Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Dominant Circulating Cell-free Mycobacterial Proteins in In-use Machining Fluid and their Antigenicity Potential

Author(s): Harish Chandra, Bethany Ahlers, Ying Wai Lam and Jagjit S. Yadav*

Volume 25, Issue 8, 2024

Published on: 02 May, 2024

Page: [613 - 625] Pages: 13

DOI: 10.2174/0113892037291635240405042554

Price: $65

Abstract

Background: Occupational exposure to industrial Metalworking Fluid (MWF) colonized by Mycobacterium immunogenum (MI) has been associated with immune lung disease hypersensitivity pneumonitis (HP) in machinists. This warrants regular fluid monitoring for early detection of mycobacterial proteins, especially those with antigenic potential.

Objective: To detect and identify dominant MI proteins and antigens directly from the field-drawn in-use MWF using an integrated immunoproteomic-immunoinformatic approach.

Methods: An MI-positive MWF selected by DNA-based screening of several field-drawn MWF samples was cultured to isolate the colonizing strain and profiled for dominant circulating cell-free (ccf) MI proteins, including antigens using an integrated immunoproteomic (1D- and 2Dgel fractionation of seroreactive proteins combined with shotgun proteomic analysis using LC-MS/MS) and immunoinformatic strategy.

Results: A new MI strain (MJY-27) was identified. The gel fractionated MI protein bands (1Dgel) or spots (2D-gel) seroreactive with anti-MI sera probes (Rabbit and Patient sera) yielded 86 MI proteins, 29 of which showed peptide abundance. T-cell epitope analysis revealed high (90-100%) binding frequency for HLA-I & II alleles for 13 of the 29 proteins. Their antigenicity analysis revealed the presence of 6 to 37 antigenic determinants. Interestingly, one of the identified candidates corresponded to an experimentally validated strong B- and T-cell antigen (AgD) from our laboratory culture-based studies.

Conclusion: This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.

[1]
Rosenman, K.D. Asthma, hypersensitivity pneumonitis and other respiratory diseases caused by metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2009, 9(2), 97-102.
[http://dx.doi.org/10.1097/ACI.0b013e3283229f96] [PMID: 19307882]
[2]
Rosenman, K. Occupational diseases in individuals exposed to metal working fluids. Curr. Opin. Allergy Clin. Immunol., 2015, 15(2), 131-136.
[http://dx.doi.org/10.1097/ACI.0000000000000140] [PMID: 25564768]
[3]
Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous mycobacteria--Ohio, 2001. MMWR Morb. Mortal. Wkly. Rep., 2002, 51(16), 349-352.
[PMID: 12004986]
[4]
O’Brien, D.M. Aerosol mapping of a facility with multiple cases of hypersensitivity pneumonitis: Demonstration of mist reduction and a possible dose/response relationship. Appl. Occup. Environ. Hyg., 2003, 18(11), 947-952.
[http://dx.doi.org/10.1080/10473220390237656] [PMID: 14555448]
[5]
Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; Chami, H.A.; Chua, A.T.; Corte, T.J.; Dalphin, J.C.; Danoff, S.K.; Diaz-Mendoza, J.; Duggal, A.; Egashira, R.; Ewing, T.; Gulati, M.; Inoue, Y.; Jenkins, A.R.; Johannson, K.A.; Johkoh, T.; Tamae-Kakazu, M.; Kitaichi, M.; Knight, S.L.; Koschel, D.; Lederer, D.J.; Mageto, Y.; Maier, L.A.; Matiz, C.; Morell, F.; Nicholson, A.G.; Patolia, S.; Pereira, C.A.; Renzoni, E.A.; Salisbury, M.L.; Selman, M.; Walsh, S.L.F.; Wuyts, W.A.; Wilson, K.C. Diagnosis of hypersensitivity pneumonitis in adults: An official ATS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med., 2020, 202(3), e36-e69.
[http://dx.doi.org/10.1164/rccm.202005-2032ST] [PMID: 32706311]
[6]
Alberti, M.L.; Rincon-Alvarez, E.; Buendia-Roldan, I.; Selman, M. Hypersensitivity pneumonitis: Diagnostic and therapeutic challenges. Front. Med., 2021, 8, 718299.
[http://dx.doi.org/10.3389/fmed.2021.718299] [PMID: 34631740]
[7]
Hamblin, M.; Prosch, H.; Vašáková, M. Diagnosis, course and management of hypersensitivity pneumonitis. Eur. Respir. Rev., 2022, 31(163), 210169.
[http://dx.doi.org/10.1183/16000617.0169-2021] [PMID: 35140104]
[8]
Burge, P.S. Hypersensitivity pneumonitis due to metalworking fluid aerosols. Curr. Allergy Asthma Rep., 2016, 16(8), 59.
[http://dx.doi.org/10.1007/s11882-016-0639-0] [PMID: 27473679]
[9]
Nett, R.J.; Stanton, M.; Grimes, G.R. Occupational respiratory and skin diseases among workers exposed to metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2021, 21(2), 121-127.
[http://dx.doi.org/10.1097/ACI.0000000000000717] [PMID: 33394701]
[10]
Cohen, H.; White, E.M. Metalworking fluid mist occupational exposure limits: A discussion of alternative methods. J. Occup. Environ. Hyg., 2006, 3(9), 501-507.
[http://dx.doi.org/10.1080/15459620600867872] [PMID: 16857649]
[11]
Shelton, B.G.; Flanders, W.D.; Morris, G.K. Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg. Infect. Dis., 1999, 5(2), 270-273.
[http://dx.doi.org/10.3201/eid0502.990213] [PMID: 10221881]
[12]
Tillie-Leblond, I.; Grenouillet, F.; Reboux, G.; Roussel, S.; Chouraki, B.; Lorthois, C.; Dalphin, J.C.; Wallaert, B.; Millon, L. Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria. Eur. Respir. J., 2011, 37(3), 640-647.
[http://dx.doi.org/10.1183/09031936.00195009] [PMID: 20693254]
[13]
Trout, D.; Weissman, D.N.; Lewis, D.; Brundage, R.A.; Franzblau, A.; Remick, D. Evaluation of hypersensitivity pneumonitis among workers exposed to metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 953-960.
[http://dx.doi.org/10.1080/10473220390237683] [PMID: 14555449]
[14]
Wilson, R.W.; Steingrube, V.A.; Böttger, E.C.; Springer, B.; Brown-Elliott, B.A.; Vincent, V.; Jost, K.C.; Zhang, Y.; Garcia, M.J.; Chiu, S.H.; Onyi, G.O.; Rossmoore, H.; Nash, D.R.; Wallace, R.J. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int. J. Syst. Evol. Microbiol., 2001, 51(5), 1751-1764.
[http://dx.doi.org/10.1099/00207713-51-5-1751] [PMID: 11594606]
[15]
Watt, W.D. Observations on the relationship between triazines and mycobacteria in metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 961-965.
[http://dx.doi.org/10.1080/10473220390237692] [PMID: 14555450]
[16]
Johansson, E.; Yadav, J.S. Differential immunogenicity and lung disease-inducing potential of mycobacterium immunogenum genotypes and impact of co-exposure with pseudomonas: Optimizing a mouse model of chronic hypersensitivity pneumonitis. Int. J. Mol. Sci., 2024, 25(4), 2058.
[http://dx.doi.org/10.3390/ijms25042058]
[17]
Johansson, E.; Boivin, G.P.; Yadav, J.S. Early immunopathological events in acute model of mycobacterial hypersensitivity pneumonitis in mice. J. Immunotoxicol., 2017, 14(1), 77-88.
[http://dx.doi.org/10.1080/1547691X.2016.1273284] [PMID: 28094581]
[18]
Gordon, T.; Nadziejko, C.; Galdanes, K.; Lewis, D.; Donnelly, K. Mycobacterium immunogenum causes hypersensitivity pneumonitis-like pathology in mice. Inhal. Toxicol., 2006, 18(6), 449-456.
[http://dx.doi.org/10.1080/08958370600563904] [PMID: 16556584]
[19]
Chandra, H.; Yadav, E.; Yadav, J.S. Alveolar macrophage innate response to Mycobacterium immunogenum, the etiological agent of hypersensitivity pneumonitis: Role of JNK and p38 MAPK pathways. PLoS One, 2013, 8(12), e83172.
[http://dx.doi.org/10.1371/journal.pone.0083172] [PMID: 24349452]
[20]
Chandra, H.; Yadav, J.S. T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis. Mol. Immunol., 2016, 75, 168-177.
[http://dx.doi.org/10.1016/j.molimm.2016.05.020] [PMID: 27294559]
[21]
Yadav, J.S.; Khan, I.U.H.; Fakhari, F.; Soellner, M.B. DNA-based methodologies for rapid detection, quantification, and species- or strain-level identification of respiratory pathogens (Mycobacteria and Pseudomonads) in metalworking fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 966-975.
[http://dx.doi.org/10.1080/10473220390237700] [PMID: 14555451]
[22]
Khan, I.U.H.; Selvaraju, S.B.; Yadav, J.S. Occurrence and characterization of multiple novel genotypes of Mycobacterium immunogenum and Mycobacterium chelonae in metalworking fluids. FEMS Microbiol. Ecol., 2005, 54(3), 329-338.
[http://dx.doi.org/10.1016/j.femsec.2005.04.009] [PMID: 16332331]
[23]
Chandra, H.; Yadav, J.S. Human leukocyte antigen (HLA)-binding epitopes dataset for the newly identified T-cell antigens of Mycobacterium immunogenum. Data Brief, 2016, 8, 1069-1071.
[http://dx.doi.org/10.1016/j.dib.2016.06.045] [PMID: 27508266]
[24]
Chandra, H.; Lockey, J.; Yadav, J.S. Novel antigens of Mycobacterium immunogenum relevant in serodiagnosis of occupational hypersensitivity pneumonitis in machinists. Ann. Allergy Asthma Immunol., 2015, 114(6), 525-526.e4.
[http://dx.doi.org/10.1016/j.anai.2015.03.005] [PMID: 25863449]
[25]
Gupta, M.K.; Subramanian, V.; Yadav, J.S. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group. J. Proteome Res., 2009, 8(5), 2319-2330.
[http://dx.doi.org/10.1021/pr8009462] [PMID: 19209886]
[26]
Roussel, S.; Rognon, B.; Barrera, C.; Reboux, G.; Salamin, K.; Grenouillet, F.; Thaon, I.; Dalphin, J.C.; Tillie-Leblond, I.; Quadroni, M.; Monod, M.; Millon, L. Immuno-reactive proteins from Mycobacterium immunogenum useful for serodiagnosis of metalworking fluid hypersensitivity pneumonitis. Int. J. Med. Microbiol., 2011, 301(2), 150-156.
[http://dx.doi.org/10.1016/j.ijmm.2010.07.002] [PMID: 20850379]
[27]
Selvaraju, S.B.; Khan, I.U.H.; Yadav, J.S. A new method for species identification and differentiation of Mycobacterium chelonae complex based on amplified hsp65 restriction analysis (AHSPRA). Mol. Cell. Probes, 2005, 19(2), 93-99.
[http://dx.doi.org/10.1016/j.mcp.2004.09.007] [PMID: 15680210]
[28]
Kapoor, R.; Yadav, J.S. Expanding the mycobacterial diversity of metalworking fluids (MWFs): Evidence showing MWF colonization by Mycobacterium abscessus. FEMS Microbiol. Ecol., 2012, 79(2), 392-399.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01227.x] [PMID: 22092754]
[29]
Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237.
[http://dx.doi.org/10.1093/bioinformatics/17.12.1236] [PMID: 11751237]
[30]
Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174.
[http://dx.doi.org/10.1016/0014-5793(90)80535-Q] [PMID: 1702393]
[31]
Selman, M.; Pardo, A.; King, T.E., Jr Hypersensitivity pneumonitis. Am. J. Respir. Crit. Care Med., 2012, 186(4), 314-324.
[http://dx.doi.org/10.1164/rccm.201203-0513CI] [PMID: 22679012]
[32]
Thorne, P.S.; Adamcakova-Dodd, A.; Kelly, K.M.; O’Neill, M.E.; Duchaine, C. Metalworking fluid with mycobacteria and endotoxin induces hypersensitivity pneumonitis in mice. Am. J. Respir. Crit. Care Med., 2006, 173(7), 759-768.
[http://dx.doi.org/10.1164/rccm.200405-627OC] [PMID: 16387809]
[33]
Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153.
[http://dx.doi.org/10.1186/1471-2105-7-153] [PMID: 16545123]
[34]
Sakib, M.S.; Islam, M.R.; Hasan, A.K.M.M.; Nabi, A.H.M.N. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv. Bioinforma., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/402492] [PMID: 25147564]
[35]
Li, H.; Llera, A.; Malchiodi, E.L.; Mariuzza, R.A. The structural basis of T cell activation by superantigens. Annu. Rev. Immunol., 1999, 17(1), 435-466.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.435] [PMID: 10358765]
[36]
Yu, M.; Lee, W.W.; Tomar, D.; Pryshchep, S.; Czesnikiewicz-Guzik, M.; Lamar, D.L.; Li, G.; Singh, K.; Tian, L.; Weyand, C.M.; Goronzy, J.J. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med., 2011, 208(4), 775-785.
[http://dx.doi.org/10.1084/jem.20100031] [PMID: 21422171]
[37]
Bordon, Y. Heavy metal rocks T cells. Nat. Rev. Immunol., 2011, 11(5), 300-301.
[http://dx.doi.org/10.1038/nri2977] [PMID: 21494265]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy