Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Anti-cancer Evaluation of Nitrogen-containing Derivatives of 30-Carboxyl of Gambogic Acid

Author(s): Hong Li, Huiping Lin, Jiajun Li, Kaixin Chen, Zanhong Chen, Jianye Zhang, Yan Huang, Xin Zhao, Huihui Ti* and Yiwen Tao*

Volume 24, Issue 6, 2024

Published on: 09 January, 2024

Page: [454 - 463] Pages: 10

DOI: 10.2174/0118715206279725231208065031

Price: $65

Abstract

Background: Gambogic acid (GA) is a natural product from the resin of the Garcinia species, which showed significant activity in the induction of apoptosis. t can be one promising lead compound for the design and synthesis of new anticancer drugs.

Objective: The objective of the current study is to design novel nitrogen-contained GA derivatives with better anti-cancer activities and study the effect of the introduction of different nitrogen-contained groups on the activity of GA.

Methods: The designed 15 derivatives were synthesized via esterification or amidation of 30-carboxylate. The synthetic compounds were characterized via different spectroscopic techniques, including X-ray single crystal diffraction, MS and NMR. The cytotoxic activity of the designed derivatives was evaluated in vitro against A549, HepG-2, and MCF-7 cell lines using methyl thiazolyl tetrazolium (MTT) test.

Results: 15 nitrogen-contained GA derivatives were successfully synthesized and established. Based on the IC50 values, compounds 9, 10, 11 and 13 showed stronger inhibitory effects on A549, HepG-2, MCF-7 cell lines than GA, while 9 is the most active compound with IC50 value of 0.64-1.49 μM. Most derivatives of GA with esterification of C-30 including cyano-benzene ring were generally weaker than those of pyrimidinyl-substituted derivatives. In addition, length of alkyl linkers between C-30 of GA and nitrogen-contained group produced different effects on A549, HepG-2 and MCF-7 cell lines.

Conclusion: The structure-activity relationship results show that aromatic substituent and linker length play important roles to improve the anticancer activities, while compound 9 with pyrimidine substituent and C-C-C linkers is the most active derivative against tested cell lines, and is a promising anti-cancer agent for further development.

Graphical Abstract

[1]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[2]
Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; Kunnumakkara, A.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett., 2018, 416, 75-86.
[http://dx.doi.org/10.1016/j.canlet.2017.12.014] [PMID: 29246645]
[3]
Liang, L.; Zhang, Z.; Qin, X.; Gao, Y.; Zhao, P.; Liu, J.; Zeng, W. Gambogic acid inhibits melanoma through regulation of miR-199a-3p/ZEB1 signalling. Basic Clin. Pharmacol. Toxicol., 2018, 123(6), 692-703.
[http://dx.doi.org/10.1111/bcpt.13090] [PMID: 29959879]
[4]
Lyu, L.; Huang, L.; Huang, T.; Xiang, W.; Yuan, J.D.; Zhang, C. Cell-penetrating peptide conjugates of gambogic acid enhance the antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Des. Devel. Ther., 2018, 12, 743-756.
[http://dx.doi.org/10.2147/DDDT.S161821] [PMID: 29670331]
[5]
Xia, G.; Wang, H.; Song, Z.; Meng, Q.; Huang, X.; Huang, X. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). J. Exp. Clin. Cancer Res., 2017, 36(1), 107.
[http://dx.doi.org/10.1186/s13046-017-0579-0] [PMID: 28797284]
[6]
Wen, C.; Huang, L.; Chen, J.; Lin, M.; Li, W.; Lu, B.; Rutnam, Z.J.; Iwamoto, A.; Wang, Z.; Yang, X.; Liu, H. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int. J. Oncol., 2015, 47(5), 1663-1671.
[http://dx.doi.org/10.3892/ijo.2015.3166] [PMID: 26397804]
[7]
Li, C.; Qi, Q.; Lu, N.; Dai, Q.; Li, F.; Wang, X.; You, Q.; Guo, Q. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem. Cell Biol., 2012, 90(6), 718-730.
[8]
Geng, J.; Xiao, S.; Zheng, Z.; Song, S.; Zhang, L. Gambogic acid protects from endotoxin shock by suppressing pro-inflammatory factors in vivo and in vitro. J. Inflamm. Res., 2013, 62(2), 165-172.
[9]
Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; Zhang, H.; Ma, X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol., 2019, 371, 63-73.
[http://dx.doi.org/10.1016/j.taap.2019.03.028] [PMID: 30953615]
[10]
Na, D.; Aijie, H.; Bo, L.; Zhilin, M.; Long, Y. Gambogic acid exerts cardioprotective effects in a rat model of acute myocardial infarction through inhibition of inflammation, iNOS and NF-κB/p38 pathway. Exp. Ther. Med., 2018, 15(2), 1742-1748.
[PMID: 29434760]
[11]
Zhang, W.; Zhou, H.; Yu, Y.; Li, J.; Li, H.; Jiang, D.; Chen, Z.; Yang, D.; Xu, Z.; Yu, Z. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. OncoTargets Ther., 2016, 9, 3359-3368.
[http://dx.doi.org/10.2147/OTT.S100936] [PMID: 27330316]
[12]
Li, D.; Yang, H.; Li, R.; Wang, Y.; Wang, W.; Li, D.; Ma, S.; Zhang, X. Antitumor activity of gambogic acid on NCI-H1993 xenografts via MET signaling pathway downregulation. Oncol. Lett., 2015, 10(5), 2802-2806.
[http://dx.doi.org/10.3892/ol.2015.3719] [PMID: 26722245]
[13]
Liu, W.Y.; Wu, X.; Liao, C.Q.; Shen, J.; Li, J. Apoptotic effect of gambogic acid in esophageal squamous cell carcinoma cells via suppression of the NF-κB pathway. Oncol. Lett., 2016, 11(6), 3681-3685.
[http://dx.doi.org/10.3892/ol.2016.4437] [PMID: 27284372]
[14]
Jang, J.H.; Kim, J.Y.; Sung, E.G.; Kim, E.A.; Lee, T.J. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells. Int. J. Oncol., 2016, 48(1), 376-384.
[http://dx.doi.org/10.3892/ijo.2015.3249] [PMID: 26648023]
[15]
Wang, L-H.; Li, Y.; Yang, S-N.; Wang, F-Y.; Hou, Y.; Cui, W.; Chen, K.; Cao, Q.; Wang, S.; Zhang, T-Y.; Wang, Z-Z.; Xiao, W.; Yang, J-Y.; Wu, C-F. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br. J. Cancer, 2014, 110(2), 341-352.
[http://dx.doi.org/10.1038/bjc.2013.752] [PMID: 24300974]
[16]
Chen, Y.; Hui, H.; Li, Z.; Wang, H.M.; You, Q.D.; Lu, N. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells. J. Asian Nat. Prod. Res., 2014, 16(10), 1000-1008.
[http://dx.doi.org/10.1080/10286020.2014.918108] [PMID: 24835506]
[17]
Liang, L.; Zhang, Z. Gambogic acid inhibits malignant melanoma cell proliferation through mitochondrial p66shc/ROS-p53/Baxmediated apoptosis. Cell. Physiol. Biochem., 2016, 38(4), 1618-1630.
[18]
Sun, H.; Chen, F.; Wang, X.; Liu, Z.; Yang, Q.; Zhang, X.; Zhu, J.; Qiang, L.; Guo, Q.; You, Q. Studies on gambogic acid (IV): Exploring structure–activity relationship with IκB kinase-beta (IKKβ). Eur. J. Med. Chem., 2012, 51, 110-123.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.029] [PMID: 22472167]
[19]
Wang, X.; Lu, N.; Yang, Q.; Gong, D.; Lin, C.; Zhang, S.; Xi, M.; Gao, Y.; Wei, L.; Guo, Q.; You, Q. Studies on chemical modification and biology of a natural product, gambogic acid (III): Determination of the essential pharmacophore for biological activity. Eur. J. Med. Chem., 2011, 46(4), 1280-1290.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.051] [PMID: 21334116]
[20]
Wang, J.; Ma, J.; You, Q.; Zhao, L.; Wang, F.; Li, C.; Guo, Q. Studies on chemical modification and biology of a natural product, gambogic acid (II): Synthesis and bioevaluation of gambogellic acid and its derivatives from gambogic acid as antitumor agents. Eur. J. Med. Chem., 2010, 45(9), 4343-4353.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.037] [PMID: 20605273]
[21]
Wang, J.; Zhao, L.; Hu, Y.; Guo, Q.; Zhang, L.; Wang, X.; Li, N.; You, Q. Studies on chemical structure modification and biology of a natural product, Gambogic acid (I): Synthesis and biological evaluation of oxidized analogues of gambogic acid. Eur. J. Med. Chem., 2009, 44(6), 2611-2620.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.034] [PMID: 18996626]
[22]
Chantarasriwong, O.; Cho, W.C.; Batova, A.; Chavasiri, W.; Moore, C.; Rheingold, A.L.; Theodorakis, E.A. Evaluation of the pharmacophoric motif of the caged Garcinia xanthones. Org. Biomol. Chem., 2009, 7(23), 4886-4894.
[http://dx.doi.org/10.1039/b913496d] [PMID: 19907779]
[23]
Li, N.G.; You, Q.D.; Huang, X.F.; Wang, J.X.; Guo, Q.L.; Chen, X.G.; Li, Y.; Li, H.Y. Synthesis and antitumor activities of structure-related small molecular compounds of gambogic acid. Chin. Chem. Lett., 2007, 18(6), 659-662.
[http://dx.doi.org/10.1016/j.cclet.2007.04.010]
[24]
Palempalli, U.D.; Gandhi, U.; Kalantari, P.; Vunta, H.; Arner, R.J.; Narayan, V.; Ravindran, A.; Prabhu, K.S. Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages. Biochem. J., 2009, 419(2), 401-409.
[http://dx.doi.org/10.1042/BJ20081482] [PMID: 19140805]
[25]
He, L.; Ling, Y.; Fu, L.; Yin, D.; Wang, X.; Zhang, Y. Synthesis and biological evaluation of novel derivatives of gambogic acid as anti-hepatocellular carcinoma agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.016] [PMID: 22153338]
[26]
Batova, A.; Lam, T.; Wascholowski, V.; Yu, A.L.; Giannis, A.; Theodorakis, E.A. Synthesis and evaluation of caged Garcinia xanthones. Org. Biomol. Chem., 2007, 5(3), 494-500.
[http://dx.doi.org/10.1039/B612903J] [PMID: 17252132]
[27]
Chen, M.J.; Li, J.H.; Zhang, Z.J.; Liao, S.Y.; Huang, Y.; Tan, Y. Synthesis and antitumor activity of cyanamide glycosyl derivatives chinese. J. Appl. Chem., 2016, 33(8), 905-912.
[28]
Zhang, Z.J.; Li, J.H.; Chen, M.J.; Huang, Y.; Zhao, L.N. Preparation and antitumor activity of novel aromatic modified glutamic acid derivatives. Chinese J. Synthetic Chem., 2015, 12, 1085-1094.
[29]
Li, J.H.; Huang, Y.; Tan, Y.; Zhang, Z.J.; Tao, Y.W.; Liao, S.Y. Synthesis and antitumor activity of novel gambogic acid derivatives. Chinese J. Synthetic Chem., 2014, 22(6), 753-758.
[30]
Hitge, R.; Smit, S.; Petzer, A.; Petzer, J.P. Evaluation of nitrocatechol chalcone and pyrazoline derivatives as inhibitors of catechol-O-methyltransferase and monoamine oxidase. Bioorg. Med. Chem. Lett., 2020, 30(12), 127188.
[http://dx.doi.org/10.1016/j.bmcl.2020.127188] [PMID: 32299731]
[31]
Zhang, X.; Li, X.; Sun, H.; Wang, X.; Zhao, L.; Gao, Y.; Liu, X.; Zhang, S.; Wang, Y.; Yang, Y.; Zeng, S.; Guo, Q.; You, Q. Garcinia xanthones as orally active antitumor agents. J. Med. Chem., 2013, 56(1), 276-292.
[http://dx.doi.org/10.1021/jm301593r] [PMID: 23167526]
[32]
Ling, H.; Li, H.; Chen, M.; Lai, B.; Zhou, H.; Gao, H.; Zhang, J.; Huang, Y.; Tao, Y. Discovery of a highly potent and novel gambogic acid derivative as an anticancer drug candidate. Anticancer. Agents Med. Chem., 2021, 21(9), 1110-1119.
[http://dx.doi.org/10.2174/1871520620666200408080040] [PMID: 32268871]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy