Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Exploring the Potential of Metformin in Mitigating Radiation-induced Gastrointestinal and Hematopoietic System Injury in Rats After Whole-body X-ray Radiation: An Experimental Study

Author(s): Ehsan Khodamoradi, Nafiseh Rahmani, Khodabakhsh Rashidi, Masoud Najafi*, Soodeh Shahsavari and Mohammad Mohammadi*

Volume 17, Issue 2, 2024

Published on: 15 January, 2024

Page: [200 - 208] Pages: 9

DOI: 10.2174/0118744710261673231115062547

Price: $65

Abstract

Background: The modern world faces a growing concern about the possibility of accidental radiation events. The Hematopoietic system is particularly vulnerable to radiationinduced apoptosis, which can lead to death. Metformin, a drug used to treat diabetes, has been shown to protect normal cells and tissues from the toxic effects of radiation. This study aimed to evaluate the effectiveness of metformin in mitigating radiation injury to the gastrointestinal and hematological systems of rats.

Materials and Methods: The study involved 73 male rats. After total body irradiation with 7.5 Gy of X-rays, rats were treated with metformin. Seven days later, the rats were sacrificed and blood samples were taken for evaluation.

Results: The study found that metformin was not effective in mitigating radiation injury. The histopathological assessment showed no significant changes in goblet cell injury, villi shortening, inflammation, or mucous layer thickness. In terms of biochemical evaluation, metformin did not significantly affect oxidative stress markers, but irradiation increased the mean MDA level in the radiation group. The complete blood count revealed a significant decrease in WBC and platelet, counts in the radiation group compared to the control group, but no significant difference was found between the radiation and radiation + metformin groups.

Conclusion: In conclusion, metformin may not be a good option for reducing radiation toxicity after accidental exposure. Despite treatment, there was no improvement in platelet, white blood cell, and lymphocyte counts, nor was there any decrease in oxidative stress. Further research is needed to explore other potential treatments for radiation injury.

Graphical Abstract

[1]
Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol., 2005, 2(1), 8.
[http://dx.doi.org/10.1186/1743-8977-2-8] [PMID: 16209704]
[2]
Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal., 2014, 21(2), 260-292.
[http://dx.doi.org/10.1089/ars.2013.5489] [PMID: 24382094]
[3]
Yu, J. Intestinal stem cell injury and protection during cancer therapy. Transl. Cancer Res., 2013, 2(5), 384-396.
[PMID: 24683536]
[4]
Hanson, W.R.; Fry, R.J.M.; Sallese, A.R.; Frischer, H.; Ahmad, T.; Ainsworth, E.J. Comparison of intestine and bone marrow radiosensitivity of the BALB/c and the C57BL/6 mouse strains and their B6CF1 offspring. Radiat. Res., 1987, 110(3), 340-352.
[http://dx.doi.org/10.2307/3577002] [PMID: 3588842]
[5]
Shao, L.; Luo, Y.; Zhou, D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid. Redox Signal., 2014, 20(9), 1447-1462.
[http://dx.doi.org/10.1089/ars.2013.5635] [PMID: 24124731]
[6]
Jain, S. Radiation in medical practice & health effects of radiation: Rationale, risks, and rewards. J. Family Med. Prim. Care, 2021, 10(4), 1520-1524.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_2292_20] [PMID: 34123885]
[7]
Kaliberov, S.A.; Buchsbaum, D.J. Chapter seven--Cancer treatment with gene therapy and radiation therapy. Adv. Cancer Res., 2012, 115, 221-263.
[http://dx.doi.org/10.1016/B978-0-12-398342-8.00007-0] [PMID: 23021246]
[8]
Kim, Y. The radiation problem and its solution from a health communication perspective. J. Korean Med. Sci., 2016, 31(1), 88-98.
[http://dx.doi.org/10.3346/jkms.2016.31.S1.S88]
[9]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[10]
Baker, C.; Retzik-Stahr, C.; Singh, V.; Plomondon, R.; Anderson, V.; Rasouli, N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther. Adv. Endocrinol. Metab., 2021, 12, 2042018820980225.
[http://dx.doi.org/10.1177/2042018820980225] [PMID: 33489086]
[11]
Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in human obesity and weight loss. Curr. Obes. Rep., 2019, 8(2), 156-164.
[http://dx.doi.org/10.1007/s13679-019-00335-3] [PMID: 30874963]
[12]
Rojas, L.B.A.; Gomes, M.B. Metformin: An old but still the best treatment for type 2 diabetes. Diabetol. Metab. Syndr., 2013, 5(1), 6.
[http://dx.doi.org/10.1186/1758-5996-5-6] [PMID: 23415113]
[13]
Miller, R.C.; Murley, J.S.; Grdina, D.J. Metformin exhibits radiation countermeasures efficacy when used alone or in combination with sulfhydryl containing drugs. Radiat. Res., 2014, 181(5), 464-470.
[http://dx.doi.org/10.1667/RR13672.1] [PMID: 24754562]
[14]
Mihandoost, E.; Shirazi, A.; Mahdavi, S.R.; Aliasgharzadeh, A. Can melatonin help us in radiation oncology treatments? BioMed Res. Int., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/578137] [PMID: 24900972]
[15]
Begum, N; Prasad, N; Thayalan, K Apigenin protects gammaradiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 3(1), 45-52.
[16]
Kunwar, A.; Bag, P.P.; Chattopadhyay, S.; Jain, V.K.; Priyadarsini, K.I. Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3′-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch. Toxicol., 2011, 85(11), 1395-1405.
[http://dx.doi.org/10.1007/s00204-011-0687-0] [PMID: 21380500]
[17]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[18]
Da, F.; Guo, J.; Yao, L.; Gao, Q.; Jiao, S.; Miao, X.; Liu, J. Pretreatment with metformin protects mice from whole-body irradiation. J. Radiat. Res., 2021, 62(4), 618-625.
[http://dx.doi.org/10.1093/jrr/rrab012] [PMID: 33912960]
[19]
Han, X.; Sun, F.; Zhang, Y.; Wang, J.; Liu, Q.; Gao, P.; Zhang, S. The protective effect of propofol on ionizing radiationinduced hematopoietic system damage in mice. RSC Advances, 2019, 9(62), 36366-36373.
[http://dx.doi.org/10.1039/C9RA07262D] [PMID: 35540614]
[20]
Hoeben, B.A.W.; Wong, J.Y.C.; Fog, L.S.; Losert, C.; Filippi, A.R.; Bentzen, S.M.; Balduzzi, A.; Specht, L. Total body irradiation in haematopoietic stem cell transplantation for paediatric acute lymphoblastic leukaemia: Review of the literature and future directions. Front Pediatr., 2021, 9, 774348.
[http://dx.doi.org/10.3389/fped.2021.774348] [PMID: 34926349]
[21]
Maraldi, T.; Angeloni, C.; Prata, C.; Hrelia, S. NADPH oxidases: Redox regulators of stem cell fate and function. Antioxidants (Basel), 2021, 10(6), 973.
[22]
Suryavanshi, S.; Sharma, D.; Checker, R.; Thoh, M.; Gota, V.; Sandur, S.K.; Sainis, K.B. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis. Free Radic. Biol. Med., 2015, 85, 56-70.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.007] [PMID: 25872101]
[23]
Patterson, A.M.; Liu, L.; Sampson, C.H.; Plett, P.A.; Li, H.; Singh, P.; Mohammad, K.S.; Hoggatt, J.; Capitano, M.L.; Orschell, C.M.; Pelus, L.M. A Single radioprotective dose of prostaglandin e2 blocks irradiation-induced apoptotic signaling and early cycling of hematopoietic stem cells. Stem Cell Reports, 2020, 15(2), 358-373.
[http://dx.doi.org/10.1016/j.stemcr.2020.07.004] [PMID: 32735825]
[24]
Ghaffari, S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal, 2008, 10(11), 1923-1940.
[25]
Katanyutanon, S.; Wu, R.; Wang, P. The effect of whole-body radiation on blood levels of gastrointestinal peptides in the rat. Int. J. Clin. Exp. Med., 2008, 1(4), 332-337.
[PMID: 19079678]
[26]
Liu, J.; Liu, C.; Yue, J. Radiotherapy and the gut microbiome: Facts and fiction. Radiat. Oncol., 2021, 16(1), 9.
[http://dx.doi.org/10.1186/s13014-020-01735-9] [PMID: 33436010]
[27]
Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J. Gastroenterol., 2013, 19(2), 185-198.
[http://dx.doi.org/10.3748/wjg.v19.i2.185] [PMID: 23345941]
[28]
Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[29]
Najafi, M; Cheki, M; Hassanzadeh, G; Amini, P; Shabeeb, D;; Musa, AE Protection from radiation-induced damage in rat’s ileum and colon by combined regimens of melatonin and metformin: a histopathological study. anti-inflammatory & antiallergy. Antiinflamm Antiallergy Agents Med Chem, 2020, 19(2), 180-189.
[30]
Yahyapour, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Farhood, B.; Pooladvand, V.; Shabeeb, D.; Musa, A.E.; Najafi, M. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation- induced pneumonitis and fibrosis: A histopathological study. Curr. Drug Res. Rev., 2019, 11(2), 111-117.
[http://dx.doi.org/10.2174/2589977511666191018180758] [PMID: 31875783]
[31]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417.
[http://dx.doi.org/10.3390/medicina55080417]
[32]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiationinduced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[PMID: 31565651]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy