Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Microwave Assisted Grafting Technique for Modification of Polysaccharides

Author(s): Neetu Rajpoot and Dinesh Puri*

Volume 28, Issue 11, 2024

Published on: 24 April, 2024

Page: [844 - 856] Pages: 13

DOI: 10.2174/0113852728296687240328080900

Price: $65

Abstract

A natural and renewable substrate for the synthesis of high-performance macromolecules is polysaccharides. Grafting with the use of microwaves of synthetic polymers onto natural polysaccharides is a common, adaptable, and practical method of creating materials based on polysaccharides. It eliminates all drawbacks of the traditional grafting technique, including the need for hazardous solvents and longer reaction times. Grafting yield is also increased by microwave irradiation. In fact, the employment of microwaves in polysaccharide grafting modification for diverse applications has been prompted by the growing interest in clean and environment-friendly chemistry. Furthermore, compared with their traditionally synthesized counterparts, microwave-synthesized polysaccharide copolymers frequently have greater characteristics for commercial exploitation. Moreover, for many traditional grafting processes, the necessity for an inert environment is an additional drawback, which can be overcome by microwave grafting techniques. This study focuses on the current use of microwave heating in polysaccharide grafting modifications and its further use in pharmaceutical formulations.

Graphical Abstract

[1]
Lloyd, L.L.; Kennedy, J.F.; Methacanon, P.; Paterson, M.; Knill, C.J. Carbohydrate polymers as wound management aids. Carbohydr. Polym., 1998, 37(3), 315-322.
[http://dx.doi.org/10.1016/S0144-8617(98)00077-0]
[2]
Bhattacharya, A. Grafting: A versatile means to modify polymersTechniques, factors and applications. Prog. Polym. Sci., 2004, 29(8), 767-814.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.05.002]
[3]
Sah, S.; Tiwari, A.; Shrivastava, B.; Bairwa, R.; Bishnoi, N. Natural gums emphasized grafting technique: Applications and perspectives in floating drug delivery system. Asian J. Pharm., 2016, 10, 72-83.
[4]
Nayak, A.K.; Pal, D.; Das, S. Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr. Polym., 2013, 96(1), 349-357.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.088] [PMID: 23688491]
[5]
You, Q.; Yin, X.; Zhang, S.; Jiang, Z. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. Carbohydr. Polym., 2014, 99, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.088] [PMID: 24274473]
[6]
Nayak, A.K.; Pal, D.; Santra, K. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int. J. Biol. Macromol., 2015, 79, 756-760.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.018] [PMID: 26007663]
[7]
Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ., 2021, 29(8), 2359-2371.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[8]
Farrán, A.; Cai, C.; Sandoval, M.; Xu, Y.; Liu, J.; Hernáiz, M.J.; Linhardt, R.J. Green solvents in carbohydrate chemistry: From raw materials to fine chemicals. Chem. Rev., 2015, 115(14), 6811-6853.
[http://dx.doi.org/10.1021/cr500719h] [PMID: 26121409]
[9]
Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current advancements in pectin: Extraction, properties and multifunctional applications. Foods, 2022, 11(17), 2683.
[http://dx.doi.org/10.3390/foods11172683] [PMID: 36076865]
[10]
Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications. Gels, 2023, 9(9), 732.
[http://dx.doi.org/10.3390/gels9090732] [PMID: 37754413]
[11]
Cenci, U.; Nitschke, F.; Steup, M.; Minassian, BA. Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Sci., 2014, 2014(1), 18-28.
[http://dx.doi.org/10.1016/j.tplants.2013.08.004]
[12]
Kulkarni, V.; Butte, K.; Rathod, S. Natural polymers - A comprehensive review. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(4), 1597-1613.
[13]
Bi, D.; Yang, X.; Yao, L.; Hu, Z.; Li, H.; Xu, X.; Lu, J. Potential food and nutraceutical applications of alginate: A review. Mar. Drugs, 2022, 20(9), 564.
[http://dx.doi.org/10.3390/md20090564] [PMID: 36135753]
[14]
Bao, X.; Duan, J.; Fang, X.; Fang, J. Chemical modifications of the (1→3)-α-d-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity. Carbohydr. Res., 2001, 336(2), 127-140.
[http://dx.doi.org/10.1016/S0008-6215(01)00238-5] [PMID: 11689183]
[15]
Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol., 2016, 92, 37-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.100] [PMID: 27377457]
[16]
Mukherjee, B.; Dinda, S.C.; Barik, B.B. Gum cordia: A novel matrix forming material for enteric resistant and sustained drug delivery-A technical note. AAPS PharmSciTech, 2008, 9(1), 330-333.
[http://dx.doi.org/10.1208/s12249-008-9051-y] [PMID: 18446499]
[17]
Saidin, N.M.; Anuar, N.K. Roles of polysaccharides in transdermal drug delivery system and future prospects. J. Appl. Pharm. Sci., 2018, 8, 141-157.
[http://dx.doi.org/10.7324/JAPS.2018.8320]
[18]
Harding, S.E.; Tombs, M.P.; Adams, G.G.; Paulsen, B.S.; Inngjerdingen, K.T.; Barsett, H. An Introduction to Polysaccharide Biotechnology, 2nd ed; CRC Press, 2017.
[http://dx.doi.org/10.1201/9781315372730]
[19]
Rana, V.; Rai, P.; Tiwary, A.K.; Singh, R.S.; Kennedy, J.F.; Knill, C.J. Modified gums: Approaches and applications in drug delivery. Carbohydr. Polym., 2011, 83(3), 1031-1047.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.010]
[20]
Laye, B.; Mandal, S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydr. Polym., 2019, 230, 115617.
[http://dx.doi.org/10.1016/j.carbpol.2019.115617] [PMID: 31887888]
[21]
Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Flores, D.F.A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules, 2019, 24(17), 3122.
[http://dx.doi.org/10.3390/molecules24173122] [PMID: 31466265]
[22]
Singh, B.; Sharma, V. Rohit; Sen, H. Fabrication of acacia gum grafted copolymeric network hydrogel for biomedical applications. Bioact. Carbohydr. Diet. Fibre, 2023, 29, 100353.
[http://dx.doi.org/10.1016/j.bcdf.2023.100353]
[23]
Surajpal, V. Design and evaluation of sustained release mucoadhesive film of sumatriptan succinate containing grafted copolymer as the platform. Saudi Pharm. J., 2022, 30(11), 1527-1537.
[http://dx.doi.org/10.1016/j.jsps.2022.07.014] [PMID: 36465843]
[24]
Patil, T.; Pawar, A.; Korake, S.; Patil, R.; Pawar, A.; Kamble, R. Green synthesis of polyacrylamide grafted Neem Gum for gastro retentive floating drug delivery of Ciprofloxacin hydrochloride: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2022, 72, 103417.
[http://dx.doi.org/10.1016/j.jddst.2022.103417]
[25]
Jha, S.; Malviya, R.; Fuloria, S.; Sundram, S.; Subramaniyan, V.; Sekar, M.; Sharma, P.K.; Chakravarthi, S.; Wu, Y.S.; Mishra, N.; Meenakshi, D.U.; Bhalla, V.; Djearamane, S.; Fuloria, N.K. Characterization of microwave-controlled polyacrylamide graft copolymer of tamarind seed polysaccharide. Polymers, 2022, 14(5), 1037.
[http://dx.doi.org/10.3390/polym14051037] [PMID: 35267860]
[26]
Bhosale, R.R.; Osmani, R.A.M.; Abu Lila, A.S.; Khafagy, E.S.; Arab, H.H.; Gowda, D.V.; Rahamathulla, M.; Hani, U.; Adnan, M.; Gangadharappa, H.V. Ghatti gum-base graft copolymer: A plausible platform for pH-controlled delivery of antidiabetic drugs. RSC Advances, 2021, 11(24), 14871-14882.
[http://dx.doi.org/10.1039/D1RA01536B] [PMID: 35423983]
[27]
Bhagwat, D.A.; Kolekar, V.R.; Nadaf, S.J.; Choudhari, P.B.; Harinath, M.N.; Killedar, S.G. Acrylamide grafted neem (Azadirachtaindica) gum polymer: Screening and exploration as a drug release retardant for tablet formulation. Carbohydr. Polym., 2019, 115357.
[http://dx.doi.org/10.1016/j.carbpol.2019.115357] [PMID: 31826453]
[28]
Chourasia, M.K.; Jain, S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv., 2004, 11(2), 129-148.
[http://dx.doi.org/10.1080/10717540490280778] [PMID: 15200012]
[29]
Edgar, K. Organic cellulose esters. In: Encyclopedia of Polymer Science and Technology; Wiley: New York, 2004; 9, p. 129-158.
[http://dx.doi.org/10.1002/0471440264.pst045]
[30]
Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res., 2004, 339(1), 105-111.
[http://dx.doi.org/10.1016/j.carres.2003.09.015] [PMID: 14659676]
[31]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and application. J. Sci. Ind. Res., 2004, 63, 20-31.
[32]
Wang, A.; Wang, W. Gum-g-copolymers: Synthesis, properties, and applications. In: Polysaccharide Based Graft Copolymers; Springer, 2013, pp. 149-203.
[http://dx.doi.org/10.1007/978-3-642-36566-9_5]
[33]
Lutz, P.; Peruch, F. Graft copolymers and comb-shaped homopolymers. polymer science. In: A Comprehensive Reference; , 2013; pp. 511-542.
[http://dx.doi.org/10.1016/B978-0-444-53349-4.00172-2]
[34]
Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Graft copolymers from cellulose: Synthesis, characterization and evaluation. Carbohydr. Polym., 2013, 97(1), 18-25.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.069] [PMID: 23769511]
[35]
Çelik, M. Preparation and characterization of starch-g-polymethacrylamide copolymers. J. Polym. Res., 2006, 13(5), 427-432.
[http://dx.doi.org/10.1007/s10965-006-9063-9]
[36]
Bhosale, R.; Gangadharappa, H.V.; Moin, A.; Gowda, D.V.; Osmani, R. Grafting technique with special emphasis on natural gums: Applications and perspectives in drug delivery. Nat. Prod. J., 2015, 5(2), 124-139.
[http://dx.doi.org/10.2174/221031550502150702142228]
[37]
Russell, K.E. Free radical graft polymerization and copolymerization at higher temperatures. Prog. Polym. Sci., 2002, 27(6), 1007-1038.
[http://dx.doi.org/10.1016/S0079-6700(02)00007-2]
[38]
Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci., 2001, 26(3), 337-377.
[http://dx.doi.org/10.1016/S0079-6700(01)00003-X]
[39]
Chen, T.; Kumar, G.; Harris, M.T.; Smith, P.J.; Payne, G.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng., 2000, 70(5), 564-573.
[http://dx.doi.org/10.1002/1097-0290(20001205)70:5<564::AID-BIT11>3.0] [PMID: 11042553]
[40]
Kubota, H.; Suka, I.G.; Kuroda, S.; Kondo, T. Introduction of stimuli-responsive polymers into regenerated cellulose film by means of photografting. Eur. Polym. J., 2001, 37(7), 1367-1372.
[http://dx.doi.org/10.1016/S0014-3057(00)00257-3]
[41]
Coviello, T.; Dentini, M.; Rambone, G.; Desideri, P.; Carafa, M.; Murtas, E.; Riccieri, F.M.; Alhaique, F. A novel co-crosslinked polysaccharide: Studies for a controlled delivery matrix. J. Control. Release, 1998, 55(1), 57-66.
[http://dx.doi.org/10.1016/S0168-3659(98)00028-5] [PMID: 9795015]
[42]
Ng, L.T.; Garnett, J.L.; Zilic, E.; Nguyen, D. Effect of monomer structure on radiation grafting of charge transfer complexes to synthetic and naturally occurring polymers. Radiat. Phys. Chem., 2001, 62(1), 89-98.
[http://dx.doi.org/10.1016/S0969-806X(01)00425-X]
[43]
Hayes, B. Recent advances in microwave-assisted synthesis. Aldrichim Acta, 2004, 37, 66-77.
[44]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[45]
Sen, G.; Mishra, S.; Jha, U.; Pal, S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int. J. Biol. Macromol., 2010, 47(2), 164-170.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.004] [PMID: 20471416]
[46]
Mishra, S.; Mukul, A.; Sen, G.; Jha, U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. Int. J. Biol. Macromol., 2011, 48(1), 106-111.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.004] [PMID: 20951725]
[47]
Kumar, R.; Setia, A.; Mahadevan, N. Grafting modification of the polysaccharide by the use of microwave irradiation - A review. Int J Rec Adv Pharm Res., 2012, 2, 45-53.
[48]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[49]
Sosnik, A.; Gotelli, G.; Abraham, G.A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: How new and how powerful. Prog. Polym. Sci., 2011, 36(8), 1050-1078.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.001]
[50]
Attri, A.; Kumar, R.; Rozera, R.; Vyas, M.; Wadhwa, P.; Haque, A.; Verma, S. A systemic review on grafting techniques and their application with reference to natural gums and mucilage. Plant Arch., 2019, 19, 4.
[51]
Sen, G.; Kumar, R.; Ghosh, S.; Pal, S. A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr. Polym., 2009, 77(4), 822-831.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.007]
[52]
Sen, G.; Singh, R.P.; Pal, S. Microwave‐initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and characterization. J. Appl. Polym. Sci., 2010, 115(1), 63-71.
[http://dx.doi.org/10.1002/app.30596]
[53]
Singh, V.; Kumari, P.L.; Tiwari, A.; Sharma, A.K. Alumina supported synthesis of Cassia marginata gum‐g‐poly(acrylonitrile) under microwave irradiation. Polym. Adv. Technol., 2007, 18(5), 379-385.
[http://dx.doi.org/10.1002/pat.899]
[54]
Mishra, S.; Sen, G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications. Int. J. Biol. Macromol., 2011, 48(4), 688-694.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.02.013] [PMID: 21356236]
[55]
Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J., 2017, 11(1), 109-126.
[http://dx.doi.org/10.2174/1874104501711010109] [PMID: 29151987]
[56]
Singh, V.; Tiwari, A.; Tripathi, D.N.; Sanghi, R. Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer, 2006, 47(1), 254-260.
[http://dx.doi.org/10.1016/j.polymer.2005.10.101]
[57]
Singh, V.; Kumar, P.; Sanghi, R. Use of microwave irradiation in the grafting modification of the polysaccharides – A review. Prog. Polym. Sci., 2012, 37(2), 340-364.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.07.005]
[58]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[59]
Gupta, M.; Paul, S.; Gupta, R. General characteristics and applications of microwaves in organic synthesis. Acta Chim. Slov., 2009, 56, 749-764.
[60]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[61]
Stuerga, D.; Gaillard, P. Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics. Tetrahedron, 1996, 52(15), 5505-5510.
[http://dx.doi.org/10.1016/0040-4020(96)00241-4]
[62]
Nishioka, N.; Matsumoto, K.; Kosai, K. Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide–paraformaldehyde solvent system II. characterization of graft copolymers. Polym. J., 1983, 15(2), 153-158.
[http://dx.doi.org/10.1295/polymj.15.153]
[63]
Sun, T.; Xu, P.; Liu, Q.; Xue, J.; Xie, W. Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur. Polym. J., 2003, 39(1), 189-192.
[http://dx.doi.org/10.1016/S0014-3057(02)00174-X]
[64]
Schanche, J.S. Microwave synthesis solutions from personal chemistry. Mol. Divers., 2003, 7(2-4), 291-298.
[http://dx.doi.org/10.1023/B:MODI.0000006866.38392.f7] [PMID: 14870861]
[65]
Singh, B.; Kumar, S. Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization. Nucl. Instrum. Methods Phys. Res. B, 2008, 266(15), 3417-3430.
[http://dx.doi.org/10.1016/j.nimb.2008.04.022]
[66]
Iskandar, S. Graft copolymerization of methyl methacrylate monomer onto starch and natural rubber latex initiated by gamma irradiation. Atom Indonesia, 2011, 37(1), 24-28.
[http://dx.doi.org/10.17146/aij.2011.72]
[67]
Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 2005, 30(1), 38-70.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.11.002]
[68]
Singh, B. Psyllium as therapeutic and drug delivery agent. Int. J. Pharm., 2007, 334(1-2), 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.028] [PMID: 17329047]
[69]
Dilara, P.A.; Briassoulis, D. Degradation and stabilization of low-density polyethylene films used as greenhouse covering materials. J. Agric. Eng. Res., 2000, 76(4), 309-321.
[http://dx.doi.org/10.1006/jaer.1999.0513]
[70]
Pandey, P.K.; Srivastava, A.; Tripathy, J.; Behari, K. Graft copolymerization of acrylic acid onto guar gum initiated by vanadium (V)–mercaptosuccinic acid redox pair. Carbohydr. Polym., 2006, 65(4), 414-420.
[http://dx.doi.org/10.1016/j.carbpol.2006.01.022]
[71]
Whistler, R.L. Industrial gums from plants: Guar and chia. Econ. Bot., 1982, 36(2), 195-202.
[http://dx.doi.org/10.1007/BF02858718]
[72]
Gihar, S.; Kumar, D.; Kumar, P. Facile synthesis of novel pH-sensitive grafted guar gum for effective removal of mercury (II) ions from aqueous solution. Carbohydr. Polym. Technol. Appl., 2021, 2, 100110.
[http://dx.doi.org/10.1016/j.carpta.2021.100110]
[73]
Tiwari, A.; Singh, V. Microwave-induced synthesis of electrical conducting gum acacia-graft-polyaniline. Carbohydr. Polym., 2008, 74(3), 427-434.
[http://dx.doi.org/10.1016/j.carbpol.2008.03.015]
[74]
Bal, T.; Singh, P.; Rajora, A.D.; Garg, S.; Ghosh, B.D.; Pattnaik, A.K. Polyacrylamide grafted gum acacia (GA-g-PAM) graft copolymer as efficient polymeric scaffold. Indian J. Pharm. Educ. Res., 2021, 55(2s), s441-s447.
[http://dx.doi.org/10.5530/ijper.55.2s.115]
[75]
Nayak, K.A.; Hasnain, S.M.; Beg, S.; Alam, I.M. Mucoadhesive beads of gliclazide: Design, development, and evaluation. Sci. Asia, 2010, 36(4), 319-325.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2010.36.319]
[76]
Nayak, A.K.; Pal, D.; Santra, K. Ispaghula mucilage-gellan mucoadhesive beads of metformin HCl: Development by response surface methodology. Carbohydr. Polym., 2014, 107, 41-50.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.022] [PMID: 24702916]
[77]
Thakur, V.K.; Thakur, M.K. Recent trends in hydrogels based on psyllium polysaccharide: A review. J. Clean. Prod., 2014, 82, 1-15.
[http://dx.doi.org/10.1016/j.jclepro.2014.06.066]
[78]
Mishra, S.; Sinha, S.; Dey, K.P.; Sen, G. Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydr. Polym., 2014, 99, 462-468.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.047] [PMID: 24274531]
[79]
Sen, G.; Mishra, S.; Rani, G.U.; Rani, P.; Prasad, R. Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculant. Int. J. Biol. Macromol., 2012, 50(2), 369-375.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.12.014] [PMID: 22210527]
[80]
Singh, B.; Sharma, V.; Kumar, R.; Mohan, M. Development of dietary fiber psyllium based hydrogel for use in drug delivery applications. Food Hydrocolloids. Health, 2022, 2, 100059.
[http://dx.doi.org/10.1016/j.fhfh.2022.100059]
[81]
Zobel, H.F. Molecules to granules: A comprehensive starch review. Stärke, 1988, 40(2), 44-50.
[http://dx.doi.org/10.1002/star.19880400203]
[82]
Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym., 2001, 45(3), 253-267.
[http://dx.doi.org/10.1016/S0144-8617(00)00260-5]
[83]
Vandeputte, G.; Delcour, J. From sucrose to starch granule to starch physical behaviour: A focus on rice starch. Carbohydr. Polym., 2004, 58(3), 245-266.
[http://dx.doi.org/10.1016/j.carbpol.2004.06.003]
[84]
Lanthong, P.; Nuisin, R.; Kiatkamjornwong, S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr. Polym., 2006, 66(2), 229-245.
[http://dx.doi.org/10.1016/j.carbpol.2006.03.006]
[85]
Misale, B.V.; Gavali, H.B.M.; Katare, S.; Yadav, A.V. Sago starch capsule shell: A suitable alternative to gelatin capsule shells. Indian J. Pharm. Educ. Res, 2008, 42, 48-52.
[86]
Deshmukh, S.R.; Sudhakar, K.; Singh, R.P. Drag‐reduction efficiency, shear stability, and biodegradation resistance of carboxymethyl cellulose‐based and starch‐based graft copolymers. J. Appl. Polym. Sci., 1991, 43(6), 1091-1101.
[http://dx.doi.org/10.1002/app.1991.070430609]
[87]
Singh, A.V.; Nath, L.K. Evaluation of acrylamide grafted moth bean starch as controlled release excipient. Carbohydr. Polym., 2012, 87(4), 2677-2682.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.049]
[88]
Benn, R.A.; Contador, C.A.; Li, M.W.; Lam, H.M.; Ah-Hen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem. Adv., 2023, 2, 100192.
[http://dx.doi.org/10.1016/j.focha.2023.100192]
[89]
Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin - A review. Crit. Rev. Food Sci. Nutr., 1997, 37(1), 47-73.
[http://dx.doi.org/10.1080/10408399709527767] [PMID: 9067088]
[90]
Mishra, R.K.; Sutar, P.B.; Singhal, J.P.; Banthia, A.K. Graft copolymerization of pectin with polyacrylamide. Polym. Plast. Technol. Eng., 2007, 46(11), 1079-1085.
[http://dx.doi.org/10.1080/03602550701525164]
[91]
Sutar, P.B.; Mishra, R.K.; Pal, K.; Banthia, A.K. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J. Mater. Sci. Mater. Med., 2008, 19(6), 2247-2253.
[http://dx.doi.org/10.1007/s10856-007-3162-y] [PMID: 17619970]
[92]
Crini, G.; Badot, P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 2008, 33(4), 399-447.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001]
[93]
Anitha, A.; Rejinold, N.S.; Bumgardner, J.D.; Nair, S.V.; Jayakumar, R. Approaches for functional modification or cross‐linking of chitosan. In: Chitosan‐Based Systems for Biopharmaceuticals; Wiley, 2012; pp. 107-124.
[http://dx.doi.org/10.1002/9781119962977.ch7]
[94]
Yusof, N.H.; Foo, K.Y.; Wilson, L.D.; Hameed, B.H.; Hussin, M.H.; Sabar, S. Microwave-assisted synthesis of polyethyleneimine grafted chitosan beads for the adsorption of acid red 27. J. Polym. Environ., 2020, 28(2), 542-552.
[http://dx.doi.org/10.1007/s10924-019-01628-3]
[95]
Malik, S.; Ahuja, M. Gum kondagogu-g-poly (acrylamide): Microwave-assisted synthesis, characterisation and release behaviour. Carbohydr. Polym., 2011, 86(1), 177-184.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.027] [PMID: 34662948]
[96]
Rani, P.; Sen, G.; Mishra, S.; Jha, U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym., 2012, 89(1), 275-281.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.009] [PMID: 24750634]
[97]
Singh, V.; Kumari, P.L.; Tiwari, A.; Pandey, S. Alumina‐supported microwave synthesis of Cassia marginata seed gum‐graft‐polyacrylamide. J. Appl. Polym. Sci., 2010, 117(6), 3630-3638.
[http://dx.doi.org/10.1002/app.32273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy