Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Intranasal Radioiodinated Ferulic Acid Polymeric Micelles as the First Nuclear Medicine Imaging Probe for ETRA Brain Receptor

Author(s): Hend Fayez, Adli Selim, Rehab Shamma and Hassan Rashed*

Volume 17, Issue 2, 2024

Published on: 11 January, 2024

Page: [209 - 217] Pages: 9

DOI: 10.2174/0118744710269885231113070356

Price: $65

Abstract

Introduction: The aim of this work was to prepare a selective nuclear medicine imaging probe for the Endothelin 1 receptor A in the brain.

Material and Methods: Ferulic acid (an ETRA antagonist) was radiolabeled using 131I by direct electrophilic substitution method. The radiolabeled ferulic acid was formulated as polymeric micelles to allow intranasal brain delivery. Biodistribution was studied in Swiss albino mice by comparing brain uptake of 131I-ferulic acid after IN administration of 131I-ferulic acid polymeric micelles, IN administration of 131I-ferulic acid solution and IV administration of 131I-ferulic acid solution.

Results: Successful radiolabeling was achieved with an RCY of 98 % using 200 μg of ferulic acid and 60 μg of CAT as oxidizing agents at pH 6, room temperature and 30 min reaction time. 131I-ferulic acid polymeric micelles were successfully formulated with the particle size of 21.63 nm and polydispersity index of 0.168. Radioactivity uptake in the brain and brain/blood uptake ratio for I.N 131I-ferulic acid polymeric micelles were greater than the two other routes at all periods.

Conclusion: Our results provide 131I-ferulic acid polymeric micelles as a hopeful nuclear medicine tracer for ETRA brain receptor.

« Previous
Graphical Abstract

[1]
Wong, D.F.; Gründer, G.; Brašić, J.R. Brain imaging research: Does the science serve clinical practice? Int. Rev. Psychiatry, 2007, 19(5), 541-558.
[http://dx.doi.org/10.1080/09540260701564849] [PMID: 17896234]
[2]
Heiss, W-D.; Herholz, K. Brain receptor imaging. J. Nucl. Med., 2006, 47(2), 302-312.
[PMID: 16455637]
[3]
Herfert, K.; Mannheim, J.G.; Kuebler, L.; Marciano, S.; Amend, M.; Parl, C.; Napieczynska, H.; Maier, F.M.; Vega, S.C.; Pichler, B.J. Quantitative rodent brain receptor imaging. Mol. Imaging Biol., 2020, 22(2), 223-244.
[http://dx.doi.org/10.1007/s11307-019-01368-9] [PMID: 31168682]
[4]
Meredith, G.E. The synaptic framework for chemical signaling in nucleus accumbens. Ann. N. Y. Acad. Sci., 1999, 877(1), 140-156.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb09266.x] [PMID: 10415648]
[5]
Lauder, J.M. Neurotransmitters as growth regulatory signals: Role of receptors and second messengers. Trends Neurosci., 1993, 16(6), 233-240.
[http://dx.doi.org/10.1016/0166-2236(93)90162-F] [PMID: 7688165]
[6]
van Waarde, A.; Dierckx, R.A.J.O.; Zhou, X.; Khanapur, S.; Tsukada, H.; Ishiwata, K.; Luurtsema, G.; de Vries, E.F.J.; Elsinga, P.H. Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med. Res. Rev., 2018, 38(1), 5-56.
[http://dx.doi.org/10.1002/med.21432] [PMID: 28128443]
[7]
Frost, J.J. Receptor imaging by PET and SPECT: Focus on the opiate receptor. J. Recept. Res., 1993, 13(1-4), 39-53.
[http://dx.doi.org/10.3109/10799899309073644] [PMID: 8095556]
[8]
Fleuriet, A.; Macheix, J.-J. Phenolic acids in fruits and vegetables;; Oxidative stress and disease, 2003, 9, pp. 1-42.
[9]
Boz, H. Ferulic acid in cereals-a review. Czech J. Food Sci., 2015, 33(1), 1-7.
[http://dx.doi.org/10.17221/401/2014-CJFS]
[10]
Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer, 2009, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[11]
Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr., 2007, 40(2), 92-100.
[http://dx.doi.org/10.3164/jcbn.40.92] [PMID: 18188410]
[12]
Yan, H.; Meng, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Antifungal activity and inhibitory mechanisms of ferulic acid against the growth of Fusarium graminearum. Food Biosci., 2023, 52, 102414.
[http://dx.doi.org/10.1016/j.fbio.2023.102414]
[13]
Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med., 1992, 13(4), 435-448.
[http://dx.doi.org/10.1016/0891-5849(92)90184-I] [PMID: 1398220]
[14]
Li, W.; Li, N.; Tang, Y.; Li, B.; Liu, L.; Zhang, X.; Fu, H.; Duan, J. Biological activity evaluation and structure–activity relationships analysis of ferulic acid and caffeic acid derivatives for anticancer. Bioorg. Med. Chem. Lett., 2012, 22(19), 6085-6088.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.038] [PMID: 22954735]
[15]
Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol., 2015, 36(12), 9437-9446.
[http://dx.doi.org/10.1007/s13277-015-3689-3] [PMID: 26124008]
[16]
Li, D.; Rui, Y.; Guo, S.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci., 2021, 284, 119921.
[http://dx.doi.org/10.1016/j.lfs.2021.119921] [PMID: 34481866]
[17]
Zhang, X-X.; Zhao, D.S.; Wang, J.; Zhou, H.; Wang, L.; Mao, J.L.; He, J.X. The treatment of cardiovascular diseases: A review of ferulic acid and its derivatives. Pharmazie, 2021, 76(2), 55-60.
[PMID: 33714280]
[18]
Dasgupta, F.; Mukherjee, A.; Gangadhar, N. Endothelin receptor antagonists-an overview. Curr. Med. Chem., 2002, 9(5), 549-575.
[http://dx.doi.org/10.2174/0929867024606966] [PMID: 11945124]
[19]
Leng, N.; Gu, G.; Simerly, R.B.; Spindel, E.R. Molecular cloning and characterization of two putative G protein-coupled receptors which are highly expressed in the central nervous system. Brain Res. Mol. Brain Res., 1999, 69(1), 73-83.
[http://dx.doi.org/10.1016/S0169-328X(99)00092-3] [PMID: 10350639]
[20]
Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev., 2016, 68(2), 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[21]
Pearson, J.D. Normal endothelial cell function. Lupus, 2000, 9(3), 183-188.
[http://dx.doi.org/10.1191/096120300678828299] [PMID: 10805485]
[22]
Barone, F.C.; Willette, R.N.; Yue, T.L.; Feurestein, G. Therapeutic effects of endothelin receptor antagonists in stroke. Neurol. Res., 1995, 17(4), 259-264.
[http://dx.doi.org/10.1080/01616412.1995.11740323] [PMID: 7477739]
[23]
Sato, M.; Noble, L.J. Involvement of the endothelin receptor subtype A in neuronal pathogenesis after traumatic brain injury. Brain Res., 1998, 809(1), 39-49.
[http://dx.doi.org/10.1016/S0006-8993(98)00817-8] [PMID: 9795123]
[24]
Pla, P.; Larue, L. Involvement of endothelin receptors in normal and pathological development of neural crest cells. Int. J. Dev. Biol., 2003, 47(5), 315-325.
[PMID: 12895026]
[25]
Mariani, G.; Bruselli, L.; Kuwert, T.; Kim, E.E.; Flotats, A.; Israel, O.; Dondi, M.; Watanabe, N. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(10), 1959-1985.
[http://dx.doi.org/10.1007/s00259-010-1390-8] [PMID: 20182712]
[26]
Kaasinen, V.; Vahlberg, T.; Stoessl, A.J.; Strafella, A.P.; Antonini, A. Dopamine receptors in Parkinson’s disease: A meta‐analysis of imaging studies. Mov. Disord., 2021, 36(8), 1781-1791.
[http://dx.doi.org/10.1002/mds.28632] [PMID: 33955044]
[27]
Anzola, L.K.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; Martinez, F.A.; Moreno, S.; Signore, A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: A systematic review. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(12), 2496-2513.
[http://dx.doi.org/10.1007/s00259-019-04489-z] [PMID: 31463594]
[28]
Sakr, T.; Khedr, M.; Rashed, H.; Mohamed, M. In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anti-cancer activity. Molecules, 2018, 23(2), 496.
[http://dx.doi.org/10.3390/molecules23020496] [PMID: 29473879]
[29]
Ramezani Farani, M.; Aminzadeh Jahromi, N.; Ali, V.; Ebrahimpour, A.; Salehian, E.; Shafiee Ardestani, M.; Seyedhamzeh, M.; Ahmadi, S.; Sharifi, E.; Ashrafizadeh, M.; Rabiee, N.; Makvandi, P. Detection of dopamine receptors using nanoscale dendrimer for potential application in targeted delivery and whole-body imaging: Synthesis and in vivo organ distribution. ACS Appl. Bio Mater., 2022, 5(4), 1744-1755.
[http://dx.doi.org/10.1021/acsabm.2c00118] [PMID: 35377588]
[30]
Pain, C.D.; O’Keefe, G.J.; Ackermann, U.; Dore, V.; Villemagne, V.L.; Rowe, C.C. Human biodistribution and internal dosimetry of 4-[18F]fluorobenzyl-dexetimide: a PET radiopharmaceutical for imaging muscarinic acetylcholine receptors in the brain and heart. EJNMMI Res., 2020, 10(1), 61.
[http://dx.doi.org/10.1186/s13550-020-00641-1] [PMID: 32533449]
[31]
Rashed, H.M.; Marzook, F.A.; Farag, H. 99mTc-zolmitriptan: Radiolabeling, molecular modeling, biodistribution and gamma scintigraphy as a hopeful radiopharmaceutical for lung nuclear imaging. Radiol. Med., 2016, 121(12), 935-943.
[http://dx.doi.org/10.1007/s11547-016-0677-7] [PMID: 27586132]
[32]
Sakr, T.M.; Ibrahim, A.B.; Fasih, T.W.; Rashed, H.M. Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al–Mo gel. J. Radioanal. Nucl. Chem., 2017, 314(3), 2091-2098.
[http://dx.doi.org/10.1007/s10967-017-5560-z]
[33]
Crișan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.G.; Andrieș, G.; Căinap, C.; Chiș, V. Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. Int. J. Mol. Sci., 2022, 23(9), 5023.
[http://dx.doi.org/10.3390/ijms23095023] [PMID: 35563414]
[34]
Werner, P.; Neumann, C.; Eiber, M.; Wester, H.J.; Schottelius, M. [99cmTc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res., 2020, 10(1), 45.
[http://dx.doi.org/10.1186/s13550-020-00635-z] [PMID: 32382945]
[35]
Pontico, M. The prognostic value of 123 I-mIBG SPECT cardiac imaging in heart failure patients: A systematic review. J. Nucl. Cardiol., 2022, 29(4), 1799-1809.
[PMID: 33442819]
[36]
Klein, R. PET and SPECT tracers for myocardial perfusion imaging. Seminars in nuclear medicine; Elsevier, 2020.
[http://dx.doi.org/10.1053/j.semnuclmed.2020.02.016]
[37]
Shigekiyo, T.; Arawaka, S. Laterality of specific binding ratios on DAT-SPECT for differential diagnosis of degenerative parkinsonian syndromes. Sci. Rep., 2020, 10(1), 15761.
[http://dx.doi.org/10.1038/s41598-020-72321-y] [PMID: 32978422]
[38]
Pandey, A.; Dhiman, S.; ArunRaj, S.; Patel, C.; Bal, C.; Kumar, P. Designing and comparing performances of image processing pipeline for enhancement of I-131-metaiodobenzylguanidine images. Indian J. Nucl. Med., 2021, 36(2), 125-133.
[http://dx.doi.org/10.4103/ijnm.ijnm_231_20] [PMID: 34385782]
[39]
van Gils, C A J.; Beijst, C.; van Rooij, R.; de Jong, H.W A M. Impact of reconstruction parameters on quantitative I-131 SPECT. Phys. Med. Biol., 2016, 61(14), 5166-5182.
[http://dx.doi.org/10.1088/0031-9155/61/14/5166] [PMID: 27352225]
[40]
Autret, D.; Bitar, A.; Ferrer, L.; Lisbona, A.; Bardiès, M. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Cancer Biother. Radiopharm., 2005, 20(1), 77-84.
[http://dx.doi.org/10.1089/cbr.2005.20.77] [PMID: 15778585]
[41]
Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics, 2020, 12(12), 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[42]
Sayyed, M.E.; El-Motaleb, M.A.; Ibrahim, I.T.; Rashed, H.M.; El-Nabarawi, M.A.; Ahmed, M.A. Preparation, characterization, and in vivo biodistribution study of intranasal 131I-clonazepam-loaded phospholipid magnesome as a promising brain delivery system. Eur. J. Pharm. Sci., 2022, 169, 106089.
[http://dx.doi.org/10.1016/j.ejps.2021.106089] [PMID: 34863872]
[43]
Rashed, H.M.; Shamma, R.N.; El-Sabagh, H.A. Preparation of 99mTc-levetiracetam intranasal microemulsion as the first radiotracer for SPECT imaging of the Synaptic Vesicle Protein SV2A. Eur. J. Pharm. Sci., 2018, 121, 29-33.
[http://dx.doi.org/10.1016/j.ejps.2018.05.019] [PMID: 29787786]
[44]
Brand, G. Olfactory/trigeminal interactions in nasal chemoreception. Neurosci. Biobehav. Rev., 2006, 30(7), 908-917.
[http://dx.doi.org/10.1016/j.neubiorev.2006.01.002] [PMID: 16545453]
[45]
Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther. Deliv., 2014, 5(6), 709-733.
[http://dx.doi.org/10.4155/tde.14.41] [PMID: 25090283]
[46]
Hanson, L.R.; Frey, W.H., II Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci., 2008, 9(S3)(Suppl. 3), S5.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S5] [PMID: 19091002]
[47]
Talegaonkar, S.; Mishra, P. Intranasal delivery: An approach to bypass the blood brain barrier. Indian J. Pharmacol., 2004, 36(3), 140.
[48]
Konno, A.; Togawa, K.; Itasaka, Y. Neurophysiological mechanism of shrinkage of nasal mucosa induced by exercise. Auris Nasus Larynx, 1982, 9(2), 81-90.
[http://dx.doi.org/10.1016/S0385-8146(82)80004-7] [PMID: 7159302]
[49]
Susaman, N.; Cingi, C.; Mullol, J. Is the nasal cycle real? How important is it?; Challenges in Rhinology, 2021, pp. 1-8.
[http://dx.doi.org/10.1007/978-3-030-50899-9_1]
[50]
Torchilin, V.P. Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release, 2001, 73(2-3), 137-172.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[51]
Adams, M.L.; Andes, D.R.; Kwon, G.S. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules, 2003, 4(3), 750-757.
[http://dx.doi.org/10.1021/bm0257614] [PMID: 12741794]
[52]
Yokoyama, M. Polymeric micelles for the targeting of hydrophobic drugs. Polymeric Drug Deliv. Syst., 2005, 148, 533-576.
[http://dx.doi.org/10.1201/9780849348129.ch13]
[53]
Kanazawa, T. Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles., Medical Devices: Evidence and Research, 2015, 57-64.
[http://dx.doi.org/10.2147/MDER.S70856]
[54]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[55]
Lv, S.; Wu, Y.; Cai, K.; He, H.; Li, Y.; Lan, M.; Chen, X.; Cheng, J.; Yin, L. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor–receptor coordination interactions. J. Am. Chem. Soc., 2018, 140(4), 1235-1238.
[http://dx.doi.org/10.1021/jacs.7b12776] [PMID: 29332390]
[56]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[57]
Lamptey, R.N.L.; Gothwal, A.; Trivedi, R.; Arora, S.; Singh, J. Synthesis and characterization of fatty acid grafted chitosan polymeric micelles for improved gene delivery of VGF to the brain through intranasal route. Biomedicines, 2022, 10(2), 493.
[http://dx.doi.org/10.3390/biomedicines10020493] [PMID: 35203704]
[58]
Rashed, H.M.; Ibrahim, I.T.; Motaleb, M.A. 99mTc-hexoprenaline and 131I-dapoxetine: Preparation, in silico modeling and biological evaluation as promising lung scintigraphy radiopharmaceuticals. J. Radioanal. Nucl. Chem., 2017, 314(2), 1297-1307.
[http://dx.doi.org/10.1007/s10967-017-5500-y]
[59]
Robles, A.M.; Balter, H.S.; Oliver, P.; Welling, M.M.; Pauwels, E.K.J. Improved radioiodination of biomolecules using exhaustive Chloramine-T oxidation. Nucl. Med. Biol., 2001, 28(8), 999-1008.
[http://dx.doi.org/10.1016/S0969-8051(01)00261-X] [PMID: 11711320]
[60]
Rashed, H.M.; Ibrahim, I.T.; Motaleb, M.A.; El-Bary, A.A. Preparation of radioiodinated ritodrine as a potential agent for lung imaging. J. Radioanal. Nucl. Chem., 2014, 300(3), 1227-1233.
[http://dx.doi.org/10.1007/s10967-014-3077-2]
[61]
Saha, G.B.; Saha, G.B. Radiopharmaceuticals and general methods of radiolabeling. fundamentals of nuclear pharmacy, 2018, 93-121.
[62]
Ramdhani, D.; Widyasari, E.M.; Sriyani, M.E.; Arnanda, Q.P.; Watabe, H. Iodine-131 labeled genistein as a potential radiotracer for breast cancer. Heliyon, 2020, 6(9), e04780.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04780] [PMID: 33005774]
[63]
Ibrahim, A.B.; Sakr, T.M.; Khoweysa, O.M.A.; Motaleb, M.A.; Abd El-Bary, A.; El-Kolaly, M.T. Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J. Radioanal. Nucl. Chem., 2015, 303(1), 967-975.
[http://dx.doi.org/10.1007/s10967-014-3560-9]
[64]
Shewaiter, M.A.; Selim, A.A.; Moustafa, Y.M.; Gad, S.; Rashed, H.M. Radioiodinated acemetacin loaded niosomes as a dual anticancer therapy. Int. J. Pharm., 2022, 628, 122345.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122345] [PMID: 36349611]
[65]
Darwish, W.M.; Bayoumi, N.A.; El-Shershaby, H.M.; Allahloubi, N.M. Targeted photoimmunotherapy based on photosensitizerantibody conjugates for multiple myeloma treatment. J. Photochem. Photobiol. B, 2020, 203, 111777.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111777] [PMID: 31931387]
[66]
Plotzke, K.P.; Fisher, S.J.; Wahl, R.L.; Olken, N.M.; Skinner, S.; Gross, M.D.; Counsell, R.E. Selective localization of a radioiodinated phospholipid ether analog in human tumor xenografts. J. Nucl. Med., 1993, 34(5), 787-792.
[PMID: 8386759]
[67]
Ahmed, I.S.; Rashed, H.M.; Fayez, H.; Farouk, F.; Shamma, R.N. Nanoparticle-mediated dual targeting: An approach for enhanced baicalin delivery to the liver. Pharmaceutics, 2020, 12(2), 107.
[http://dx.doi.org/10.3390/pharmaceutics12020107] [PMID: 32013203]
[68]
Ghoreishi, S.M.; Khalaj, A.; Sabzevari, O.; Badrzadeh, L.; Mohammadzadeh, P.; Mousavi Motlagh, S.S.; Bitarafan-Rajabi, A.; Shafiee Ardestani, M. Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: In vitro and in vivo evaluations. Int. J. Nanomedicine, 2018, 13, 4671-4683.
[http://dx.doi.org/10.2147/IJN.S157426] [PMID: 30154653]
[69]
Salama, A.H.; Shamma, R.N. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: In-vitro characterization, and in-vivo estimation of corneal permeation. Int. J. Pharm., 2015, 492(1-2), 28-39.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.010] [PMID: 26151106]
[70]
Sayed, S.; Elsharkawy, F.M.; Amin, M.M.; Shamsel-Din, H.A.; Ibrahim, A.B. Brain targeting efficiency of intranasal clozapine-loaded mixed micelles following radio labeling with Technetium-99m. Drug Deliv., 2021, 28(1), 1524-1538.
[http://dx.doi.org/10.1080/10717544.2021.1951895] [PMID: 34266360]
[71]
Abdelbary, G.A.; Tadros, M.I. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int. J. Pharm., 2013, 452(1-2), 300-310.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.084] [PMID: 23684658]
[72]
Helmy, H.; El-Sahar, A.; Sayed, R.; Shamma, R.; Salama, A.; El-Baz, E. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. Int. J. Nanomedicine, 2017, 12, 7015-7023.
[http://dx.doi.org/10.2147/IJN.S147738] [PMID: 29026298]
[73]
Sakai, T.; Kurosawa, H.; Okada, T.; Mishima, S. Vesicle formation in mixture of a PEO-PPO-PEO block copolymer (Pluronic P123) and a nonionic surfactant (Span 65) in water. Colloids Surf. A Physicochem. Eng. Asp., 2011, 389(1-3), 82-89.
[http://dx.doi.org/10.1016/j.colsurfa.2011.08.046]
[74]
Mehra, N.; Aqil, M.; Sultana, Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci., 2021, 159, 105735.
[http://dx.doi.org/10.1016/j.ejps.2021.105735] [PMID: 33516808]
[75]
Lin, A.C.; Goh, M.C. Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy. Proteins, 2002, 49(3), 378-384.
[http://dx.doi.org/10.1002/prot.10224] [PMID: 12360527]
[76]
Francis, M.F.; Lavoie, L.; Winnik, F.M.; Leroux, J.C. Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles. Eur. J. Pharm. Biopharm., 2003, 56(3), 337-346.
[http://dx.doi.org/10.1016/S0939-6411(03)00111-5] [PMID: 14602175]
[77]
Sosnik, A.; Imperiale, J.C.; Vázquez-González, B.; Raskin, M.M.; Muñoz-Muñoz, F.; Burillo, G.; Cedillo, G.; Bucio, E. Mucoadhesive thermo-responsive chitosan- g -poly(N -isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf. B Biointerfaces, 2015, 136, 900-907.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.036] [PMID: 26551867]
[78]
Basalious, E.B.; Shamma, R.N. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int. J. Pharm., 2015, 493(1-2), 347-356.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.075] [PMID: 26241752]
[79]
Meredith, M.E.; Salameh, T.S.; Banks, W.A. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J., 2015, 17(4), 780-787.
[http://dx.doi.org/10.1208/s12248-015-9719-7] [PMID: 25801717]
[80]
Waterhouse, R. Determination of lipophilicity and its use as a predictor of blood–brain barrier penetration of molecular imaging agents. Mol. Imaging Biol., 2003, 5(6), 376-389.
[http://dx.doi.org/10.1016/j.mibio.2003.09.014] [PMID: 14667492]
[81]
Banks, W.A. Characteristics of compounds that cross the bloodbrain barrier. BMC Neurol., 2009, 9(Suppl 1), S3.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[82]
Mooney, M.P. The Johns Hopkins Atlas of Human Functional Anatomy , 1999.
[83]
Vyas, T.K.; Babbar, A.K.; Sharma, R.K.; Misra, A. Intranasal mucoadhesive microemulsions of zolmitriptan: Preliminary studies on brain-targeting. J. Drug Target., 2005, 13(5), 317-324.
[http://dx.doi.org/10.1080/10611860500246217] [PMID: 16199375]
[84]
Kulkarni, A.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Pardeshi, C.V. Brain–blood ratio: Implications in brain drug delivery. Expert Opin. Drug Deliv., 2016, 13(1), 85-92.
[http://dx.doi.org/10.1517/17425247.2016.1092519] [PMID: 26393289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy