doi.org/10.1016/j.cclet.2007.10.010]
[47]
Das Sharma, S.; Hazarika, P.; Konwar, D. A simple, green and one-pot four-component synthesis of 1,4-dihydropyridines and their aromatization. Catal. Commun., 2008, 9(5), 709-714.
[http://dx.doi.org/10.1016/j.catcom.2007.08.008]
[48]
Tian, P.; Tang, L.; Teng, K.S.; Lau, S.P. Graphene quantum dots from chemistry to applications. Mater. Today Chem., 2018, 10(10), 221-258.
[http://dx.doi.org/10.1016/j.mtchem.2018.09.007]
[49]
Du, Z.; Shen, S.; Tang, Z.; Yang, J. Graphene quantum dots-based heterogeneous catalysts. N. Carbon Mater., 2021, 36(3), 449-467.
[http://dx.doi.org/10.1016/S1872-5805(21)60036-7]
[50]
Gu, S.; Hsieh, C.T.; Lin, T.W.; Yuan, C.Y.; Gandomi, A.Y.; Chang, J.K.; Li, J. Atomic layer oxidation on graphene sheets for tuning their oxidation levels, electrical conductivities, and band gaps. Nanoscale, 2018, 10(33), 15521-15528.
[http://dx.doi.org/10.1039/C8NR04013C] [PMID: 30102311]
[51]
Rivera, L.M.; Fajardo, S.; Arévalo, M.D.; García, G.; Pastor, E. S-and N-doped graphene nanomaterials for the oxygen reduction reaction. Catalysts, 2017, 18(7), 278.
[http://dx.doi.org/10.3390/catal7090278]
[52]
Mirzaei, F.; Valizadeh, H.; Pazhang, M. Immobilization of papain on nitrogen-doped graphene quantum dots improves the enzymatic properties and makes it a biosensor for cystatin C. Process Biochem., 2022, 118(118), 307-316.
[http://dx.doi.org/10.1016/j.procbio.2022.04.026]
[53]
(a) Valizadeh, H.; Shomali, A. A new nitrite ionic liquid (IL-ONO) as a nitrosonium source for the efficient diazotization of aniline derivatives and in-situ synthesis of azo dyes. Dyes Pigments, 2012, 92(3), 1138-1143.
[http://dx.doi.org/10.1016/j.dyepig.2010.11.010];
(b) Valizadeh, H.; Amiri, M.; Khalili, E. Task-specific nitrite and azide ionic liquids for the efficient one-pot synthesis of 1,2,3-triazoles from the aniline derivatives. Mol. Divers., 2012, 16(2), 319-323.
[http://dx.doi.org/10.1007/s11030-012-9366-1] [PMID: 22466931];
(c) Lotfi, A.; Shiri, H.; Ilkhani, R.; Sefidkar, R.; Esmaeeli, R. The efficacy of aromatherapy with Melissa officinalis in reducing anxiety in cardiac patients: A randomized clinical trial. Crescent J. Med. Biol. Sci., 2019, 1, 6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy