Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Comprehensive Overview of Treponema pallidum Outer Membrane Proteins

Author(s): Sirui Wu, Lan Luo, Fei Ye, Yuanfang Wang and Dongdong Li*

Volume 25, Issue 8, 2024

Published on: 24 April, 2024

Page: [604 - 612] Pages: 9

DOI: 10.2174/0113892037293502240328042224

Price: $65

Abstract

Treponema pallidum, the causative agent of syphilis, is a sexually transmitted microorganism that exhibits remarkable motility capabilities, allowing it to affect various systems. Despite its structural resemblance to gram-negative bacteria due to its dual-membrane, T. pallidum possesses a lower abundance of outer membrane proteins (OMPs), which enables it to effectively conceal itself. This review presents a comprehensive analysis of the clinical diagnostic potential associated with the OMPs of T. pallidum. Furthermore, the known OMPs in T. pallidum that are responsible for mediating host interactions have been progressively elucidated. This review aims to shed light on the pathogenesis of syphilis, encompassing aspects such as vascular inflammation, chancre self-healing, neuroinvasion, and reinfection. Additionally, this review offers a detailed overview of the current state and prospects of development in the field of syphilis vaccines, with the ultimate goal of establishing a foundation for understanding the pathogenesis and implementing effective prevention strategies against syphilis.

Graphical Abstract

[1]
Ramchandani, M.S.; Cannon, C.A.; Marra, C.M. Syphilis. Infect. Dis. Clin. North Am., 2023, 37(2), 195-222.
[http://dx.doi.org/10.1016/j.idc.2023.02.006] [PMID: 37005164]
[2]
Golden, M.R.; Marra, C.M.; Holmes, K.K. Update on Syphilis. JAMA, 2003, 290(11), 1510-1514.
[http://dx.doi.org/10.1001/jama.290.11.1510] [PMID: 13129993]
[3]
Mahajan, B.B.; Kaur, T.; Mahajan, M. Syphilis resurgence: Exploring the impact of COVID-19 pandemic. Indian J. Sex. Transm. Dis. AIDS, 2023, 44(1), 95-96.
[http://dx.doi.org/10.4103/ijstd.ijstd_19_22] [PMID: 37457535]
[4]
Radolf, J.D.; Deka, R.K.; Anand, A.; Šmajs, D.; Norgard, M.V.; Yang, X.F. Treponema pallidum, the syphilis spirochete: Making a living as a stealth pathogen. Nat. Rev. Microbiol., 2016, 14(12), 744-759.
[http://dx.doi.org/10.1038/nrmicro.2016.141] [PMID: 27721440]
[5]
Romeis, E.; Tantalo, L.; Lieberman, N.; Phung, Q.; Greninger, A.; Giacani, L. Genetic engineering of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. PLoS Pathog., 2021, 17(7), e1009612.
[http://dx.doi.org/10.1371/journal.ppat.1009612] [PMID: 34228757]
[6]
Penn, C.W.; Cockayne, A.; Bailey, M.J. The outer membrane of Treponema pallidum: Biological significance and biochemical properties. J. Gen. Microbiol., 1985, 131(9), 2349-2357.
[PMID: 3906041]
[7]
Radolf, J.D.; Norgard, M.V.; Schulz, W.W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc. Natl. Acad. Sci. USA, 1989, 86(6), 2051-2055.
[http://dx.doi.org/10.1073/pnas.86.6.2051] [PMID: 2648388]
[8]
Cox, D.L.; Chang, P.; McDowall, A.W.; Radolf, J.D. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect. Immun., 1992, 60(3), 1076-1083.
[http://dx.doi.org/10.1128/iai.60.3.1076-1083.1992] [PMID: 1541522]
[9]
Veith, P.D.; Glew, M.D.; Gorasia, D.G.; Chen, D.; O’Brien-Simpson, N.M.; Reynolds, E.C. Localization of outer membrane proteins in Treponema denticola by quantitative proteome analyses of outer membrane vesicles and cellular fractions. J. Proteome Res., 2019, 18(4), 1567-1581.
[http://dx.doi.org/10.1021/acs.jproteome.8b00860] [PMID: 30761904]
[10]
Cullen, P.A.; Haake, D.A.; Adler, B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol. Rev., 2004, 28(3), 291-318.
[http://dx.doi.org/10.1016/j.femsre.2003.10.004] [PMID: 15449605]
[11]
Ávila-Nieto, C.; Pedreño-López, N.; Mitjà, O.; Clotet, B.; Blanco, J.; Carrillo, J. Syphilis vaccine: Challenges, controversies and opportunities. Front. Immunol., 2023, 14, 1126170.
[http://dx.doi.org/10.3389/fimmu.2023.1126170] [PMID: 37090699]
[12]
Radolf, J.D.; Kumar, S. The Treponema pallidum Outer Membrane. Curr. Top. Microbiol. Immunol., 2018, 415, 1-38.
[PMID: 28849315]
[13]
Chen, J.; Huang, J.; Liu, Z.; Xie, Y. Treponema pallidum outer membrane proteins: Current status and prospects. Pathog. Dis., 2022, 80(1), ftac023.
[http://dx.doi.org/10.1093/femspd/ftac023] [PMID: 35869970]
[14]
Bao, Y.; Medland, N.A.; Fairley, C.K.; Wu, J.; Shang, X.; Chow, E.P.F.; Xu, X.; Ge, Z.; Zhuang, X.; Zhang, L. Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect., 2021, 82(1), 48-59.
[http://dx.doi.org/10.1016/j.jinf.2020.11.007] [PMID: 33189772]
[15]
Kojima, N.; Konda, K.A.; Klausner, J.D. Notes on syphilis vaccine development. Front. Immunol., 2022, 13, 952284.
[http://dx.doi.org/10.3389/fimmu.2022.952284] [PMID: 35967432]
[16]
Park, I.U.; Tran, A.; Pereira, L.; Fakile, Y. Sensitivity and specificity of treponemal-specific tests for the diagnosis of syphilis. Clin. Infect. Dis., 2020, 71(Suppl. 1), S13-S20.
[http://dx.doi.org/10.1093/cid/ciaa349] [PMID: 32578866]
[17]
Sun, R.; Lai, D.; Ren, R.; Lian, S.; Zhang, H. Treponema pallidum -specific antibody expression for the diagnosis of different stages of syphilis. Chin. Med. J. (Engl.), 2013, 126(2), 206-210.
[http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20122207] [PMID: 23324264]
[18]
Xia, D.; Yuan, L.; Zhou, Q.; Chen, S.; Chen, X.; Yin, Y. Performance evaluation of eight treponemal antibody tests in China. Diagn. Microbiol. Infect. Dis., 2022, 104(4), 115790.
[http://dx.doi.org/10.1016/j.diagmicrobio.2022.115790] [PMID: 36137341]
[19]
Pham, M.D.; Wise, A.; Garcia, M.L.; Van, H.; Zheng, S.; Mohamed, Y.; Han, Y.; Wei, W.H.; Yin, Y.P.; Chen, X.S.; Dimech, W.; Braniff, S.; Technau, K.G.; Luchters, S.; Anderson, D.A. Improving the coverage and accuracy of syphilis testing: The development of a novel rapid, point-of-care test for confirmatory testing of active syphilis infection and its early evaluation in China and South Africa. EClin. Med., 2020, 24, 100440.
[http://dx.doi.org/10.1016/j.eclinm.2020.100440] [PMID: 32637904]
[20]
Hu, Y.T.; Wu, J.B.; Zhuang, M.H.; Zhao, Y.Y.; Lin, Y.; Jiang, X.Y.; Liu, L.L. A 4-fold or greater decrease in TPPA titers may indicate effective BPG treatment in primary syphilis. Int. Immunopharmacol., 2024, 127, 111333.
[http://dx.doi.org/10.1016/j.intimp.2023.111333] [PMID: 38091829]
[21]
Liu, W.; Deng, M.; Zhang, X.; Yin, W.; Zhao, T.; Zeng, T.; Liu, S.; Xiao, Y.; Zhang, L.; Luo, X.; Zhao, F. Performance of novel infection phase-dependent antigens in syphilis serodiagnosis and treatment efficacy determination. Clin. Chim. Acta, 2019, 488, 13-19.
[http://dx.doi.org/10.1016/j.cca.2018.10.017] [PMID: 30326217]
[22]
Centurion-Lara, A.; Sun, E.S.; Barrett, L.K.; Castro, C.; Lukehart, S.A.; Van Voorhis, W.C. Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J. Bacteriol., 2000, 182(8), 2332-2335.
[http://dx.doi.org/10.1128/JB.182.8.2332-2335.2000] [PMID: 10735882]
[23]
Leader, B.T.; Hevner, K.; Molini, B.J.; Barrett, L.K.; Van Voorhis, W.C.; Lukehart, S.A. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect. Immun., 2003, 71(10), 6054-6057.
[http://dx.doi.org/10.1128/IAI.71.10.6054-6057.2003] [PMID: 14500529]
[24]
Runina, A.V.; Katunin, G.L.; Filippova, M.A.; Zatevalov, A.M.; Kubanov, A.A.; Deryabin, D.G. Immunochip for Syphilis serodiagnostics with the Use of Extended Array of Treponema pallidum Recombinant Antigens. Bull. Exp. Biol. Med., 2018, 165(6), 767-771.
[http://dx.doi.org/10.1007/s10517-018-4261-0] [PMID: 30353336]
[25]
de Sá Queiroz, J.H.F.; dos Santos Barbosa, M.; Miranda, L.G.O.; de Oliveira, N.R.; Dellagostin, O.A.; Marchioro, S.B.; Simionatto, S. Tp0684, Tp0750, and Tp0792 recombinant proteins as antigens for the serodiagnosis of syphilis. Indian J. Microbiol., 2022, 62(3), 419-427.
[http://dx.doi.org/10.1007/s12088-022-01017-w] [PMID: 35974924]
[26]
Chen, D.; Wang, S.; He, Y.; Fu, Y.; Zhao, F.; Zhou, X.; Yin, H.; Wan, J.; Huang, Y.; Wu, Y.; Cao, L.; Zeng, T. Assessment of recombinant antigens Tp0100 and Tp1016 of Treponema pallidum for serological diagnosis of syphilis. J. Clin. Lab. Anal., 2022, 36(9), e24635.
[http://dx.doi.org/10.1002/jcla.24635] [PMID: 35908795]
[27]
Runina, A.V.; Starovoitova, A.S.; Deryabin, D.G.; Kubanov, A.A. Evaluation of the recombinant protein Tp0965 of Treponema pallidum as perspective antigen for the improved serological diagnosis of syphilis. Vestn. Ross. Akad. Med. Nauk, 2016, (2), 109-113.
[http://dx.doi.org/10.15690/vramn653] [PMID: 27522711]
[28]
Jiang, C.; Zhao, F.; Xiao, J.; Zeng, T.; Yu, J.; Ma, X.; Wu, H.; Wu, Y. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis. Clin. Vaccine Immunol., 2013, 20(10), 1563-1568.
[http://dx.doi.org/10.1128/CVI.00122-13] [PMID: 23945159]
[29]
Osbak, K.K.; Van Raemdonck, G.A.; Dom, M.; Cameron, C.E.; Meehan, C.J.; Deforce, D.; Ostade, X.V.; Kenyon, C.R.; Dhaenens, M. Candidate Treponema pallidum biomarkers uncovered in urine from individuals with syphilis using mass spectrometry. Future Microbiol., 2018, 13(13), 1497-1510.
[http://dx.doi.org/10.2217/fmb-2018-0182] [PMID: 30311792]
[30]
Tong, M.L.; Liu, D.; Liu, L.L.; Lin, L.R.; Zhang, H.L.; Tian, H.M.; Yang, T.C. Identification of Treponema pallidum -specific protein biomarkers in syphilis patient serum using mass spectrometry. Future Microbiol., 2021, 16(14), 1041-1051.
[http://dx.doi.org/10.2217/fmb-2021-0172] [PMID: 34493087]
[31]
Houston, S.; Gomez, A.; Geppert, A.; Eshghi, A.; Smith, D.S.; Waugh, S.; Hardie, D.B.; Goodlett, D.R.; Cameron, C.E. Deep proteome coverage advances knowledge of Treponema pallidum protein expression profiles during infection. Sci. Rep., 2023, 13(1), 18259.
[http://dx.doi.org/10.1038/s41598-023-45219-8] [PMID: 37880309]
[32]
Liu, W.; Zhang, X.; Zhao, T.; Zhou, C.; Duan, J.; Zhao, F. Data on the generation of rabbit infections and RPR titre changes in serum samples from syphilis patients at follow-up. Data Brief, 2018, 21, 2237-2241.
[http://dx.doi.org/10.1016/j.dib.2018.10.075] [PMID: 30555861]
[33]
Ke, W.; Tso, L.S.; Li, D. Editorial: Neurosyphilis: Epidemiology, clinical manifestations, diagnosis, immunology and treatment. Front. Med. (Lausanne), 2023, 10, 1191113.
[http://dx.doi.org/10.3389/fmed.2023.1191113] [PMID: 37153093]
[34]
Lorenz, Z.W.; Nijhar, S.; Caufield-Noll, C.; Ghanem, K.G.; Hamill, M.M. The utility of biomarkers in the clinical management of syphilis: A systematic review. Sex. Transm. Dis., 2023, 50(8), 472-478.
[http://dx.doi.org/10.1097/OLQ.0000000000001813] [PMID: 37010823]
[35]
Peeling, R.W.; Mabey, D.; Chen, X.S.; Garcia, P.J. Syphilis. Lancet, 2023, 402(10398), 336-346.
[http://dx.doi.org/10.1016/S0140-6736(22)02348-0] [PMID: 37481272]
[36]
Zhang, R.L.; Wang, Q.Q. The Treponema pallidum outer membrane protein Tp92 activates endothelial cells via the chemerin/CMKLR1 pathway. Int. J. Med. Microbiol., 2020, 310(3), 151416.
[http://dx.doi.org/10.1016/j.ijmm.2020.151416] [PMID: 32173267]
[37]
Gao, Z.X.; Liu, D.; Liu, L.L.; Lin, L.R.; Tong, M.L.; Niu, J.J.; Yang, T.C. Recombinant Treponema pallidum protein Tp47 promotes the migration and adherence of THP-1 cells to human dermal vascular smooth muscle cells by inducing MCP-1 and ICAM-1 expression. Exp. Cell Res., 2019, 381(1), 150-162.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.035] [PMID: 31075255]
[38]
Wang, M.; Xie, J.W.; Zheng, Y.W.; Wang, X.T.; Yi, D.Y.; Lin, Y.; Tong, M.L.; Lin, L.R. Tp47-induced monocyte-derived microvesicles promote the adherence of THP-1 cells to human umbilical vein endothelial cells via an ERK1/2–NF-κB signaling cascade. Microbiol. Spectr., 2023, 11(4), e01888-23.
[http://dx.doi.org/10.1128/spectrum.01888-23] [PMID: 37382544]
[39]
Cheng, W.; Lu, Y.; Chen, R.; Ren, H.; Hu, W. The role of the 47-kDa membrane lipoprotein of Treponema pallidum in promoting maturation of peripheral blood monocyte-derived dendritic cells without enhancing C-C chemokine receptor type 7-mediated dendritic cell migration. Adv. Clin. Exp. Med., 2023, 32(3), 369-377.
[http://dx.doi.org/10.17219/acem/154857] [PMID: 36330841]
[40]
Zheng, X.Q.; Kong, X.Q.; He, Y.; Wang, Y.J.; Xie, L.; Liu, L.L.; Lin, L.R.; Yang, T.C. Treponema pallidum recombinant protein Tp47 enhanced interleukin-6 secretion in human dermal fibroblasts through the toll-like receptor 2 via the p38, PI3K/Akt, and NF-κB signalling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2023, 1870(7), 119540.
[http://dx.doi.org/10.1016/j.bbamcr.2023.119540] [PMID: 37468070]
[41]
Gao, Z.X.; Luo, X.; Liu, L.L.; Lin, L.R.; Tong, M.L.; Yang, T.C. Recombinant Treponema pallidum protein Tp47 induces angiogenesis by modulating the matrix metalloproteinase/tissue inhibitor of metalloproteinase balance in endothelial cells. J. Eur. Acad. Dermatol. Venereol., 2019, 33(10), 1958-1970.
[http://dx.doi.org/10.1111/jdv.15725] [PMID: 31166625]
[42]
Li, W.; Xie, L.; Li, Q.L.; Xu, Q.Y.; Lin, L.R.; Liu, L.L.; Yang, T.C. Treponema pallidum membrane protein Tp47 promotes angiogenesis through ROS-induced autophagy. J. Eur. Acad. Dermatol. Venereol., 2023, 37(3), 558-572.
[http://dx.doi.org/10.1111/jdv.18728] [PMID: 36373343]
[43]
Li, W.; Li, Q.L.; Xu, Q.Y.; Wang, X.T.; Yang, T.C. Tp47 promoted the phagocytosis of HMC3cells though autophagy induced by endoplamic reticlum stress. J. Eur. Acad. Dermatol. Venereol., 2022, 36(11), 2224-2234.
[http://dx.doi.org/10.1111/jdv.18295] [PMID: 35666816]
[44]
Liu, W.N.; Jiang, X.Y. Tp47 induces cell death involving autophagy and mTOR in human microglial HMO6 cells. Int. Immunopharmacol., 2019, 74, 105566.
[http://dx.doi.org/10.1016/j.intimp.2019.04.013] [PMID: 31177015]
[45]
Cameron, C.E.; Lukehart, S.A.; Castro, C.; Molini, B.; Godornes, C.; Van Voorhis, W.C. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J. Infect. Dis., 2000, 181(4), 1401-1413.
[http://dx.doi.org/10.1086/315399] [PMID: 10762571]
[46]
Luo, X.; Zhang, X.; Zhao, T.; Zeng, T.; Liu, W.; Deng, M.; Zhao, F. A preliminary study on the proinflammatory mechanisms of Treponema pallidum outer membrane protein Tp92 in human macrophages and HMEC-1 cells. Microb. Pathog., 2017, 110, 176-183.
[http://dx.doi.org/10.1016/j.micpath.2017.06.046] [PMID: 28668606]
[47]
Zhang, R.L.; Wang, Q.Q.; Yang, L.J. Chemerin induced by Treponema pallidum predicted membrane protein Tp0965 mediates the activation of endothelial cell via MAPK signaling pathway. J. Cell. Biochem., 2019, 120(12), 19621-19634.
[http://dx.doi.org/10.1002/jcb.29269] [PMID: 31322756]
[48]
Luo, X.; Zhang, X.; Gan, L.; Zhou, C.; Zhao, T.; Zeng, T.; Liu, S.; Xiao, Y.; Yu, J.; Zhao, F. The outer membrane protein Tp92 of Treponema pallidum induces human mononuclear cell death and IL-8 secretion. J. Cell. Mol. Med., 2018, 22(12), 6039-6054.
[http://dx.doi.org/10.1111/jcmm.13879] [PMID: 30596396]
[49]
Zhou, X.; Tang, Y.; Cao, T.; Ning, L.; Li, Y.; Xie, X.; Hu, Y.; He, B.; Peng, B.; Liu, S. Treponema pallidum lipoprotein Tp0768 promotes the migration and adhesion of THP-1 cells to vascular endothelial cells through stress of the endoplasmic reticulum and the NF-κB/ HIF-1α pathway. Mol. Microbiol., 2023, 119(1), 86-100.
[http://dx.doi.org/10.1111/mmi.15010] [PMID: 36480422]
[50]
Li, Q.L.; Tong, M.L.; Liu, L.L.; Lin, L.R.; Lin, Y.; Yang, T.C. Effect of anti-TP0136 antibodies on the progression of lesions in an infected rabbit model. Int. Immunopharmacol., 2020, 83, 106428.
[http://dx.doi.org/10.1016/j.intimp.2020.106428] [PMID: 32217461]
[51]
Luo, X.; Gao, Z.X.; Lin, S.W.; Tong, M.L.; Liu, L.L.; Lin, L.R.; Ke, W.J.; Yang, T.C. Recombinant Treponema pallidum protein Tp0136 promotes fibroblast migration by modulating MCP-1/ CCR2 through TLR4. J. Eur. Acad. Dermatol. Venereol., 2020, 34(4), 862-872.
[http://dx.doi.org/10.1111/jdv.16162] [PMID: 31856347]
[52]
Luo, X.; Lin, S.W.; Xu, Q.Y.; Ke, W.J.; Gao, Z.X.; Tong, M.L.; Liu, L.L.; Lin, L.R.; Zhang, H.L.; Yang, T.C. Tp0136 targets fibronectin (RGD)/Integrin β1 interactions promoting human microvascular endothelial cell migration. Exp. Cell Res., 2020, 396(1), 112289.
[http://dx.doi.org/10.1016/j.yexcr.2020.112289] [PMID: 32950474]
[53]
Xu, Q.Y.; Wang, Y.J.; Lin, L.R.; Liu, L.L.; Yang, T.C. The outer membrane lipoprotein Tp0136 stimulates human platelet activation and aggregation through PAR1 to enhance Gq/Gi signaling. Front. Immunol., 2022, 13, 818151.
[http://dx.doi.org/10.3389/fimmu.2022.818151] [PMID: 35296084]
[54]
Cai, C.X.; Li, S.L.; Lin, H.L.; Wei, Z.H.; Xie, L.; Lin, L.R.; Niu, J.J.; Yang, T.C. Treponema pallidum protein Tp0136 promoting MMPs/TIMPs imbalance via PI3K, MAPK and NF-κB signalling pathways in HDVSMCs. Heliyon, 2022, 8(12), e12065.
[http://dx.doi.org/10.1016/j.heliyon.2022.e12065] [PMID: 36561703]
[55]
Houston, S.; Taylor, J.S.; Denchev, Y.; Hof, R.; Zuerner, R.L.; Cameron, C.E. Conservation of the host-interacting proteins Tp0750 and pallilysin among treponemes and restriction of proteolytic capacity to Treponema pallidum. Infect. Immun., 2015, 83(11), 4204-4216.
[http://dx.doi.org/10.1128/IAI.00643-15] [PMID: 26283341]
[56]
Lithgow, K.V.; Church, B.; Gomez, A.; Tsao, E.; Houston, S.; Swayne, L.A.; Cameron, C.E. Identification of the neuroinvasive pathogen host target, LamR, as an endothelial receptor for the Treponema pallidum adhesin Tp0751. MSphere, 2020, 5(2), e00195-20.
[http://dx.doi.org/10.1128/mSphere.00195-20] [PMID: 32238570]
[57]
Lu, D.P.; Jia, J.; Wei, S.F.; Zhang, W.L.; Liang, R.; Liu, T.; Yang, W.Z.; Li, B.Y.; Zhang, R.; Wang, F. Treponema pallidum (syphilis) antigen TpF1 induces activation of macrophages and accelerates P2X7R-induced NLRP3-dependent release of IL-1β. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(4), 425-432.
[http://dx.doi.org/10.2174/1871530321666211015091109] [PMID: 34649493]
[58]
Lithgow, K.V.; Tsao, E.; Schovanek, E.; Gomez, A.; Swayne, L.A.; Cameron, C.E. Treponema pallidum disrupts VE-cadherin intercellular junctions and traverses endothelial barriers using a cholesterol-dependent mechanism. Front. Microbiol., 2021, 12, 691731.
[http://dx.doi.org/10.3389/fmicb.2021.691731] [PMID: 34354688]
[59]
Wu, S.; Ye, F.; Wang, Y.; Li, D. Neurosyphilis: Insights into its pathogenesis, susceptibility, diagnosis, treatment, and prevention. Front. Neurol., 2024, 14, 1340321.
[http://dx.doi.org/10.3389/fneur.2023.1340321] [PMID: 38274871]
[60]
Primus, S.; Rocha, S.C.; Giacani, L.; Parveen, N. Identification and functional assessment of the first placental adhesin of Treponema pallidum that may play critical role in congenital syphilis. Front. Microbiol., 2020, 11, 621654.
[http://dx.doi.org/10.3389/fmicb.2020.621654] [PMID: 33408711]
[61]
Hazlett, K.R.O.; Sellati, T.J.; Nguyen, T.T.; Cox, D.L.; Clawson, M.L.; Caimano, M.J.; Radolf, J.D. The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J. Exp. Med., 2001, 193(9), 1015-1026.
[http://dx.doi.org/10.1084/jem.193.9.1015] [PMID: 11342586]
[62]
Morgan, C.A.; Lukehart, S.A.; Van Voorhis, W.C. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect. Immun., 2002, 70(12), 6811-6816.
[http://dx.doi.org/10.1128/IAI.70.12.6811-6816.2002] [PMID: 12438357]
[63]
Morgan, C.A.; Molini, B.J.; Lukehart, S.A.; Van Voorhis, W.C. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J. Immunol., 2002, 169(2), 952-957.
[http://dx.doi.org/10.4049/jimmunol.169.2.952] [PMID: 12097401]
[64]
Morgan, C.A.; Lukehart, S.A.; Van Voorhis, W.C. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun., 2003, 71(10), 5605-5612.
[http://dx.doi.org/10.1128/IAI.71.10.5605-5612.2003] [PMID: 14500480]
[65]
LaFond, R.E.; Molini, B.J.; Van Voorhis, W.C.; Lukehart, S.A. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect. Immun., 2006, 74(11), 6244-6251.
[http://dx.doi.org/10.1128/IAI.00827-06] [PMID: 16923793]
[66]
Reid, T.B.; Molini, B.J.; Fernandez, M.C.; Lukehart, S.A. Antigenic variation of TprK facilitates development of secondary syphilis. Infect. Immun., 2014, 82(12), 4959-4967.
[http://dx.doi.org/10.1128/IAI.02236-14] [PMID: 25225245]
[67]
Liu, D.; Tong, M.L.; Lin, Y.; Liu, L.L.; Lin, L.R.; Yang, T.C. Insights into the genetic variation profile of tprK in Treponema pallidum during the development of natural human syphilis infection. PLoS Negl. Trop. Dis., 2019, 13(7), e0007621.
[http://dx.doi.org/10.1371/journal.pntd.0007621] [PMID: 31329597]
[68]
Liu, D.; Liu, L.L.; Zheng, X.Q.; Chen, R.; Lin, L.R.; Yang, T.C.; Tong, M.L. Genetic profiling of the full-length tprK gene in patients with primary and secondary syphilis. Microbiol. Spectr., 2023, 11(3), e04931-22.
[http://dx.doi.org/10.1128/spectrum.04931-22] [PMID: 37036342]
[69]
Romeis, E.; Lieberman, N.A.P.; Molini, B.; Tantalo, L.C.; Chung, B.; Phung, Q.; Avendaño, C.; Vorobieva, A.; Greninger, A.L.; Giacani, L. Treponema pallidum subsp. pallidum with an Artificially impaired TprK antigenic variation system is attenuated in the Rabbit model of syphilis. PLoS Pathog., 2023, 19(3), e1011259.
[http://dx.doi.org/10.1371/journal.ppat.1011259] [PMID: 36940224]
[70]
Addetia, A.; Tantalo, L.C.; Lin, M.J.; Xie, H.; Huang, M.L.; Marra, C.M.; Greninger, A.L. Comparative genomics and full-length Tprk profiling of Treponema pallidum subsp. pallidum reinfection. PLoS Negl. Trop. Dis., 2020, 14(4), e0007921.
[http://dx.doi.org/10.1371/journal.pntd.0007921] [PMID: 32251462]
[71]
Ke, W.; Molini, B.J.; Lukehart, S.A.; Giacani, L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl. Trop. Dis., 2015, 9(3), e0003662.
[http://dx.doi.org/10.1371/journal.pntd.0003662] [PMID: 25793702]
[72]
Xu, M.; Xie, Y.; Zheng, K.; Luo, H.; Tan, M.; Zhao, F.; Zeng, T.; Wu, Y. Two potential syphilis vaccine candidates inhibit dissemination of Treponema pallidum. Front. Immunol., 2021, 12, 759474.
[http://dx.doi.org/10.3389/fimmu.2021.759474] [PMID: 34899710]
[73]
He, Y.; Chen, D.; Fu, Y.; Huo, X.; Zhao, F.; Yao, L.; Zhou, X.; Qi, P.; Yin, H.; Cao, L.; Ling, H.; Zeng, T. Immunization with Tp0954, an adhesin of Treponema pallidum, provides protective efficacy in the rabbit model of experimental syphilis. Front. Immunol., 2023, 14, 1130593.
[http://dx.doi.org/10.3389/fimmu.2023.1130593] [PMID: 36993963]
[74]
Gomes, L.G.R.; Rodrigues, T.C.V.; Jaiswal, A.K.; Santos, R.G.; Kato, R.B.; Barh, D.; Alzahrani, K.J.; Banjer, H.J.; Soares, S.C.; Azevedo, V.; Tiwari, S. In silico designed multi-epitope immunogen “Tpme-VAC/LGCM-2022” may induce both cellular and humoral immunity against Treponema pallidum infection. Vaccines (Basel), 2022, 10(7), 1019.
[http://dx.doi.org/10.3390/vaccines10071019] [PMID: 35891183]
[75]
Lukehart, S.A.; Molini, B.; Gomez, A.; Godornes, C.; Hof, R.; Fernandez, M.C.; Pitner, R.A.; Gray, S.A.; Carter, D.; Giacani, L.; Cameron, C.E. Immunization with a tri-antigen syphilis vaccine significantly attenuates chancre development, reduces bacterial load, and inhibits dissemination of Treponema pallidum. Vaccine, 2022, 40(52), 7676-7692.
[http://dx.doi.org/10.1016/j.vaccine.2022.11.002] [PMID: 36376214]
[76]
Lithgow, K.V.; Hof, R.; Wetherell, C.; Phillips, D.; Houston, S.; Cameron, C.E. A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum. Nat. Commun., 2017, 8(1), 14273.
[http://dx.doi.org/10.1038/ncomms14273] [PMID: 28145405]
[77]
Luthra, A.; Montezuma-Rusca, J.M.; La Vake, C.J.; LeDoyt, M.; Delgado, K.N.; Davenport, T.C.; Fiel-Gan, M.; Caimano, M.J.; Radolf, J.D.; Hawley, K.L. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog., 2020, 16(9), e1008871.
[http://dx.doi.org/10.1371/journal.ppat.1008871] [PMID: 32936831]
[78]
Haynes, A.M.; Godornes, C.; Ke, W.; Giacani, L. Evaluation of the Protective Ability of the Treponema pallidum subsp. pallidum Tp0126 OmpW Homolog in the Rabbit Model of Syphilis. Infect. Immun., 2019, 87(8), e00323-19.
[http://dx.doi.org/10.1128/IAI.00323-19] [PMID: 31182617]
[79]
Lieberman, N.A.P.; Lin, M.J.; Xie, H.; Shrestha, L.; Nguyen, T.; Huang, M.L.; Haynes, A.M.; Romeis, E.; Wang, Q.Q.; Zhang, R.L.; Kou, C.X.; Ciccarese, G.; Dal Conte, I.; Cusini, M.; Drago, F.; Nakayama, S.; Lee, K.; Ohnishi, M.; Konda, K.A.; Vargas, S.K.; Eguiluz, M.; Caceres, C.F.; Klausner, J.D.; Mitjà, O.; Rompalo, A.; Mulcahy, F.; Hook, E.W., III; Lukehart, S.A.; Casto, A.M.; Roychoudhury, P.; DiMaio, F.; Giacani, L.; Greninger, A.L. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl. Trop. Dis., 2021, 15(12), e0010063.
[http://dx.doi.org/10.1371/journal.pntd.0010063] [PMID: 34936652]
[80]
Haynes, A.M.; Fernandez, M.; Romeis, E.; Mitjà, O.; Konda, K.A.; Vargas, S.K.; Eguiluz, M.; Caceres, C.F.; Klausner, J.D.; Giacani, L. Transcriptional and immunological analysis of the putative outer membrane protein and vaccine candidate TprL of Treponema pallidum. PLoS Negl. Trop. Dis., 2021, 15(1), e0008812.
[http://dx.doi.org/10.1371/journal.pntd.0008812] [PMID: 33497377]
[81]
Lin, M.J.; Haynes, A.M.; Addetia, A.; Lieberman, N.A.P.; Phung, Q.; Xie, H.; Nguyen, T.V.; Molini, B.J.; Lukehart, S.A.; Giacani, L.; Greninger, A.L. Longitudinal TprK profiling of in vivo and in vitro-propagated Treponema pallidum subsp. pallidum reveals accumulation of antigenic variants in absence of immune pressure. PLoS Negl. Trop. Dis., 2021, 15(9), e0009753.
[http://dx.doi.org/10.1371/journal.pntd.0009753] [PMID: 34492041]
[82]
Parveen, N.; Fernandez, M.C.; Haynes, A.M.; Zhang, R.L.; Godornes, B.C.; Centurion-Lara, A.; Giacani, L. Non-pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates. Vaccine, 2019, 37(13), 1807-1818.
[http://dx.doi.org/10.1016/j.vaccine.2019.02.022] [PMID: 30797635]
[83]
Delgado, K.N.; Montezuma-Rusca, J.M.; Orbe, I.C.; Caimano, M.J.; La Vake, C.J.; Luthra, A.; Hennelly, C.M.; Nindo, F.N.; Meyer, J.W.; Jones, L.D.; Parr, J.B.; Salazar, J.C.; Moody, M.A.; Radolf, J.D.; Hawley, K.L. Extracellular Loops of the Treponema pallidum FadL Orthologs TP0856 and TP0858 Elicit IgG Antibodies and IgG + -Specific B-Cells in the Rabbit Model of Experimental Syphilis. MBio, 2022, 13(4), e01639-22.
[http://dx.doi.org/10.1128/mbio.01639-22] [PMID: 35862766]
[84]
Molini, B.; Fernandez, M.C.; Godornes, C.; Vorobieva, A.; Lukehart, S.A.; Giacani, L. B-Cell Epitope Mapping of TprC and TprD Variants of Treponema pallidum Subspecies Informs Vaccine Development for Human Treponematoses. Front. Immunol., 2022, 13, 862491.
[http://dx.doi.org/10.3389/fimmu.2022.862491] [PMID: 35422800]
[85]
Khan, S.; Rizwan, M.; Zeb, A.; Eldeen, M.A.; Hassan, S.; Ur Rehman, A. Identification of a potential vaccine against Treponema pallidum using subtractive proteomics and reverse-vaccinology approaches. Vaccines (Basel), 2022, 11, 1.
[PMID: 36679917]
[86]
Sena, A.C.; Matoga, M.M.; Yang, L.; Lopez-Medina, E.; Aghakanian, F.; Chen, J.S.; Bettin, E.B.; Caimano, M.J.; Chen, W.; Garcia-Luna, J.A.; Hennelly, C.M.; Jiang, Y.; Juliano, J.J.; Pospisilova, P.; Ramirez, L.; Smajs, D.; Tucker, J.D.; Cely, F.V.; Zheng, H.; Hoffman, I.F.; Yang, B.; Moody, M.A.; Hawley, K.L.; Salazar, J.C.; Radolf, J.D.; Parr, J.B. Channel: University of Connecticut Health Center. medRxiv, 2023.
[87]
Tomson, F.L.; Conley, P.G.; Norgard, M.V.; Hagman, K.E. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes Infect., 2007, 9(11), 1267-1275.
[http://dx.doi.org/10.1016/j.micinf.2007.05.018] [PMID: 17890130]
[88]
Van Voorhis, W.C.; Barrett, L.K.; Lukehart, S.A.; Schmidt, B.; Schriefer, M.; Cameron, C.E. Serodiagnosis of syphilis: Antibodies to recombinant Tp0453, Tp92, and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum. J. Clin. Microbiol., 2003, 41(8), 3668-3674.
[http://dx.doi.org/10.1128/JCM.41.8.3668-3674.2003] [PMID: 12904373]
[89]
Xie, Y.; Xu, M.; Xiao, Y.; Liu, Z.; Jiang, C.; Kuang, X.; Wang, C.; Wu, H.; Peng, J.; Li, C.; Wang, Y.; Liu, H.; Liu, B.; Zhang, X.; Zhao, F.; Zeng, T.; Liu, S.; Wu, Y. Treponema pallidum flagellin FlaA2 induces IL-6 secretion in THP-1 cells via the Toll-like receptor 2 signaling pathway. Mol. Immunol., 2017, 81, 42-51.
[http://dx.doi.org/10.1016/j.molimm.2016.11.005] [PMID: 27888719]
[90]
Liu, S.; Wang, S.; Wu, Y.; Zhao, F.; Zeng, T.; Zhang, Y.; Zhang, Q.; Gao, D. Production of proinflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751, a recombinant protein of Treponema pallidum. Sci. China Life Sci., 2010, 53(2), 229-233.
[http://dx.doi.org/10.1007/s11427-010-0038-z] [PMID: 20596832]
[91]
Li, W.; Zhou, X.; Cai, J.; Zhao, F.; Cao, T.; Ning, L.; Luo, C.; Xiao, X.; Liu, S. Recombinant Treponema pallidum protein Tp0768 promotes proinflammatory cytokine secretion of macrophages through ER stress and ROS/NF-κB pathway. Appl. Microbiol. Biotechnol., 2021, 105(1), 353-366.
[http://dx.doi.org/10.1007/s00253-020-11018-8] [PMID: 33216161]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy