Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cryptolepine Analog Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma Cells in Mice via Targeting Cell Growth, Oxidative Stress, and PTEN/Akt/mTOR Signaling Pathway

Author(s): Bishoy El-Aarag*, Eman S. Shalaan, Abdullah A.S. Ahmed, Ibrahim El Tantawy El Sayed* and Wafaa M. Ibrahim

Volume 24, Issue 6, 2024

Published on: 04 January, 2024

Page: [436 - 442] Pages: 7

DOI: 10.2174/0118715206274318231128072821

Price: $65

Abstract

Background: The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative.

Objective: The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice.

Methods: The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined.

Results: Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs.

Conclusion: Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.

Graphical Abstract

[1]
Zhou, L.; Li, M.; Chai, Z.; Zhang, J.; Cao, K.; Deng, L.; Liu, Y.; Jiao, C.; Zou, G-M.; Wu, J.; Han, F. Anticancer effects and mechanisms of astragaloside-IV (Review). Oncol. Rep., 2023, 49(1), 1-15.
[PMID: 36367181]
[2]
Osafo, N.; Mensah, K. B.; Yeboah, O. K. Phytochemical and pharmacological review of Cryptolepis sanguinolenta (Lindl.) Schlechter. Adv. Pharmacol. Sci., 2017, 2017.
[3]
Olajide, O.A.; Ajayi, A.M.; Wright, C.W. Anti-inflammatory properties of cryptolepine. Phytother. Res., 2009, 23(10), 1421-1425.
[http://dx.doi.org/10.1002/ptr.2794] [PMID: 19288476]
[4]
Olajide, O.A.; Bhatia, H.S.; de Oliveira, A.C.P.; Wright, C.W.; Fiebich, B.L. Anti-neuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: Possible involvement of NF-κB and p38 MAPK inhibition. Eur. J. Med. Chem., 2013, 63, 333-339.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.004] [PMID: 23507189]
[5]
Bugyei, K.A.; Boye, G.L.; Addy, M.E. Clinical efficacy of a teabag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana Med. J., 2010, 44(1), 3-9.
[PMID: 21326984]
[6]
Tudu, C.K.; Bandyopadhyay, A.; Kumar, M.; Radha,; Das, T.; Nandy, S.; Ghorai, M.; Gopalakrishnan, A.V.; Proćków, J.; Dey, A. Unravelling the pharmacological properties of cryptolepine and its derivatives: A mini-review insight. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(2), 229-238.
[http://dx.doi.org/10.1007/s00210-022-02302-7] [PMID: 36251044]
[7]
Pal, H.; Katiyar, S. Cryptolepine, a plant alkaloid, inhibits the growth of non-melanoma skin cancer cells through inhibition of topoisomerase and induction of DNA damage. Molecules, 2016, 21(12), 1758.
[http://dx.doi.org/10.3390/molecules21121758] [PMID: 28009843]
[8]
Pal, H.C.; Prasad, R.; Katiyar, S.K. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1. Sci. Rep., 2017, 7(1), 1498.
[http://dx.doi.org/10.1038/s41598-017-01659-7] [PMID: 28473727]
[9]
Zhu, H.; Gooderham, N.J. Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Toxicol. Sci., 2006, 91(1), 132-139.
[http://dx.doi.org/10.1093/toxsci/kfj146] [PMID: 16510557]
[10]
Lisgarten, J.N.; Coll, M.; Portugal, J.; Wright, C.W.; Aymami, J. The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat. Struct. Biol., 2002, 9(1), 57-60.
[http://dx.doi.org/10.1038/nsb729] [PMID: 11731803]
[11]
(a) Nagy, E.T.; Ahmed, A.A.S.; Elmongy, E.I. ; EL-Gendy, S.M.; Elmadbouh, I.; El Sayed, I.E.T.; Abd Eldaim, M.A.; El-Gokha, A.A. Design and cytotoxic evaluation via apoptotic and antiproliferative activity for novel 11(4-aminophenylamino)neocryptolepine on hepatocellular and colorectal cancer cells. Apoptosis, 2023, 28(3-4), 653-668. 653-668.
[http://dx.doi.org/10.1007/s10495-023-01810-y] [PMID: 36719468];
(b) Wang, N.; Świtalska, M.; Wang, L.; Shaban, E.; Hossain, M.I.; El Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity. Molecules, 2019, 24(11), 2121.
[http://dx.doi.org/10.3390/molecules24112121] [PMID: 31195640];
(c) Lu, W.J.; Świtalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E.T.; Wietrzyk, J.; Inokuchi, T. In vitro antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo[2,3-b]quinolines; improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res., 2013, 22(9), 4492-4504.
[http://dx.doi.org/10.1007/s00044-012-0443-x];
(d) Sebeka, A.H.; Osman, A.M.; El Sayed, I.E.; El-Bahanasawy, M.; Tantawy, M.A. Synthesis and antiproliferative activity of novel neocryptolepine-hydrazides hybrids. J. Appl. Pharm. Sci., 2017, 7, 9-15.
[12]
Beck, J.T.; Ismail, A.; Tolomeo, C. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat. Rev., 2014, 40(8), 980-989.
[http://dx.doi.org/10.1016/j.ctrv.2014.06.006] [PMID: 25037117]
[13]
Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev., 2021, 101(3), 1371-1426.
[http://dx.doi.org/10.1152/physrev.00026.2020] [PMID: 33599151]
[14]
Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci., 2020, 10(1), 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[15]
Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front. Immunol., 2022, 12, 774103.
[http://dx.doi.org/10.3389/fimmu.2021.774103] [PMID: 35250965]
[16]
Hua, H.; Zhang, H.; Chen, J.; Wang, J.; Liu, J.; Jiang, Y. Targeting Akt in cancer for precision therapy. J. Hematol. Oncol., 2021, 14(1), 128.
[http://dx.doi.org/10.1186/s13045-021-01137-8] [PMID: 34419139]
[17]
He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther., 2021, 6(1), 425.
[http://dx.doi.org/10.1038/s41392-021-00828-5] [PMID: 34916492]
[18]
Raith, F.; O’Donovan, D.H.; Lemos, C.; Politz, O.; Haendler, B. Addressing the reciprocal crosstalk between the AR and the PI3K/AKT/mTOR Signaling pathways for prostate cancer treatment. Int. J. Mol. Sci., 2023, 24(3), 2289.
[http://dx.doi.org/10.3390/ijms24032289] [PMID: 36768610]
[19]
He, T.; Zhang, X.; Hao, J.; Ding, S. Phosphatase and tensin homolog in non-neoplastic digestive disease: More than just tumor suppressor. Front. Physiol., 2021, 12, 684529.
[http://dx.doi.org/10.3389/fphys.2021.684529] [PMID: 34140896]
[20]
Koita, M.; Sosse, S.A.; Abumsimir, B.; Mahasneh, I.A.; Mrabti, M.; Laraqui, A.; Ennaji, M.M. Dramatic impact of partial loss of PTEN function on tumorigenesis and progression of prostate cancer. In: Immunological Implications and Molecular Diagnostics of Genitourinary Cancer; Academic Press, 2023; p. 339.
[http://dx.doi.org/10.1016/B978-0-323-85496-2.00015-4]
[21]
Tummers, B.; Green, D.R. Caspase‐8: Regulating life and death. Immunol. Rev., 2017, 277(1), 76-89.
[http://dx.doi.org/10.1111/imr.12541] [PMID: 28462525]
[22]
Fianco, G.; Contadini, C.; Ferri, A.; Cirotti, C.; Stagni, V.; Barilà, D. Caspase-8: A novel target to overcome resistance to chemotherapy in glioblastoma. Int. J. Mol. Sci., 2018, 19(12), 3798.
[http://dx.doi.org/10.3390/ijms19123798] [PMID: 30501030]
[23]
Guirgis, A.A.; Zahran, M.A.H.; Mohamed, A.S.; Talaat, R.M.; Abdou, B.Y.; Agwa, H.S. Effect of thalidomide dithiocarbamate analogs on the intercellular adhesion molecule-1 expression. Int. Immunopharmacol., 2010, 10(7), 806-811.
[http://dx.doi.org/10.1016/j.intimp.2010.04.023] [PMID: 20438868]
[24]
El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; Seno, M. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol., 2014, 21(2), 283-292.
[http://dx.doi.org/10.1016/j.intimp.2014.05.007] [PMID: 24859059]
[25]
El-Aarag, B.; Kasai, T.; Masuda, J.; Agwa, H.; Zahran, M.; Seno, M. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2. Biomed. Pharmacother., 2017, 85, 549-555.
[http://dx.doi.org/10.1016/j.biopha.2016.11.063] [PMID: 27889230]
[26]
Zahran, M.A.H.; El-Aarag, B.; Mehany, A.B.M.; Belal, A.; Younes, A.S. Design, synthesis, biological evaluations, molecular docking, and in vivo studies of novel phthalimide analogs. Arch. Pharm., 2018, 351(5), 1700363.
[http://dx.doi.org/10.1002/ardp.201700363] [PMID: 29611624]
[27]
El-Saied, F.; El-Aarag, B.; Salem, T.; Said, G.; Khalifa, S.A.M.; El-Seedi, H.R. Synthesis, characterization, and in vivo anti-cancer activity of new metal complexes derived from isatin-N (4) antipyrinethiosemicarbazone ligand against ehrlich ascites carcinoma cells. Molecules, 2019, 24(18), 3313.
[http://dx.doi.org/10.3390/molecules24183313] [PMID: 31514445]
[28]
El-Aarag, B.; El-Saied, F.; Salem, T.; Khedr, N.; Khalifa, S.A.M.; El-Seedi, H.R. New metal complexes derived from diacetylmonoxime-n(4)antipyrinylthiosemicarbazone: Synthesis, characterization and evaluation of antitumor activity against Ehrlich solid tumors induced in mice. Arab. J. Chem., 2021, 14(3), 102993.
[http://dx.doi.org/10.1016/j.arabjc.2021.102993]
[29]
El-Aarag, B.; Attia, A.; Zahran, M.; Younes, A.; Tousson, E. New phthalimide analog ameliorates CCl4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis. Saudi J. Biol. Sci., 2021, 28(11), 6384-6395.
[http://dx.doi.org/10.1016/j.sjbs.2021.07.014] [PMID: 34764756]
[30]
El-Aarag, B.; El-Tahan, E.; Zahran, M. New thalidomide derivative with an anti-migrative and anti-proliferative effects on lewis lung carcinoma cell. Egypt. J. Chem., 2022, 65(8), 309-316.
[http://dx.doi.org/10.21608/ejchem.2022.109507.4997]
[31]
Mante, P.K.; Adomako, N.O.; Antwi, P.; Kusi-Boadum, N.K. Chronic administration of cryptolepine nanoparticle formulation alleviates seizures in a neurocysticercosis model. Curr. Res. Pharmacol. Drug Discover., 2021, 2, 100040.
[http://dx.doi.org/10.1016/j.crphar.2021.100040] [PMID: 34909669]
[32]
Aston, W.J.; Hope, D.E.; Nowak, A.K.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J. A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer, 2017, 17(1), 684.
[http://dx.doi.org/10.1186/s12885-017-3677-7] [PMID: 29037232]
[33]
Lahouel, M.; Boulkour, S.; Segueni, N.; Fillastre, J.P. Protective effect of flavonoides against the toxicity of vinblastine, cyclophoshamide and paracetamol by inhibition of lipidperoxydation and increase of liver glutathione. Haema, 2004, 7, 59-67.
[34]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[35]
Xu, J.; Yuan, X.; Lang, P. Determination of catalase activity and catalase inhibition by ultraviolet spectrophotometry. Chin. Environ. Chem, 1997, 16, e76.
[36]
Forkuo, A.D.; Ansah, C.; Boadu, K.M.; Boampong, J.N.; Ameyaw, E.O.; Gyan, B.A.; Arku, A.T.; Ofori, M.F. Synergistic anti-malarial action of cryptolepine and artemisinins. Malar. J., 2016, 15, 1-12.
[37]
Abacha, Y.Z.; Forkuo, A.D.; Gbedema, S.Y.; Mittal, N.; Ottilie, S.; Rocamora, F.; Winzeler, E.A.; van Schalkwyk, D.A.; Kelly, J.M.; Taylor, M.C.; Reader, J.; Birkholtz, L.M.; Lisgarten, D.R.; Cockcroft, J.K.; Lisgarten, J.N.; Palmer, R.A.; Talbert, R.C.; Shnyder, S.D.; Wright, C.W. Semi-synthetic analogues of cryptolepine as a potential source of sustainable drugs for the treatment of malaria, human african trypanosomiasis, and cancer. Front. Pharmacol., 2022, 13, 875647.
[http://dx.doi.org/10.3389/fphar.2022.875647] [PMID: 35600849]
[38]
Domfeh, S.A.; Narkwa, P.W.; Quaye, O.; Kusi, K.A.; Awandare, G.A.; Ansah, C.; Salam, A.; Mutocheluh, M. Cryptolepine inhibits hepatocellular carcinoma growth through inhibiting interleukin-6/STAT3 signalling. BMC Complemen. Med. Therap., 2021, 21, 161.
[39]
Rašić, I.; Rašić, A.; Akšamija, G.; Radović, S. The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin. Croat., 2018, 57(3), 411-416.
[PMID: 31168172]
[40]
Lorenzo, E.; Ruiz-Ruiz, C.; Quesada, A.J.; Hernández, G.; Rodríguez, A.; López-Rivas, A.; Redondo, J.M. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J. Biol. Chem., 2002, 277(13), 10883-10892.
[http://dx.doi.org/10.1074/jbc.M107442200] [PMID: 11779855]
[41]
Kleszczyński, K.; Ernst, I.M.A.; Wagner, A.E.; Kruse, N.; Zillikens, D.; Rimbach, G.; Fischer, T.W. Sulforaphane and phenylethyl isothiocyanate protect human skin against UVR-induced oxidative stress and apoptosis: Role of Nrf2-dependent gene expression and antioxidant enzymes. Pharmacol. Res., 2013, 78, 28-40.
[http://dx.doi.org/10.1016/j.phrs.2013.09.009] [PMID: 24121007]
[42]
Galluzzi, L.; López-Soto, A.; Kumar, S.; Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity, 2016, 44(2), 221-231.
[http://dx.doi.org/10.1016/j.immuni.2016.01.020] [PMID: 26885855]
[43]
Russo, M.; Guida, F.; Paparo, L.; Trinchese, G.; Aitoro, R.; Avagliano, C.; Fiordelisi, A.; Napolitano, F.; Mercurio, V.; Sala, V.; Li, M.; Sorriento, D.; Ciccarelli, M.; Ghigo, A.; Hirsch, E.; Bianco, R.; Iaccarino, G.; Abete, P.; Bonaduce, D.; Calignano, A.; Berni Canani, R.; Tocchetti, C.G. The novel butyrate derivative phenylalanine‐butyramide protects from doxorubicin‐induced cardiotoxicity. Eur. J. Heart Fail., 2019, 21(4), 519-528.
[http://dx.doi.org/10.1002/ejhf.1439] [PMID: 30843309]
[44]
Jia, M.; Chen, X.; Liu, J.; Chen, J. PTEN promotes apoptosis of H2O2-injured rat nasal epithelial cells through PI3K/Akt and other pathways. Mol. Med. Rep., 2018, 17(1), 571-579.
[PMID: 29115519]
[45]
Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers, 2021, 13(16), 3949.
[http://dx.doi.org/10.3390/cancers13163949] [PMID: 34439105]
[46]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[47]
Geng, H.; Feng, C.; Sun, Z.; Fan, X.; Xie, Y.; Gu, J.; Fan, L.; Liu, G.; Li, C.; Thorne, R.F.; Zhang, X.D.; Li, X.; Liu, X. Chloride intracellular channel 1 promotes esophageal squamous cell carcinoma proliferation via mTOR signalling. Transl. Oncol., 2023, 27, 101560.
[http://dx.doi.org/10.1016/j.tranon.2022.101560] [PMID: 36252281]
[48]
Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 2020, 11(9), 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[49]
Dan, H.C.; Ebbs, A.; Pasparakis, M.; Van Dyke, T.; Basseres, D.S.; Baldwin, A.S. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem., 2014, 289(36), 25227-25240.
[http://dx.doi.org/10.1074/jbc.M114.554881] [PMID: 24990947]
[50]
Cerma, K.; Piacentini, F.; Moscetti, L.; Barbolini, M.; Canino, F.; Tornincasa, A.; Caggia, F.; Cerri, S.; Molinaro, A.; Dominici, M.; Omarini, C. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges. Biomedicines, 2023, 11(1), 109.
[http://dx.doi.org/10.3390/biomedicines11010109] [PMID: 36672617]
[51]
Liu, T.; Wang, Y.; Wang, Y.; Chan, A.M. Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers, 2019, 11(9), 1247.
[http://dx.doi.org/10.3390/cancers11091247] [PMID: 31454965]
[52]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[53]
Wen, C.; Wang, H.; Wu, X.; He, L.; Zhou, Q.; Wang, F.; Chen, S.; Huang, L.; Chen, J.; Wang, H.; Ye, W.; Li, W.; Yang, X.; Liu, H.; Peng, J. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis., 2019, 10(11), 809.
[http://dx.doi.org/10.1038/s41419-019-2035-x] [PMID: 31649256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy