Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Recent Advancement in Novel Wound Healing Therapies by Using Antimicrobial Peptides Derived from Humans and Amphibians

Author(s): Trilochan Satapathy*, Yugal Kishore, Ravindra Kumar Pandey, Shiv Shankar Shukla, Shiv Kumar Bhardwaj and Beena Gidwani

Volume 25, Issue 8, 2024

Published on: 05 April, 2024

Page: [587 - 603] Pages: 17

DOI: 10.2174/0113892037288051240319052435

Price: $65

Abstract

The skin is the biggest organ in the human body. It is the first line of protection against invading pathogens and the starting point for the immune system. The focus of this review is on the use of amphibian-derived peptides and antimicrobial peptides (AMPs) in the treatment of wound healing. When skin is injured, a chain reaction begins that includes inflammation, the formation of new tissue, and remodelling of existing tissue to aid in the healing process. Collaborating with non-immune cells, resident and recruited immune cells in the skin remove foreign invaders and debris, then direct the repair and regeneration of injured host tissues. Restoration of normal structure and function requires the healing of damaged tissues. However, a major issue that slows wound healing is infection. AMPs are just one type of host-defense chemicals that have developed in multicellular animals to regulate the immune response and limit microbial proliferation in response to various types of biological or physical stress. Therefore, peptides isolated from amphibians represent novel therapeutic tools and approaches for regenerating damaged skin. Peptides that speed up the healing process could be used as therapeutic lead molecules in future research into novel drugs. AMPs and amphibian-derived peptides may be endogenous mediators of wound healing and treat non-life-threatening skin and epithelial lesions. Thus, the present article was drafted with to incorporate different peptides used in wound healing, their method of preparation and routes of administration.

Next »
Graphical Abstract

Ikuta K.S.; Swetschinski L.R.; Robles Aguilar G.; Sharara F.; Mestrovic T.; Gray A.P.; Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022,400(10369),2221-2248 10.1016/S0140-6736(22)02185-7 36423648 Zomer H. D.; Trentin A. G.; Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci 2018,90(1),3-12 Monavarian M.; Kader S.; Moeinzadeh S.; Jabbari E.; Regenerative scarfree skin wound healing. Tissue Eng Part B Rev 2019,25(4),294-311 Tottoli E.M.; Dorati R.; Genta I.; Chiesa E.; Pisani S.; Conti B.; Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020,12(8),735 32764269 Iqbal A.; Jan A.; Wajid M.A.; Tariq S.; Management of Chronic Non-healing Wounds by Hirudotherapy. World J Plast Surg 2017,6(1),9-17 28289608 Rodrigues M.; Kosaric N.; Bonham C.A.; Gurtner G.C.; Wound healing: A cellular perspective. Physiol Rev 2019,99(1),665-706 10.1152/physrev.00067.2017 30475656 Sen C.K.; Human wound and its burden: Updated 2020 compendium of estimates. Adv Wound Care 2021,10(5),281-292 10.1089/wound.2021.0026 33733885 Liu N.; Li Z.; Meng B.; Bian W.; Li X.; Wang S.; Cao X.; Song Y.; Yang M.; Wang Y.; Tang J.; Yang X.; Accelerated wound healing induced by a novel Amphibian peptide (OA-FF10). Protein Pept Lett 2019,26(4),261-270 10.2174/0929866526666190124144027 30678611 Darvishi S.; Tavakoli S.; Kharaziha M.; Girault H.H.; Kaminski C.F.; Mela I.; Advances in the sensing and treatment of wound biofilms. Angew Chem Int Ed Engl 2022,61(13),e202112218 34806284 Su Y.; Yrastorza J.T.; Matis M.; Cusick J.; Zhao S.; Wang G.; Xie J.; Biofilms: Formation, research models, potential targets, and methods for prevention and treatment. Adv Sci 2022,9(29),e2203291 36031384 Sharma D.; Misba L.; Khan A.U.; Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019,8(1),76 10.1186/s13756-019-0533-3 31131107 Minasyan H.; Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 2019,27(1),19 10.1186/s13049-019-0596-4 30764843 Huan Y.; Kong Q.; Mou H.; Yi H.; Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020,11,582779 33178164 Brandenburg L-O.; Merres J.; Albrecht L-J.; Varoga D.; Pufe T.; Antimicrobial peptides: Multifunctional drugs for different applications. Polymers 2012,4,539-560 Pasupuleti M.; Schmidtchen A.; Malmsten M.; Antimicrobial peptides: Key components of the innate immune system. Crit Rev Biotechnol 2012,32(2),143-171 22074402 Boparai J.K.; Sharma P.K.; Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020,27(1),4-16 31438824 Yang X.; Wang Y.; Zhang Y.; Lee W.H.; Zhang Y.; Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci Rep 2016,6,19866 10.1038/srep19866 26813022 Tong Q.; Hu Z.F.; Du X.P.; Bie J.; Wang H.B.; Effects of seasonal hibernation on the similarities between the skin microbiota and gut microbiota of an Amphibian (Rana dybowskii). Microb Ecol 2020,79(4),898-909 31820074 Liu N.; Meng B.; Bian W.; Yang M.; Shu L.; Liu Y.; Fu Z.; Wang Y.; Wang Y.; Yang X.; The beneficial roles of poisonous skin secretions in survival strategies of the odorous frog Odorrana andersonii. Naturwissenschaften 2021,109(1),4 10.1007/s00114-021-01776-4 34874458 Demori I.; Rashed Z.E.; Corradino V.; Catalano A.; Rovegno L.; Queirolo L.; Salvidio S.; Biggi E.; Zanotti-Russo M.; Canesi L.; Catenazzi A.; Grasselli E.; Peptides for skin protection and healing in Amphibians. Molecules 2019,24(2),347 10.3390/molecules24020347 30669405 Patocka J.; Nepovimova E.; Klimova B.; Wu Q.; Kuca K.; Antimicrobial peptides: Amphibian host defense peptides. Curr Med Chem 2019,26(32),5924-5946 10.2174/0929867325666180713125314 30009702 Yin S.; Wang Y.; Liu N.; Yang M.; Hu Y.; Li X.; Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed Pharmacother 2019,120,109535 Yokoyama H.; Kudo N.; Todate M.; Shimada Y.; Suzuki M.; Tamura K.; Skin regeneration of amphibians: A novel model for skin regeneration as adults. Dev Growth Differ 2018,60(6),316-325 10.1111/dgd.12544 29947057 Haque M.; Sartelli M.; McKimm J.; Abu Bakar M.; Health care-associated infections: An overview. Infect Drug Resist 2018,11,2321-2333 10.2147/IDR.S177247 30532565 Eming S.A.; Murray P.J.; Pearce E.J.; Metabolic orchestration of the wound healing response. Cell Metab 2021,33(9),1726-1743 34384520 Liu S.; Hur Y.H.; Cai X.; Cong Q.; Yang Y.; Xu C.; Bilate A.M.; Gonzales K.A.U.; Parigi S.M.; Cowley C.J.; Hurwitz B.; Luo J.D.; Tseng T.; Gur-Cohen S.; Sribour M.; Omelchenko T.; Levorse J.; Pasolli H.A.; Thompson C.B.; Mucida D.; Fuchs E.; A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 2023,186(10),2127-2143.e22 37098344 Khan A. Q.; Ahmad F.; Raza S. S.; Zarif L.; Siveen K. S.; Sher G.; Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases. Semin Cancer Biol 2022,83,208-226 Kawasumi A.; Sagawa N.; Hayashi S.; Yokoyama H.; Tamura K.; Wound healing in mammals and amphibians: Toward limb regeneration in mammals. Curr Top Microbiol Immunol 2013,367,33-49 10.1007/82_2012_305 23263248 Wong R.; Geyer S.; Weninger W.; Guimberteau J.C.; Wong J.K.; The dynamic anatomy and patterning of skin. Exp Dermatol 2016,25(2),92-98 26284579 Moreci R.S.; Lechler T.; Epidermal structure and differentiation. Curr Biol 2020,30(4),R144-R149 10.1016/j.cub.2020.01.004 32097634 Jiang Y.; Tsoi L.C.; Billi A.C.; Ward N.L.; Harms P.W.; Zeng C.; Maverakis E.; Kahlenberg J.M.; Gudjonsson J.E.; Cytokinocytes: The diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020,5(20),e142067 10.1172/jci.insight.142067 33055429 Joly-Tonetti N.; Wibawa J.I.D.; Bell M.; Tobin D.J.; An explanation for the mysterious distribution of melanin in human skin: A rare example of asymmetric (melanin) organelle distribution during mitosis of basal layer progenitor keratinocytes. Br J Dermatol 2018,179(5),1115-1126 10.1111/bjd.16926 29956303 Wertz P.; Epidermal lamellar granules. Skin Pharmacol Physiol 2018,31(5),262-268 10.1159/000491757 30110701 Ishida-Yamamoto A.; Igawa S.; Kishibe M.; Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018,27(8),841-846 10.1111/exd.13674 29704884 Yousef H.; Alhajj M.; Sharma S.; “Anatomy, skin (integument), epidermis,” in StatPearls 2022 Gallo R.L.; Hooper L.V.; Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012,12(7),503-516 22728527 Xu D.; Lu W.; Defensins: A double-edged sword in host immunity. Front Immunol 2020,11 Wallace H.A.; Perera T.B.; Necrotizing fasciitis. StatPearls 2023 Shield K.D.; Parry C.; Rehm J.; Chronic diseases and conditions related to alcohol use. Alcohol Res 2013,35(2),155-173 24881324 Sartelli M.; Coccolini F.; Kluger Y.; Agastra E.; Abu-Zidan F.M.; Abbas A.E.S.; Ansaloni L.; Adesunkanmi A.K.; Augustin G.; Bala M.; Baraket O.; Biffl W.L.; Ceresoli M.; Cerutti E.; Chiara O.; Cicuttin E.; Chiarugi M.; Coimbra R.; Corsi D.; Cortese F.; Cui Y.; Damaskos D.; de’Angelis N.; Delibegovic S.; Demetrashvili Z.; De Simone B.; de Jonge S.W.; Di Bella S.; Di Saverio S.; Duane T.M.; Fugazzola P.; Galante J.M.; Ghnnam W.; Gkiokas G.; Gomes C.A.; Griffiths E.A.; Hardcastle T.C.; Hecker A.; Herzog T.; Karamarkovic A.; Khokha V.; Kim P.K.; Kim J.I.; Kirkpatrick A.W.; Kong V.; Koshy R.M.; Inaba K.; Isik A.; Ivatury R.; Labricciosa F.M.; Lee Y.Y.; Leppäniemi A.; Litvin A.; Luppi D.; Maier R.V.; Marinis A.; Marwah S.; Mesina C.; Moore E.E.; Moore F.A.; Negoi I.; Olaoye I.; Ordoñez C.A.; Ouadii M.; Peitzman A.B.; Perrone G.; Pintar T.; Pipitone G.; Podda M.; Raşa K.; Ribeiro J.; Rodrigues G.; Rubio-Perez I.; Sall I.; Sato N.; Sawyer R.G.; Shelat V.G.; Sugrue M.; Tarasconi A.; Tolonen M.; Viaggi B.; Celotti A.; Casella C.; Pagani L.; Dhingra S.; Baiocchi G.L.; Catena F.; WSES/GAIS/WSIS/SIS-E/AAST global clinical pathways for patients with skin and soft tissue infections. World J Emerg Surg 2022,17(1),3 10.1186/s13017-022-00406-2 35033131 Malanovic N.; Lohner K.; Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 2016,9(3),59 27657092 Cheung G.Y.C.; Bae J.S.; Otto M.; Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021,12(1),547-569 10.1080/21505594.2021.1878688 33522395 Cao X.; Wang Y.; Wu C.; Li X.; Fu Z.; Yang M.; Bian W.; Wang S.; Song Y.; Tang J.; Yang X.; Author correction: Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci Rep 2018,8(1),15906 10.1038/s41598-018-33558-w 30349056 Li X.; Wang Y.; Zou Z.; Yang M.; Wu C.; Su Y.; Tang J.; Yang X.; OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo. Chem Biol Drug Des 2018,91(1),126-136 10.1111/cbdd.13063 28650592 Gurtner G.C.; Werner S.; Barrandon Y.; Longaker M.T.; Wound repair and regeneration. Nature 2008,453(7193),314-321 10.1038/nature07039 18480812 Piipponen M.; Li D.; Landén N.X.; The immune functions of keratinocytes in skin wound healing. Int J Mol Sci 2020,21(22),8790 10.3390/ijms21228790 33233704 Wang Y.; Feng Z.; Yang M.; Zeng L.; Qi B.; Yin S.; Li B.; Li Y.; Fu Z.; Shu L.; Fu C.; Qin P.; Meng Y.; Li X.; Yang Y.; Tang J.; Yang X.; Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res b2021,163,105296 10.1016/j.phrs.2020.105296 33220421 Percival S.L.; Hill K.E.; Williams D.W.; Hooper S.J.; Thomas D.W.; Costerton J.W.; A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 2012,20(5),647-657 10.1111/j.1524-475X.2012.00836.x 22985037 Withycombe C.; Purdy K.J.; Maddocks S.E.; Micro-management: Curbing chronic wound infection. Mol Oral Microbiol 2017,32(4),263-274 10.1111/omi.12174 27516380 Elston D.M.; Topical antibiotics in dermatology: Emerging patterns of resistance. Dermatol Clin 2009,27(1),25-31 10.1016/j.det.2008.07.004 18984365 Schwartz R.A.; Al-Mutairi N.; Topical antibiotics in dermatology: An update the gulf. J Dermatol Venereol 2010,17,1-19 AlMatar M.; Albarri O.; Lakhal R.; Ocal M.M.; Var I.; Köksal F.; Bacterial pathogens: Potential source for antimicrobial peptides. Curr Protein Pept Sci 2023,24(7),551-566 37496250 Guay D.R.; Topical clindamycin in the management of acne vulgaris. Expert Opin Pharmacother 2007,8(15),2625-2664 10.1517/14656566.8.15.2625 17931096 Spížek J.; Řezanka T.; Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol 2017,133,20-28 10.1016/j.bcp.2016.12.001 27940264 Alikhan A.; Sayed C.; Alavi A.; Alhusayen R.; Brassard A.; Burkhart C.; Crowell K.; Eisen D.B.; Gottlieb A.B.; Hamzavi I.; Hazen P.G.; Jaleel T.; Kimball A.B.; Kirby J.; Lowes M.A.; Micheletti R.; Miller A.; Naik H.B.; Orgill D.; Poulin Y.; North American clinical management guidelines for Hidradenitis suppurativa: A publication from the United States and Canadian hidradenitis Suppurativa Foundations: Part I: Diagnosis, evaluation, and the use of complementary and procedural management. J Am Acad Dermatol 2019,81(1),76-90 10.1016/j.jaad.2019.02.067 30872156 Aoki S.; Nakase K.; Nakaminami H.; Wajima T.; Hayashi N.; Noguchi N.; Transferable multidrug-resistance plasmid carrying a novel macrolide-clindamycin resistance gene, erm(50), in cutibacterium acnes. Antimicrob Agents Chemother 2020,64(3),e01810-19 10.1128/AAC.01810-19 31844016 Assefa M.; Inducible clindamycin-resistant staphylococcus aureus strains in africa: A systematic review. Int J Microbiol 2022,2022,1835603 10.1155/2022/1835603 35498395 Temiz S.A.; Daye M.; Dapsone for the treatment of acne vulgaris: Do the risks outweigh the benefits? Cutan Ocul Toxicol 2022,41(1),60-66 10.1080/15569527.2021.2024565 34969324 Swartzentruber G.S.; Yanta J.H.; Pizon A.F.; Methemoglobinemia as a complication of topical dapsone. N Engl J Med 2015,372(5),491-492 10.1056/NEJMc1408272 25629756 Koripella R.K.; Chen Y.; Peisker K.; Koh C.S.; Selmer M.; Sanyal S.; Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 2012,287(36),30257-30267 10.1074/jbc.M112.378521 22767604 Schöfer H.; Simonsen L.; Fusidic acid in dermatology: An updated review. Eur J Dermatol 2010,20(1),6-15 10.1684/ejd.2010.0833 20007058 Sudhir Dhote N.; Dineshbhai Patel R.; Kuwar U.; Agrawal M.; Alexander A.; Jain P.; Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr Cancer Drug Targets 2024,24,1-22 Bertolotti A.; Sbidian E.; Join-Lambert O.; Bourgault-Villada I.; Moyal-Barracco M.; Perrot P.; Jouan N.; Yordanov Y.; Sidorkiewicz S.; Chazelas K.; Bru-Daprés M.F.; Caumes E.; Sei J.F.; Chosidow O.; Beylot-Barry M.; Guidelines for the management of Hidradenitis suppurativa: recommendations supported by the Centre of Evidence of the French Society of Dermatology. Br J Dermatol 2021,184(5),963-965 10.1111/bjd.19710 33278829 McClellan K.J.; Noble S.; Topical metronidazole. A review of its use in rosacea. Am J Clin Dermatol 2000,1(3),191-199 10.2165/00128071-200001030-00007 11702300 Tucaliuc A.; Blaga A.C.; Galaction A.I.; Cascaval D.; Mupirocin: Applications and production. Biotechnol Lett 2019,41(4-5),495-502 10.1007/s10529-019-02670-w 30927135 MacGibeny M.A.; Jo J.H.; Kong H.H.; Antibiotic stewardship in dermatology-reducing the risk of prolonged antimicrobial resistance in skin. JAMA Dermatol 2022,158(9),989-991 10.1001/jamadermatol.2022.3168 35947396 Bandyopadhyay D.; Topical antibacterials in dermatology. Indian J Dermatol 2021,66(2),117-125 10.4103/ijd.IJD_99_18 34188265 Gelmetti C.; Local antibiotics in dermatology. Dermatol Ther 2008,21(3),187-195 10.1111/j.1529-8019.2008.00190.x 18564249 R N.; K N.R.; Sun Y.; Bacitracin topical 2022 Fàbrega A.; Madurga S.; Giralt E.; Vila J.; Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009,2(1),40-61 10.1111/j.1751-7915.2008.00063.x 21261881 Rosen T.; Albareda N.; Rosenberg N.; Alonso F.G.; Roth S.; Zsolt I.; Hebert A.A.; Efficacy and safety of ozenoxacin cream for treatment of adult and pediatric patients with impetigo: A randomized clinical trial. JAMA Dermatol 2018,154(7),806-813 10.1001/jamadermatol.2018.1103 29898217 Jain A.; Jain P.; Bajaj S.; Majumdar A.; Soni P.; Chemoprofiling and antioxidant activity of edible curcuma species. Food Humanit 2023,1,1027-1039 Vizioli J.; Salzet M.; Antimicrobial peptides from animals: Focus on invertebrates. Trends Pharmacol Sci 2002,23(11),494-496 12413797 Van Epps H.L.; René Dubos: Unearthing antibiotics. J Exp Med 2006,203(2),259 16528813 Mahlapuu M.; Håkansson J.; Ringstad L.; Björn C.; Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol 2016,6,194 28083516 McClure N.S.; Day T.; A theoretical examination of the relative importance of evolution management and drug development for managing resistance. Proc Biol Sci 2014,281(1797),20141861 25377456 Patel R.; Kuwar U.; Dhote N.; Alexander A.; Nakhate K.; Jain P.; Ajazuddin ; Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr Drug Deliv 2024,21(2),193-210 36644864 Moretta A.; Scieuzo C.; Petrone A.M.; Salvia R.; Manniello M.D.; Franco A.; Lucchetti D.; Vassallo A.; Vogel H.; Sgambato A.; Falabella P.; Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 2021,11,668632 34195099 Kurpe S.R.; Grishin S.Y.; Surin A.K.; Panfilov A.V.; Slizen M.V.; Chowdhury S.D.; Galzitskaya O.V.; Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2? Int J Mol Sci 2020,21(24),9552 33333996 Pushpanathan M.; Gunasekaran P.; Rajendhran J.; Antimicrobial peptides: Versatile biological properties. Int J Pept 2013,2013,675391 23935642 Gelband H.; Miller-Petrie M.; Pant S.; Gandra S.; Levinson J.; Barter D.; White A.; Laxminarayan R.; State of the World’s Antibiotics 2015 Bhairam M.; Prasad J.; Verma K.; Jain P.; Gidwani B.; Formulation of transdermal patch of Losartan Potassium and Glipizide for the treatment of hypertension and diabetes. Mater Today Proc 2023,83,59-68 Alencar-Silva T.; Braga M.C.; Santana G.O.S.; Saldanha-Araujo F.; Pogue R.; Dias S.C.; Franco O.L.; Carvalho J.L.; Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 2018,36(8),2019-2031 30118811 Liu H.; Duan Z.; Tang J.; Lv Q.; Rong M.; Lai R.; A short peptide from frog skin accelerates diabetic wound healing. FEBS J 2014,281(20),4633-4643 25117795 Liu H.; Mu L.; Tang J.; Shen C.; Gao C.; Rong M.; Zhang Z.; Liu J.; Wu X.; Yu H.; Lai R.; A potential wound healing-promoting peptide from frog skin. Int J Biochem Cell Biol 2014,49,32-41 24441016 Jain A.; Jain P.; Soni P.; Tiwari A.; Tiwari S.P.; Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2023,54(1),90-95 35043370 Tokumaru S.; Sayama K.; Shirakata Y.; Komatsuzawa H.; Ouhara K.; Hanakawa Y.; Yahata Y.; Dai X.; Tohyama M.; Nagai H.; Yang L.; Higashiyama S.; Yoshimura A.; Sugai M.; Hashimoto K.; Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 2005,175(7),4662-4668 16177113 Kolar S.S.; McDermott A.M.; Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011,68(13),2201-2213 21584809 Huang H.N.; Pan C.Y.; Wu H.Y.; Chen J.Y.; Antimicrobial peptide Epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model. Oncotarget 2017,8(13),21067-21080 28177877 Tang J.; Liu H.; Gao C.; Mu L.; Yang S.; Rong M.; Zhang Z.; Liu J.; Ding Q.; Lai R.; A small peptide with potential ability to promote wound healing. PLoS One 2014,9(3),e92082 24647450 Lipsky B.A.; Holroyd K.J.; Zasloff M.; Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 2008,47(12),1537-1545 10.1086/593185 18990064 Lavery L.A.; Armstrong D.G.; Murdoch D.P.; Peters E.J.; Lipsky B.A.; Validation of the infectious diseases society of america’s diabetic foot infection classification system. Clin Infect Dis 2007,44(4),562-565 10.1086/511036 17243061 Ma L.; Xie X.; Liu H.; Huang Y.; Wu H.; Jiang M.; Xu P.; Ye X.; Zhou C.; Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020,10(3),1373-1390 31938070 Wu J.; Yang J.; Wang X.; Wei L.; Mi K.; Shen Y.; Liu T.; Yang H.; Mu L.; A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem J 2018,475(17),2785-2799 10.1042/BCJ20180286 30045878 Feng G.; Wei L.; Che H.; Shen Y.; Yang J.; Mi K.; Liu J.; Wu J.; Yang H.; Mu L.; A frog peptide ameliorates skin photoaging through scavenging reactive oxygen species. Front Pharmacol 2022,12,761011 10.3389/fphar.2021.761011 35126108 Shi Y.; Li C.; Wang M.; Chen Z.; Luo Y.; Xia X.S.; Song Y.; Sun Y.; Zhang A.M.; Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has woundhealing therapeutic potential. ACS Omega 2020,5(16),9301-9310 10.1021/acsomega.0c00189 32363280 Bian W.; Meng B.; Li X.; Wang S.; Cao X.; Liu N.; Yang M.; Tang J.; Wang Y.; Yang X.; OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci Rep 2018,38(3),BSR20180215 10.1042/BSR20180215 29752337 Zhang Y.; Wang Y.; Zeng L.; Liu Y.; Sun H.; Li S.; Wang S.; Shu L.; Liu N.; Yin S.; Wang J.; Ni D.; Wu Y.; Yang Y.; He L.; Meng B.; Yang X.; Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. Burns Trauma 2022,10,tkac032 10.1093/burnst/tkac032 35832307 Fan X.L.; Yu S.S.; Zhao J.L.; Li Y.; Zhan D.J.; Xu F.; Lin Z.H.; Chen J.; Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. Dev Comp Immunol 2022,137,104519 10.1016/j.dci.2022.104519 36041640 Kang H.K.; Seo C.H.; Luchian T.; Park Y.; Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 2018,62(12),e01493-e18 10.1128/AAC.01493-18 30323036 Mu L.; Tang J.; Liu H.; Shen C.; Rong M.; Zhang Z.; Lai R.; A potential wound-healing-promoting peptide from salamander skin. FASEB J 2014,28(9),3919-3929 24868009 Luo X.; Ouyang J.; Wang Y.; Zhang M.; Fu L.; Xiao N.; Gao L.; Zhang P.; Zhou J.; Wang Y.; A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie 2021,191,37-50 10.1016/j.biochi.2021.08.007 34438004 Chang J.; He X.; Hu J.; Kamau P.M.; Lai R.; Rao D.; Luo L.; Bv8-Like toxin from the frog venom of Amolops jingdongensis promotes wound healing via the interleukin-1 signaling pathway. Toxins 2019,12(1),15 10.3390/toxins12010015 31905801 Song X.; Pan H.; Wang H.; Liao X.; Sun D.; Xu K.; Chen T.; Zhang X.; Wu M.; Wu D.; Gao Y.; Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Acta Biomater 2020,109,208-219 10.1016/j.actbio.2020.03.024 32276085 Fu S.; Du C.; Zhang Q.; Liu J.; Zhang X.; Deng M.; A novel peptide from Polypedates megacephalus promotes wound healing in mice. Toxins 2022,14(11),753 10.3390/toxins14110753 36356003 Nakagami H.; Nishikawa T.; Tamura N.; Maeda A.; Hibino H.; Mochizuki M.; Shimosato T.; Moriya T.; Morishita R.; Tamai K.; Tomono K.; Kaneda Y.; Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. J Cell Mol Med 2012,16(7),1629-1639 10.1111/j.1582-4934.2011.01406.x 21812915 Ostorhazi E.; Holub M.C.; Rozgonyi F.; Harmos F.; Cassone M.; Wade J.D.; Otvos L.; Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 2011,37(5),480-484 21353493 Hoq M.I.; Niyonsaba F.; Ushio H.; Aung G.; Okumura K.; Ogawa H.; Human catestatin enhances migration and proliferation of normal human epidermal keratinocytes. J Dermatol Sci 2011,64(2),108-118 21872447 Chung E.M.C.; Dean S.N.; Propst C.N.; Bishop B.M.; van Hoek M.L.; Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes 2017,3,9 28649410 Gonzalez-Curiel I.; Trujillo V.; Montoya-Rosales A.; Rincon K.; Rivas-Calderon B.; deHaro-Acosta J.; Marin-Luevano P.; Lozano-Lopez D.; Enciso-Moreno J.A.; Rivas-Santiago B.; 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: An in vitro model. PLoS One 2014,9(10),e111355 25337708 Hirsch T.; Spielmann M.; Zuhaili B.; Fossum M.; Metzig M.; Koehler T.; Steinau H.U.; Yao F.; Onderdonk A.B.; Steinstraesser L.; Eriksson E.; Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 2009,11(3),220-228 19115333 Marin-Luevano P.; Trujillo V.; Rodriguez-Carlos A.; González-Curiel I.; Enciso-Moreno J.A.; Hancock R.E.W.; Rivas-Santiago B.; Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment. Peptides 2018,101,135-144 29353019 Steinstraesser L.; Hirsch T.; Schulte M.; Kueckelhaus M.; Jacobsen F.; Mersch E.A.; Stricker I.; Afacan N.; Jenssen H.; Hancock R.E.; Kindrachuk J.; Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 2012,7(8),e39373 22879874 Bolatchiev A.; Baturin V.; Bazikov I.; Maltsev A.; Kunitsina E.; Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol 2020,34(1),102-108 31313350 Grönberg A.; Mahlapuu M.; Ståhle M.; Whately-Smith C.; Rollman O.; Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair Regen 2014,22(5),613-621 25041740 Koczulla R.; von Degenfeld G.; Kupatt C.; Krötz F.; Zahler S.; Gloe T.; Issbrücker K.; Unterberger P.; Zaiou M.; Lebherz C.; Karl A.; Raake P.; Pfosser A.; Boekstegers P.; Welsch U.; Hiemstra P.S.; Vogelmeier C.; Gallo R.L.; Clauss M.; Bals R.; An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003,111(11),1665-1672 12782669 Sommer A.; Fries A.; Cornelsen I.; Speck N.; Koch-Nolte F.; Gimpl G.; Andrä J.; Bhakdi S.; Reiss K.; Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation. J Biol Chem 2012,287(28),23678-23689 22613720 Pfalzgraff A.; Bárcena-Varela S.; Heinbockel L.; Gutsmann T.; Brandenburg K.; Martinez-de-Tejada G.; Weindl G.; Antimicrobial endotoxin-neutralizing peptides promote keratinocyte migration via P2X7 receptor activation and accelerate wound healing in vivo. Br J Pharmacol 2018,175(17),3581-3593 29947028 Pfalzgraff A.; Heinbockel L.; Su Q.; Gutsmann T.; Brandenburg K.; Weindl G.; Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 2016,6,31577 10.1038/srep31577 27509895 Pfalzgraff A.; Heinbockel L.; Su Q.; Brandenburg K.; Weindl G.; Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochem Pharmacol 2017,140,64-72 28539262 Heunis T.D.; Smith C.; Dicks L.M.; Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 2013,57(8),3928-3935 23733456 Kim D.J.; Lee Y.W.; Park M.K.; Shin J.R.; Lim K.J.; Cho J.H.; Kim S.C.; Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 2014,46(10),2333-2343 24952727 Flamm R.K.; Rhomberg P.R.; Simpson K.M.; Farrell D.J.; Sader H.S.; Jones R.N.; In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother 2015,59(3),1751-1754 25583717 Ghiselli R.; Giacometti A.; Cirioni O.; Mocchegiani F.; Orlando F.; Kamysz W.; Del Prete M.S.; Lukasiak J.; Scalise G.; Saba V.; Temporin A as a prophylactic agent against methicillin sodium-susceptible and methicillin sodium-resistant Staphylococcus epidermidis vascular graft infection. J Vasc Surg 2002,36(5),1027-1030 12422090 Tomioka H.; Nakagami H.; Tenma A.; Saito Y.; Kaga T.; Kanamori T.; Tamura N.; Tomono K.; Kaneda Y.; Morishita R.; Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 2014,9(3),e92597 24675668 Chen, Y.; Qian, H.; Peng, D.; Jiang, Y.; Liu, Q.; Tan, Y.; Feng, L.; Cheng, B.; Li, G. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid healing of infected wounds. Front. Bioeng. Biotechnol., 2024, 12(11), 1338172. Lin Z.; Wu T.; Wang W.; Li B.; Wang M.; Chen L.; Xia H.; Zhang T.; Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 2019,140,330-342 31421174 Rima M.; Rima M.; Fajloun Z.; Sabatier J.M.; Bechinger B.; Naas T.; Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021,10(9),1095 34572678 Sinha S.; Zheng L.; Mu Y.; Ng W.J.; Bhattacharjya S.; Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci Rep 2017,7(1),17795 29259246 Ruiz N.; Kahne D.; Silhavy T.J.; Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 2006,4(1),57-66 16357861 Li J.; Koh J.J.; Liu S.; Lakshminarayanan R.; Verma C.S.; Beuerman R.W.; Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci 2017,11,73 28261050 Hilchie A.L.; Wuerth K.; Hancock R.E.W.; Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 2013,9(12),761-768 24231617 Oh J.E.; Hong S.Y.; Lee K.H.; Structure-activity relationship study: Short antimicrobial peptides. J Pept Res 1999,53(1),41-46 10195440 Andersson D.I.; Hughes D.; Kubicek-Sutherland J.Z.; Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016,26,43-57 27180309 Veronese F.M.; Mero A.; The impact of PEGylation on biological therapies. BioDrugs 2008,22(5),315-329 18778113 Barbieri E.; Porcu G.; Dona’ D.; Falsetto N.; Biava M.; Scamarcia A.; Cantarutti L.; Cantarutti A.; Giaquinto C.; Non-bullous impetigo: Incidence, prevalence, and treatment in the pediatric primary care setting in italy. Front Pediatr 2022,10,753694 10.3389/fped.2022.753694 35433549 Gautam S.; Mutha R.; Sahu A.K.; Gautam A.; Joshi R.K.; Management of folliculitis decalvans with ayurveda: A case report. J Ayurveda Integr Med 2022,13(4),100673 10.1016/j.jaim.2022.100673 36436296 Vilallonga R.; Mazarro A.; Rodríguez-Luna M.R.; Caubet E.; Fort J.M.; Armengol M.; Guirao X.; Massive necrotizing fasciitis: A life threatening entity. J Surg Case Rep 2019,2019(11),rjz269 10.1093/jscr/rjz269 31719969 Initial treatment for acute bacterial skin infections (ABSSSI) caused by Staphylococcus aureus. PolyMediX Inc 2012 LytiX Biopharma AS 2014 A Phase II, randomised, double-blind, Placebo-controlled study to evaluate the efficacy and safety of two doses of LTX-109 (1 % and 2 %) versus placebo in impetigo. 2014 Derma G.; A randomised, parallel-group, double-blind, placebo-controlled study of dpk-060 to investigate clinical safety and efficacy in patients with acute external otitis. 2012 Dipexium pharmaceuticals Inc. 2017 Protelight pharmaceuticals australia pty ltd 2022 a phase 1 study to evaluate the safety. Available from : https://synapse.patsnap.com/organization/127f0aa6742f163284d51e467e9b2e18 2022 Maruho C.; A Phase 2, randomized, vehicle-controlled, double-blind, multicenter study to evaluate the safety and efficacy of three once-daily cls001 topical gels versus vehicle administered for 12 weeks to subjects with acne. 2015 Xie Y.; Effects of antimicrobial peptides application after non-surgical periodontal therapy on treatment of stage iii and grade b periodontitis. 2022 Skwarczynski M.; Bashiri S.; Yuan Y.; Ziora Z.M.; Nabil O.; Masuda K.; Khongkow M.; Rimsueb N.; Cabral H.; Ruktanonchai U.; Blaskovich M.A.T.; Toth I.; Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics 2022,11(3),412 10.3390/antibiotics11030412 35326875 Afshar A.; Yuca E.; Wisdom C.; Alenezi H.; Ahmed J.; Tamerler C.; Edirisinghe M.; Next-generation antimicrobial peptides (AMPs) incorporated nanofiber wound dressings. Med Devices Sens 2021,4,1-11 10.1002/mds3.10144 Prasher P.; Sharma M.; Mudila H.; Gupta G.; Kumar Sharma A.; Kumar D.; Bakshi H.A.; Negi P.; Kapoor D.N.; Kumar Chellappan D.; Tambuwala M.M.; Dua K.; Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci Commun 2020,35,100244 10.1016/j.colcom.2020.100244 Rai A.; Pinto S.; Velho T.R.; Ferreira A.F.; Moita C.; Trivedi U.; Evangelista M.; Comune M.; Rumbaugh K.P.; Simões P.N.; Moita L.; Ferreira L.; One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 2016,85,99-110 10.1016/j.biomaterials.2016.01.051 26866877 Pal I.; Bhattacharyya D.; Kar R.K.; Zarena D.; Bhunia A.; Atreya H.S.; A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci Rep 2019,9(1),4485 10.1038/s41598-019-41005-7 30872680 Masimen M.A.A.; Harun N.A.; Maulidiani M.; Ismail W.I.W.; Overcoming methicillin-resistance staphylococcus aureus (mrsa) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022,11(7),951 10.3390/antibiotics11070951 35884205 Liu Q.; Zhang Y.; Huang J.; Xu Z.; Li X.; Yang J.; Huang H.; Tang S.; Chai Y.; Lin J.; Yang C.; Liu J.; Lin S.; Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J Nanobiotechnology 2022,20(1),386 10.1186/s12951-022-01600-9 35999547 Ahire J.J.; Neveling D.P.; Dicks L.M.; Co-spinning of silver nanoparticles with nisin increases the antimicrobial spectrum of PDLLA: PEO nanofibers. PEO Nanofibers Curr Microbiol 2015,71(1),24-30 10.1007/s00284-015-0813-y 25855302 Zhang L.; Xue Y.; Gopalakrishnan S.; Li K.; Han Y.; Rotello V.M.; Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium. ACS Appl Mater Interfaces a2021,13(24),28764-28773 10.1021/acsami.1c04895 34110763 Sperandeo P.; Bosco F.; Clerici F.; Polissi A.; Gelmi M.L.; Romanelli A.; Covalent grafting of antimicrobial peptides onto microcrystalline cellulose. ACS Appl Bio Mater 2020,3(8),4895-4901 10.1021/acsabm.0c00412 35021733 Almaaytah A.; Mohammed G.K.; Abualhaijaa A.; Al-Balas Q.; Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther 2017,11,3159-3170 10.2147/DDDT.S147450 29138537 Dizaj S.M.; Mennati A.; Jafari S.; Khezri K.; Adibkia K.; Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015,5(1),19-23 10.5681/apb.2015.003 25789215 Benalcázar J.; Lasso E.D.; Ibarra-Barreno C.M.; Arcos Pareja J.A.; Vispo N.S.; Chacón-Torres J.C.; Briceño S.; Photochemical optimization of a silver nanoprism/graphene oxide nanocomposite’s antibacterial properties. ACS Omega 2022,7(50),46745-46755 10.1021/acsomega.2c05793 36570286

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy