Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis

Author(s): Barakat M. ALRashdi*, Mohamed M. Hussein, Rawan M. Mohammed, Nada W. Abdelhamed, Maran E. Asaad, Mubarak Alruwaili, Saad M. Alrashidi, Ola A. Habotta, Ahmed E. Abdel Moneim* and Shimaa S. Ramadan

Volume 24, Issue 6, 2024

Published on: 09 January, 2024

Page: [443 - 453] Pages: 11

DOI: 10.2174/0118715206274530231213104519

Price: $65

Abstract

Background: Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects.

Methods: Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX.

Results: Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings.

Conclusions: In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.

Graphical Abstract

[1]
Al-Qahtani, W.H.; Alshammari, G.M.; Ajarem, J.S.; Al-Zahrani, A.Y.; Alzuwaydi, A.; Eid, R.; Yahya, M.A. Isoliquiritigenin prevents Doxorubicin-induced hepatic damage in rats by upregulating and activating SIRT1. Biomed. Pharmacother., 2022, 146, 112594.
[http://dx.doi.org/10.1016/j.biopha.2021.112594] [PMID: 34968927]
[2]
AlAsmari, A.F.; Alharbi, M.; Alqahtani, F.; Alasmari, F.; AlSwayyed, M.; Alzarea, S.I.; Al-Alallah, I.A.; Alghamdi, A.; Hakami, H.M.; Alyousef, M.K.; Sari, Y.; Ali, N. Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stressmediated hepatic inflammation and apoptosis via NfκB and MAPK pathway: A preclinical studY. Antioxidants, 2021, 10(12), 1998.
[http://dx.doi.org/10.3390/antiox10121998] [PMID: 34943101]
[3]
Song, S.; Chu, L.; Liang, H.; Chen, J.; Liang, J.; Huang, Z.; Zhang, B.; Chen, X. Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol., 2019, 10, 1030.
[http://dx.doi.org/10.3389/fphar.2019.01030] [PMID: 31572199]
[4]
Akin, A.T.; Öztürk, E.; Kaymak, E.; Karabulut, D.; Yakan, B. Therapeutic effects of thymoquinone in doxorubicin-induced hepatotoxicity via oxidative stress, inflammation and apoptosis. Anat. Histol. Embryol., 2021, 50(6), 908-917.
[http://dx.doi.org/10.1111/ahe.12735] [PMID: 34494664]
[5]
Saleh, D.O.; Mahmoud, S.S.; Hassan, A.; Sanad, E.F. Doxorubicin-induced hepatic toxicity in rats: Mechanistic protective role of Omega-3 fatty acids through Nrf2/HO-1 activation and PI3K/Akt/GSK-3β axis modulation. Saudi J. Biol. Sci., 2022, 29(7), 103308.
[http://dx.doi.org/10.1016/j.sjbs.2022.103308] [PMID: 35677895]
[6]
Prša, P.; Karademir, B.; Biçim, G.; Mahmoud, H.; Dahan, I.; Yalçın, A.S.; Mahajna, J.; Milisav, I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem. Pharmacol., 2020, 173, 113551.
[http://dx.doi.org/10.1016/j.bcp.2019.06.007] [PMID: 31185225]
[7]
Moezian, G.S.A.; Javadinia, S.A.; Sales, S.S.; Fanipakdel, A.; Elyasi, S.; Karimi, G. Oral silymarin formulation efficacy in management of AC-T protocol induced hepatotoxicity in breast cancer patients: A randomized, triple blind, placebo-controlled clinical trial. J. Oncol. Pharm. Pract., 2022, 28(4), 827-835.
[PMID: 33861657]
[8]
Kamble, S.M.; Patil, C.R. Asiatic acid ameliorates doxorubicininduced cardiac and hepato-renal toxicities with Nrf2 transcriptional factor activation in rats. Cardiovasc. Toxicol., 2018, 18(2), 131-141.
[http://dx.doi.org/10.1007/s12012-017-9424-0] [PMID: 28856520]
[9]
Barakat, B.M.; Ahmed, H.I.; Bahr, H.I.; Elbahaie, A.M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxid. Med. Cell. Longev., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/8296451] [PMID: 29541348]
[10]
Kuzu, M. ; Yıldırım, S.; Kandemir, F.M.; Küçükler, S.; Çağlayan, C.; Türk, E.; Dörtbudak, M.B. Protective effect of morin on doxorubicin-induced hepatorenal toxicity in rats. Chem. Biol. Interact., 2019, 308, 89-100.
[http://dx.doi.org/10.1016/j.cbi.2019.05.017] [PMID: 31100273]
[11]
Ahmed, O.M.; Galaly, S.R.; Mostafa, M.A.M.A.; Eed, E.M.; Ali, T.M.; Fahmy, A.M.; Zaky, M.Y. Thyme oil and thymol counter doxorubicin-induced hepatotoxicity via modulation of inflammation, apoptosis, and oxidative stress. Oxid. Med. Cell. Longev., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/6702773] [PMID: 35178158]
[12]
Moghadam, A.R. Tutunchi, S.; Namvaran-Abbas-Abad, A.; Yazdi, M.; Bonyadi, F.; Mohajeri, D.; Mazani, M.; Marzban, H.; Łos, M.J.; Ghavami, S. Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress. BMC Complement. Altern. Med., 2015, 15(1), 246.
[http://dx.doi.org/10.1186/s12906-015-0773-6] [PMID: 26199067]
[13]
Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm. Crop., 2011, 5(1), 28-54.
[http://dx.doi.org/10.2174/2210290601102010028]
[14]
Lee, H.Y.; Kim, S.W.; Lee, G.H.; Choi, M.K.; Jung, H.W.; Kim, Y.J.; Kwon, H.J.; Chae, H.J. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement. Altern. Med., 2016, 16(1), 316.
[http://dx.doi.org/10.1186/s12906-016-1307-6] [PMID: 27561811]
[15]
Hossen, M.S.; Tanvir, E.M.; Prince, M.B.; Paul, S.; Saha, M.; Ali, M.Y.; Gan, S.H.; Khalil, M.I.; Karim, N. Protective mechanism of turmeric (Curcuma longa) on carbofuran-induced hematological and hepatic toxicities in a rat model. Pharm. Biol., 2017, 55(1), 1937-1945.
[http://dx.doi.org/10.1080/13880209.2017.1345951] [PMID: 28675957]
[16]
El-Mansy, AA; Mazroa, SA; Hamed, WS; Yaseen, AH; El-Mohandes, EA Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotech Histochem, 2016, 91(3), 170-181.
[http://dx.doi.org/10.3109/10520295.2015.1116048]
[17]
Alhusaini, A.M.; Faddah, L.M.; Hasan, I.H.; Jarallah, S.J.; Alghamdi, S.H.; Alhadab, N.M.; Badr, A.; Elorabi, N.; Zakaria, E.; Al-anazi, A. Vitamin C and turmeric attenuate bax and Bcl-2 proteins’ expressions and DNA damage in lead acetate-induced liver injury. Dose Response, 2019, 17(4)
[http://dx.doi.org/10.1177/1559325819885782] [PMID: 31798354]
[18]
Zarei, M.; Acharya, P.; Talahalli, R.R. Ginger and turmeric lipid-solubles attenuate heated oil-induced cardio-hepatic oxidative stress via the up-regulation of nuclear factor erythroid 2-related factor 2 and decrease blood pressure in rats. Br. J. Nutr., 2021, 126(2), 199-207.
[http://dx.doi.org/10.1017/S0007114520003967] [PMID: 33028437]
[19]
Uchio, R.; Higashi, Y.; Kohama, Y.; Kawasaki, K.; Hirao, T.; Muroyama, K.; Murosaki, S. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production. J. Nutr. Sci., 2017, 6, e3.
[http://dx.doi.org/10.1017/jns.2016.43] [PMID: 28620478]
[20]
Yuan, X.; Fu, Z.; Ji, P.; Guo, L.; Al-Ghamdy, A.O.; Alkandiri, A.; Habotta, O.A.; Abdel Moneim, A.E.; Kassab, R.B. Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int. J. Nanomedicine, 2020, 15, 6339-6353.
[http://dx.doi.org/10.2147/IJN.S259134] [PMID: 32922005]
[21]
Al-Brakati, A.; Alsharif, K.F.; Alzahrani, K.J.; Kabrah, S.; Al-Amer, O.; Oyouni, A.A.; Habotta, O.A.; Lokman, M.S.; Bauomy, A.A.; Kassab, R.B.; Abdel Moneim, A.E. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int. J. Nanomedicine, 2021, 16, 4335-4349.
[http://dx.doi.org/10.2147/IJN.S306186] [PMID: 34234429]
[22]
Kassab, R.B.; Elbaz, M.; Oyouni, A.A.A.; Mufti, A.H.; Theyab, A.; Al-Brakati, A.; Mohamed, H.A.; Hebishy, A.M.S.; Elmallah, M.I.Y.; Abdelfattah, M.S.; Abdel Moneim, A.E. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid–induced colitis in rats. Environ. Sci. Pollut. Res. Int., 2022, 29(37), 55790-55802.
[http://dx.doi.org/10.1007/s11356-022-19747-1] [PMID: 35320477]
[23]
Bai, K.; Hong, B.; He, J.; Huang, W. Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin a-induced liver injury in mice. Nutrients, 2020, 12(3), 857.
[http://dx.doi.org/10.3390/nu12030857] [PMID: 32210138]
[24]
Khan, M.A.; Singh, D.; Arif, A.; Sodhi, K.K.; Singh, D.K.; Islam, S.N.; Ahmad, A.; Akhtar, K.; Siddique, H.R. Protective effect of green synthesized Selenium Nanoparticles against Doxorubicin induced multiple adverse effects in Swiss albino mice. Life Sci., 2022, 305, 120792.
[http://dx.doi.org/10.1016/j.lfs.2022.120792] [PMID: 35817167]
[25]
Mohamed, A.A.R.; Khater, S.I.; Hamed Arisha, A.; Metwally, M.M.M.; Mostafa-Hedeab, G.; El-Shetry, E.S. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene, 2021, 768, 145288.
[http://dx.doi.org/10.1016/j.gene.2020.145288] [PMID: 33181259]
[26]
Ahmed, Z.S.O.; Galal, M.K.; Drweesh, E.A.; Abou-El-Sherbini, K.S.; Elzahany, E.A.M.; Elnagar, M.M.; Yasin, N.A.E. Protective effect of starch-stabilized selenium nanoparticles against melamine-induced hepato-renal toxicity in male albino rats. Int. J. Biol. Macromol., 2021, 191, 792-802.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.156] [PMID: 34597692]
[27]
Serairi Beji, R.; Ben Mansour, R.; Bettaieb, R. I.; Aidi Wannes, W.; Jameleddine, S.; Hammami, M.; Megdiche, W.; Ksouri, R. Does Curcuma longa root powder have an effect against CCl4-induced hepatotoxicity in rats: A protective and curative approach. Food Sci. Biotechnol., 2019, 28(1), 181-189.
[http://dx.doi.org/10.1007/s10068-018-0449-3] [PMID: 30815309]
[28]
Elshopakey, G.E.; Almeer, R.; Alfaraj, S.; Albasher, G.; Abdelgawad, M.E.; Abdel Moneim, A.E.; Essawy, E.A. Zingerone mitigates inflammation, apoptosis and oxidative injuries associated with renal impairment in adriamycin-intoxicated mice. Toxin Rev., 2022, 41(3), 731-742.
[http://dx.doi.org/10.1080/15569543.2021.1923528]
[29]
AlBasher, G.; Alfarraj, S.; Alarifi, S.; Alkhtani, S.; Almeer, R.; Alsultan, N.; Alharthi, M.; Alotibi, N.; Al-dbass, A.; Abdel Moneim, A.E. Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biol. Trace Elem. Res., 2020, 194(2), 444-454.
[http://dx.doi.org/10.1007/s12011-019-01793-5] [PMID: 31264127]
[30]
Al-Quraishy, S.; Dkhil, M.A.; Abdel-Gaber, R.; Zrieq, R.; Hafez, T.A.; Mubaraki, M.A.; Abdel Moneim, A.E. Myristica fragrans seed extract reverses scopolamine-induced cortical injury via stimulation of HO-1 expression in male rats. Environ. Sci. Pollut. Res. Int., 2020, 27(11), 12395-12404.
[http://dx.doi.org/10.1007/s11356-020-07686-8] [PMID: 31993909]
[31]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[32]
Belfield, A.; Goldberg, D.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme, 1971, 12(5), 561-573.
[http://dx.doi.org/10.1159/000459586] [PMID: 5169852]
[33]
Walter, M.; Gerade, H. Colourimetric method for estimation of total bilirubin. Microchem. J., 1970, 15, 231.
[34]
Yagi, K. Simple assay for the level of total lipid peroxides in serum or plasma. In: Free radical and antioxidant protocols; Springer, 1998; pp. 101-106.
[35]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[36]
Akerboom, T.P.; Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods in enzymology; Elsevier, 1981, pp. 373-382.
[37]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[38]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[http://dx.doi.org/10.1016/S0021-9258(19)45228-9] [PMID: 4623845]
[39]
Pinto, M.C.; Mata, A.M.; Lopez-barea, J. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys., 1984, 228(1), 1-12.
[http://dx.doi.org/10.1016/0003-9861(84)90040-7] [PMID: 6364985]
[40]
Tappel, A. Glutathione peroxidase and hydroperoxides. In: Methods in enzymology; Elsevier, 1978; pp. 506-513.
[41]
Amalraj, A.; Pius, A.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[42]
Dkhil, M.; Zrieq, R.; Al-Quraishy, S.; Abdel Moneim, A. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules, 2016, 21(11), 1517.
[http://dx.doi.org/10.3390/molecules21111517] [PMID: 27869771]
[43]
Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364.
[http://dx.doi.org/10.1517/17425247.2012.724676] [PMID: 22971222]
[44]
Krishnan, V.; Loganathan, C.; Thayumanavan, P. Green synthesized selenium nanoparticles using Spermacoce hispida as carrier of s-allyl glutathione: To accomplish hepatoprotective and nephroprotective activity against acetaminophen toxicity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 56-63.
[http://dx.doi.org/10.1080/21691401.2018.1543192] [PMID: 30669860]
[45]
Kim, S.W.; Ha, K.C.; Choi, E.K.; Jung, S.Y.; Kim, M.G.; Kwon, D.Y.; Yang, H.J.; Kim, M.J.; Kang, H.J.; Back, H.I.; Kim, S.Y.; Park, S.H.; Baek, H.Y.; Kim, Y.J.; Lee, J.Y.; Chae, S.W. The effectiveness of fermented turmeric powder in subjects with elevated alanine transaminase levels: a randomised controlled study. BMC Complement. Altern. Med., 2013, 13(1), 58.
[http://dx.doi.org/10.1186/1472-6882-13-58] [PMID: 23497020]
[46]
Al-Kahtani, M.; Morsy, K. Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats. Environ. Sci. Pollut. Res. Int., 2019, 26(31), 32189-32197.
[http://dx.doi.org/10.1007/s11356-019-06417-y] [PMID: 31494850]
[47]
Amin, K.A.; Hashem, K.S.; Alshehri, F.S.; Awad, S.T.; Hassan, M.S. Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol. Trace Elem. Res., 2017, 175(1), 136-145.
[http://dx.doi.org/10.1007/s12011-016-0748-6] [PMID: 27220627]
[48]
Ahmed, O.M.; Elkomy, M.H.; Fahim, H.I.; Ashour, M.B.; Naguib, I.A.; Alghamdi, B.S.; Mahmoud, H.U.R.; Ahmed, N.A. Rutin and quercetin counter doxorubicin-induced liver toxicity in wistar rats via their modulatory effects on inflammation, oxidative stress, apoptosis, and Nrf2. Oxid. Med. Cell. Longev., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/2710607] [PMID: 35936216]
[49]
Kassab, R.B.; Lokman, M.S.; Daabo, H.M.A.; Gaber, D.A.; Habotta, O.A.; Hafez, M.M.; Zhery, A.S.; Moneim, A.E.A.; Fouda, M.S. Ferulic acid influences Nrf2 activation to restore testicular tissue from cadmium-induced oxidative challenge, inflammation, and apoptosis in rats. J. Food Biochem., 2020, 44(12), e13505.
[http://dx.doi.org/10.1111/jfbc.13505] [PMID: 33047361]
[50]
Kassab, R.B.; Theyab, A.; Al-Ghamdy, A.O.; Algahtani, M.; Mufti, A.H.; Alsharif, K.F.; Abdella, E.M.; Habotta, O.A.; Omran, M.M.; Lokman, M.S.; Bauomy, A.A.; Albrakati, A.; Baty, R.S.; Hassan, K.E.; Alshiekheid, M.A.; Abdel Moneim, A.E.; Elmasry, H.A. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environ. Sci. Pollut. Res. Int., 2022, 29(8), 12208-12221.
[http://dx.doi.org/10.1007/s11356-021-16578-4] [PMID: 34562213]
[51]
Lokman, M.S.; Zaafar, D.; Althagafi, H.A.; Abdel Daim, M.M.; Theyab, A.; Hasan Mufti, A.; Algahtani, M.; Habotta, O.A.; Alghamdi, A.A.A.; Alsharif, K.F.; Albrakati, A.; Oyouni, A.A.A.; Bauomy, A.A.; Baty, R.S.; Zhery, A.S.; Hassan, K.E.; Abdel Moneim, A.E.; Kassab, R.B. Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries. J. Food Biochem., 2022, 46(2), e14070.
[http://dx.doi.org/10.1111/jfbc.14070] [PMID: 35034361]
[52]
Habotta, O.A.; Dawood, M.A.O.; Kari, Z.A.; Tapingkae, W.; Van Doan, H. Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish Shellfish Immunol., 2022, 130, 317-322.
[http://dx.doi.org/10.1016/j.fsi.2022.09.029] [PMID: 36122634]
[53]
Adeyemi, DO; Awoniran, PO Curcuma longa extracts suppress pathophysiology of experimental hepatic parenchymal cell necrosis. Pathophysiology, 2019, 26(2), 153-162.
[http://dx.doi.org/10.1016/j.pathophys.2019.04.002]
[54]
Lokman, MS; Althagafi, HA; Alharthi, F; Habotta, OA; Hassan, AA; Elhefny, MA Protective effect of quercetin against 5-fluorouracil-induced cardiac impairments through activating Nrf2 and inhibiting NF-κB and caspase-3 activities. Environ. Sci. Pollut. Res. Int., 2022, 30(7), 17657-17669.
[http://dx.doi.org/10.1007/s11356-022-23314-z]
[55]
El-Khadragy, M.F.; AL-Megrin, W.A.; Alomar, S.; Alkhuriji, A.F.; Metwally, D.M.; Mahgoub, S.; Amin, H.K.; Habotta, O.A.; Abdel Moneim, A.E.; Albeltagy, R.S. Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem. Biol. Interact., 2021, 333, 109333.
[http://dx.doi.org/10.1016/j.cbi.2020.109333] [PMID: 33242462]
[56]
Xu, C.; Qiao, L.; Ma, L.; Guo, Y.; Dou, X.; Yan, S.; Zhang, B.; Román, A. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int. J. Nanomedicine, 2019, 14, 4491-4502.
[http://dx.doi.org/10.2147/IJN.S199193] [PMID: 31417254]
[57]
Bagchi, A.K.; Malik, A.; Akolkar, G.; Jassal, D.S.; Singal, P.K. Endoplasmic reticulum stress promotes iNOS/NO and influences inflammation in the development of doxorubicin-induced cardiomyopathy. Antioxidants, 2021, 10(12), 1897.
[http://dx.doi.org/10.3390/antiox10121897] [PMID: 34943000]
[58]
Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhong, C. Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells. Biomed. Pharmacother., 2018, 97, 1538-1543.
[http://dx.doi.org/10.1016/j.biopha.2017.11.069] [PMID: 29793316]
[59]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28(8), 1765-1773.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[60]
Zarei, M.; Acharya, P.; Talahalli, R.R. Ginger and turmeric lipidsolubles attenuate heated oil-induced hepatic inflammation via the downregulation of NF-κB in rats. Life Sci., 2021, 265, 118856.
[http://dx.doi.org/10.1016/j.lfs.2020.118856] [PMID: 33278395]
[61]
Lee, H.Y.; Lee, G.H.; Hoang, T.H.; Kim, S.W.; Kang, C.G.; Jo, J.H.; Chung, M.J.; Min, K.; Chae, H.J. Turmeric extract (Curcuma longa L.) regulates hepatic toxicity in a single ethanol binge rat model. Heliyon, 2022, 8(9), e10737.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10737] [PMID: 36193527]
[62]
Alhusaini, A.; Fadda, L.; Hasan, I.H.; Zakaria, E.; Alenazi, A.M.; Mahmoud, A.M. Curcumin ameliorates lead-induced hepatotoxicity by suppressing oxidative stress and inflammation, and modulating Akt/GSK-3β signaling pathway. Biomolecules, 2019, 9(11), 703.
[http://dx.doi.org/10.3390/biom9110703] [PMID: 31694300]
[63]
Ge, J.; Guo, K.; Zhang, C.; Talukder, M.; Lv, M.W.; Li, J.Y.; Li, J.L. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci. Total Environ., 2021, 773, 145442.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145442] [PMID: 33940727]
[64]
Song, X.; Qiao, L.; Yan, S.; Chen, Y.; Dou, X.; Xu, C. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food Funct., 2021, 12(14), 6403-6415.
[http://dx.doi.org/10.1039/D1FO01019K] [PMID: 34057171]
[65]
Zhu, C.; Zhang, S.; Song, C.; Zhang, Y.; Ling, Q.; Hoffmann, P.R.; Li, J.; Chen, T.; Zheng, W.; Huang, Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J. Nanobiotechnology, 2017, 15(1), 20.
[http://dx.doi.org/10.1186/s12951-017-0252-y] [PMID: 28270147]
[66]
Wang, Z.H.; Chen, B.H.; Lin, Y.Y.; Xing, J.; Wei, Z.L.; Ren, L. Herbal decoction of Gastrodia, Uncaria, and Curcuma confers neuroprotection against cerebral ischemia in vitro and in vivo. J. Integr. Neurosci., 2020, 19(3), 513-519.
[http://dx.doi.org/10.31083/j.jin.2020.03.002] [PMID: 33070532]
[67]
Wu, X.; Huang, L.; Zhou, X.; Liu, J. Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice. Biochem. Biophys. Res. Commun., 2020, 530(1), 15-21.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.053] [PMID: 32828278]
[68]
Alsharif, KF; Albrakati, A; Al Omairi, NE; Almalki, AS; Alsanie, WF; Elmageed, ZYA Therapeutic antischizophrenic activity of prodigiosin and selenium co-supplementation against amphetamine hydrochloride-induced behavioural changes and oxidative, inflammatory, and apoptotic challenges in rats. Environ. Sci. Pollut. Res. Int., 2022, 30(3), 7987-8001.
[http://dx.doi.org/10.21203/rs.3.rs-1732868/v1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy