Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Transcriptome Sequencing of Gingival Tissues from Impacted Third Molars Patients Reveals the Alterations of Gene Expression

Author(s): Haolin Zhou, Nanqing Fu, Yuan Tian, Nini Zhang, Qin Fan, Fengjiao Zeng, Yueyue Wang, Guohui Bai* and Bin Chen*

Volume 27, Issue 16, 2024

Published on: 04 January, 2024

Page: [2350 - 2365] Pages: 16

DOI: 10.2174/0113862073256803231114095626

Price: $65

Abstract

Objective: The removal of impacted third molars by surgery may occur with a series of complications, whereas limited information about the postoperative pathogenesis is available. The objective of this study is to identify changes in gene expression after flap surgical removal of impacted third molars and provide potential information to reduce postoperative complications.

Methods: The gingival tissues of twenty patients with flap surgical removal of impacted third molars and twenty healthy volunteers were collected for gene expression testing. The collected gingival tissues were used RNA sequencing technology and quantitative real-time PCR validation was performed. DEG was mapped to protein databases such as GO and KEGG for functional annotation and, based on annotation information, for mining of differential expression genes in patients with mpacted third molars.

Results: A total of 555 genes were differentially expressed. Among the top up-regulated genes, HLA-DRB4, CCL20, and CXCL8 were strongly associated with immune response and signal transduction. Among the top down-regulated genes, SPRR2B, CLDN17, LCE3D and LCE3E were related to keratinocyte differentiation, IFITM5, and BGLAP were related to bone mineralization, UGT2B17 is associated with susceptibility to osteoporosis. KEGG results showed that the DEGs were related to multiple disease-related pathways.

Conclusion: This first transcriptome analysis of gingival tissues from patients with surgical removal of impacted third molars provides new insights into postoperative genetic changes. The results may establish a basis for future research on minimizing the incidence of complications after flap-treated third molars.

Graphical Abstract

[1]
Ghaeminia, H.; Perry, J.; Nienhuijs, M.E.L.; Toedtling, V.; Tummers, M.; Hoppenreijs, T.J.M.; Van der Sanden, W.J.M.; Mettes, T.G. Surgical removal versus retention for the management of asymptomatic disease-free impacted wisdom teeth. Cochrane Libr., 2016, 8(8), CD003879.
[http://dx.doi.org/10.1002/14651858.CD003879.pub4] [PMID: 27578151]
[2]
Hounsome, J.; Pilkington, G.; Mahon, J.; Boland, A.; Beale, S.; Kotas, E.; Renton, T.; Dickson, R. Prophylactic removal of impacted mandibular third molars: A systematic review and economic evaluation. Health Technol. Assess., 2020, 24(30), 1-116.
[http://dx.doi.org/10.3310/hta24300] [PMID: 32589125]
[3]
Dodson, T.B. Management of asymptomatic wisdom teeth. J. Mass. Dent. Soc., 2012, 55(4), 122-126.
[http://dx.doi.org/10.1016/B978-1-4160-2527-6.00013-X] [PMID: 17338459]
[4]
De Bruyn, L.; Vranckx, M.; Jacobs, R.; Politis, C. A retrospective cohort study on reasons to retain third molars. Int. J. Oral Maxillofac. Surg., 2020, 49(6), 816-821.
[http://dx.doi.org/10.1016/j.ijom.2019.10.003] [PMID: 31703978]
[5]
Kim, S.J.; Hwang, C.J.; Park, J.H.; Kim, H.J.; Yu, H.S. Surgical removal of asymptomatic impacted third molars: Considerations for orthodontists and oral surgeons. Semin. Orthod., 2016, 22(1), 75-83.
[http://dx.doi.org/10.1053/j.sodo.2015.10.010]
[6]
Ahmad, N.; Gelesko, S.; Shugars, D.; White, R.P., Jr; Blakey, G.; Haug, R.H.; Offenbacher, S.; Phillips, C. Caries experience and periodontal pathology in erupting third molars. J. Oral Maxillofac. Surg., 2008, 66(5), 948-953.
[http://dx.doi.org/10.1016/j.joms.2007.11.013] [PMID: 18423285]
[7]
Nunn, M.E.; Fish, M.D.; Garcia, R.I.; Kaye, E.K.; Figueroa, R.; Gohel, A.; Ito, M.; Lee, H.J.; Williams, D.E.; Miyamoto, T. Retained asymptomatic third molars and risk for second molar pathology. J. Dent. Res., 2013, 92(12), 1095-1099.
[http://dx.doi.org/10.1177/0022034513509281] [PMID: 24132082]
[8]
McArdle, L.W.; McDonald, F.; Jones, J. Distal cervical caries in the mandibular second molar: An indication for the prophylactic removal of third molar teeth? Update. Br. J. Oral Maxillofac. Surg., 2014, 52(2), 185-189.
[http://dx.doi.org/10.1016/j.bjoms.2013.11.007] [PMID: 24314915]
[9]
Katz, M.S.; Peters, F.; Elvers, D.; Winterhalder, P.; Kniha, K.; Möhlhenrich, S.C.; Hölzle, F.; Modabber, A. Effect of drain application on postoperative complaints after surgical removal of impacted wisdom teeth: A randomized observer-blinded split-mouth clinical trial. Clin. Oral Investig., 2021, 25(1), 345-353.
[http://dx.doi.org/10.1007/s00784-020-03464-5] [PMID: 32691298]
[10]
Deepti, C.; Rehan, H.S.; Mehra, P. Changes in quality of life after surgical removal of impacted mandibular third molar teeth. J. Maxillofac. Oral Surg., 2009, 8(3), 257-260.
[http://dx.doi.org/10.1007/s12663-009-0063-2] [PMID: 23139521]
[11]
Martin, M.V.; Kanatas, A.N.; Hardy, P. Antibiotic prophylaxis and third molar surgery. Br. Dent. J., 2005, 198(6), 327-330.
[http://dx.doi.org/10.1038/sj.bdj.4812170] [PMID: 15789086]
[12]
Dhanrajan, i P. J.; Jonaidel, O. Trismus: Aetiology, differential diagnosis and treatment. Dent, 2002, 2, 88-92-94.
[http://dx.doi.org/10.12968/denu.2002.29.2.88]
[13]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; Gocayne, J.D.; Amanatides, P.; Ballew, R.M.; Huson, D.H.; Wortman, J.R.; Zhang, Q.; Kodira, C.D.; Zheng, X.H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P.D.; Zhang, J.; Gabor Miklos, G.L.; Nelson, C.; Broder, S.; Clark, A.G.; Nadeau, J.; McKusick, V.A.; Zinder, N.; Levine, A.J.; Roberts, R.J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Francesco, V.D.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A.E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T.J.; Higgins, M.E.; Ji, R.R.; Ke, Z.; Ketchum, K.A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G.V.; Milshina, N.; Moore, H.M.; Naik, A.K.; Narayan, V.A.; Neelam, B.; Nusskern, D.; Rusch, D.B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z.Y.; Wang, A.; Wang, X.; Wang, J.; Wei, M.H.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S.C.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M.L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N.N.; Tse, S.; Vech, C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J.F.; Guigó, R.; Campbell, M.J.; Sjolander, K.V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.H.; Coyne, M.; Dahlke, C.; Mays, A.D.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X. The sequence of the human genome. Science, 2001, 291(5507), 1304-1351.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[14]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, N.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H-C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.R.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.A.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S-P.; Yeh, R-F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[15]
Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 2017, 14(9), 865-868.
[http://dx.doi.org/10.1038/nmeth.4380] [PMID: 28759029]
[16]
Ding, X.; Zhu, L.; Ji, T.; Zhang, X.; Wang, F.; Gan, S.; Zhao, M.; Yang, H. Long intergenic non-coding RNAs (LincRNAs) identified by RNA-seq in breast cancer. PLoS One, 2014, 9(8), e103270.
[http://dx.doi.org/10.1371/journal.pone.0103270] [PMID: 25084155]
[17]
Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 2011, 117(14), 3720-3732.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[18]
Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc., 2015, 11, 951-969.
[http://dx.doi.org/10.1101/pdb.top084970]
[19]
Kim, H.; Momen-Heravi, F.; Chen, S.; Hoffmann, P.; Kebschull, M.; Papapanou, P.N. Differential DNA methylation and MRNA transcription in gingival tissues in periodontal health and disease. J. Clin. Periodontol., 2021, 48(9), 1152-1164.
[http://dx.doi.org/10.1111/jcpe.13504] [PMID: 34101221]
[20]
Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer, 2021, 20(1), 15.
[http://dx.doi.org/10.1186/s12943-020-01305-3] [PMID: 33451333]
[21]
Wei, Z.; Gan, J.; Feng, X.; Zhang, M.; Chen, Z.; Zhao, H.; Du, Y. APOBEC3B is overexpressed in cervical cancer and promotes the proliferation of cervical cancer cells through apoptosis, cell cycle, and p53 pathway. Front. Oncol., 2022, 12, 864889.
[http://dx.doi.org/10.3389/fonc.2022.864889] [PMID: 36249021]
[22]
Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front. Immunol., 2021, 12, 612826.
[http://dx.doi.org/10.3389/fimmu.2021.612826] [PMID: 33841394]
[23]
Mushtaq, A.; Li, L.; A, A.; Grøndahl, L. Chitosan nanomedicine in cancer therapy: Targeted delivery and cellular uptake. Macromol. Biosci., 2021, 21(5), 2100005.
[http://dx.doi.org/10.1002/mabi.202100005] [PMID: 33738977]
[24]
Bamashmous, S.; Kotsakis, G.A.; Kerns, K.A.; Leroux, B.G.; Zenobia, C.; Chen, D.; Trivedi, H.M.; McLean, J.S.; Darveau, R.P. Human variation in gingival inflammation. Proc. Natl. Acad. Sci., 2021, 118(27), e2012578118.
[http://dx.doi.org/10.1073/pnas.2012578118] [PMID: 34193520]
[25]
Xiang, B.; Liu, Y.; Zhao, W.; Zhao, H.; Yu, H. Extracellular calcium regulates the adhesion and migration of osteoclasts via integrin α v β 3/Rho A/Cytoskeleton signaling. Cell Biol. Int., 2019, 43(10), 1125-1136.
[http://dx.doi.org/10.1002/cbin.11033] [PMID: 30022569]
[26]
Lee, J.W.; Cha, J.Y.; Park, K.H.; Kang, Y.G.; Kim, S.J. Effect of flapless osteoperforation-assisted tooth movement on atrophic alveolar ridge: Histomorphometric and gene-enrichment analysis. Angle Orthod., 2018, 88(1), 82-90.
[http://dx.doi.org/10.2319/061217-388.1] [PMID: 29016190]
[27]
Kreiborg, S.; Jensen, B.L. Tooth formation and eruption : Lessons learnt from cleidocranial dysplasia. Eur. J. Oral Sci., 2018, 126(S1)(1), 72-80.
[http://dx.doi.org/10.1111/eos.12418] [PMID: 30178560]
[28]
Jacome-Galarza, C.E.; Percin, G.I.; Muller, J.T.; Mass, E.; Lazarov, T.; Eitler, J.; Rauner, M.; Yadav, V.K.; Crozet, L.; Bohm, M.; Loyher, P.L.; Karsenty, G.; Waskow, C.; Geissmann, F. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568(7753), 541-545.
[http://dx.doi.org/10.1038/s41586-019-1105-7] [PMID: 30971820]
[29]
Silva, C.O.; Ribeiro, É.D.P.; Sallum, A.W.; Tatakis, D.N. Free gingival grafts: Graft shrinkage and donor-site healing in smokers and non-smokers. J. Periodontol., 2010, 81(5), 692-701.
[http://dx.doi.org/10.1902/jop.2010.090381] [PMID: 20429648]
[30]
Bairam, A.F.; Rasool, M.I.; Alherz, F.A.; Abunnaja, M.S.; El Daibani, A.A.; Gohal, S.A.; Kurogi, K.; Sakakibara, Y.; Suiko, M.; Liu, M.C. Sulfation of catecholamines and serotonin by SULT1A3 allozymes. Biochem. Pharmacol., 2018, 151, 104-113.
[http://dx.doi.org/10.1016/j.bcp.2018.03.005] [PMID: 29524394]
[31]
Liu, Y.; Wang, C.; Jin, Y.; Jiang, G.; He, L.; Liu, M. Backbone resonance assignments and dynamics of S. cerevisiae SERF. Biomol. NMR Assign., 2022, 16(2), 187-190.
[http://dx.doi.org/10.1007/s12104-022-10077-4] [PMID: 35713792]
[32]
Zhao, R.; Wang, S.; Tan, L.; Li, H.; Liu, J.; Zhang, S. IGFL2‐AS1 facilitates tongue squamous cell carcinoma progression via Wnt/β‐catenin signaling pathway. Oral Dis., 2023, 29(2), 469-482.
[http://dx.doi.org/10.1111/odi.13935] [PMID: 34085359]
[33]
Chaouch, L.; Sellami, H.; Kalai, M.; Darragi, I.; Boudrigua, I.; Chaouachi, D.; Abbes, S.; Mnif, S. New deletion at promoter of HBG1 gene in sickle cell disease patients with High HbF level. J. Pediatr. Hematol. Oncol., 2020, 42(1), 20-22.
[http://dx.doi.org/10.1097/MPH.0000000000001626] [PMID: 31688634]
[34]
Gur-Cohen, S.; Yang, H.; Baksh, S.C.; Miao, Y.; Levorse, J.; Kataru, R.P.; Liu, X.; de la Cruz-Racelis, J.; Mehrara, B.J.; Fuchs, E. Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366(6470), 1218-1225.
[http://dx.doi.org/10.1126/science.aay4509] [PMID: 31672914]
[35]
Silver, D.L.; Hou, L.; Somerville, R.; Young, M.E.; Apte, S.S.; Pavan, W.J. The secreted metalloprotease ADAMTS20 is required for melanoblast survival. PLoS Genet., 2008, 4(2), e1000003.
[http://dx.doi.org/10.1371/journal.pgen.1000003] [PMID: 18454205]
[36]
Randall, J.G.; Gatesy, J.; Springer, M.S. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Mol. Phylogenet. Evol., 2022, 171, 107463.
[http://dx.doi.org/10.1016/j.ympev.2022.107463] [PMID: 35358696]
[37]
Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol., 2014, 10(5), 593-619.
[http://dx.doi.org/10.1586/1744666X.2014.894886] [PMID: 24678812]
[38]
Luo, S.; Chen, G.; Truica, C.; Baird, C.C.; Leitzel, K.; Lazarus, P. Role of the UGT2B17 deletion in exemestane pharmacogenetics. Pharmacogenomics J., 2018, 18(2), 295-300.
[http://dx.doi.org/10.1038/tpj.2017.18] [PMID: 28534527]
[39]
Vo, P.T.D.; Choi, S.S.; Park, H.R.; Lee, A.; Jeong, S.H.; Choi, Y. Gene signatures associated with barrier dysfunction and infection in oral lichen planus identified by analysis of transcriptomic data. PLoS One, 2021, 16(9), e0257356.
[http://dx.doi.org/10.1371/journal.pone.0257356] [PMID: 34506598]
[40]
Shams, H.; Hollenbach, J.A.; Matsunaga, A.; Mofrad, M.R.K.; Oksenberg, J.R.; Didonna, A. A short HLA-DRA isoform binds the HLA-DR2 heterodimer on the outer domain of the peptide-binding site. Arch. Biochem. Biophys., 2022, 719, 109156.
[http://dx.doi.org/10.1016/j.abb.2022.109156] [PMID: 35218721]
[41]
Kim, S.W.; Hong, J.Y.; Jung, S.; Lee, J.; Park, Y. Identification of the novel HLA‐DRB4*01:162N allele using next‐generation sequencing. HLA, 2022, 100(6), 659-660.
[http://dx.doi.org/10.1111/tan.14791] [PMID: 36026610]
[42]
Wang, B.; Chen, D.; Hua, H. TBC1D3 family is a prognostic biomarker and correlates with immune infiltration in kidney renal clear cell carcinoma. Mol. Ther. Oncolytics, 2021, 22, 528-538.
[http://dx.doi.org/10.1016/j.omto.2021.06.014] [PMID: 34553038]
[43]
Xie, T.; Fu, D.; Li, Z.; Lv, D.; Song, X.L.; Yu, Y.; Wang, C.; Li, K.; Zhai, B.; Wu, J.; Feng, N.H.; Zhao, S.C. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer, 2022, 21(1), 173.
[http://dx.doi.org/10.1186/s12943-022-01630-9] [PMID: 36045408]
[44]
Blondeau, F.; Daniel, N.G. Extraction of impacted mandibular third molars: postoperative complications and their risk factors. J. Can. Dent. Assoc., 2007, 73(4), 325.
[PMID: 17484797]
[45]
Andrzej, K.; Jamka-Kasprzyk, M.; Panaś, M.; Grażyna, W-P. Analysis of complications after the removal of 339 third molars. Dent. Med. Probl., 2021, 58(1), 75-80.
[http://dx.doi.org/10.17219/dmp/127028] [PMID: 33789003]
[46]
Bouloux, G.F.; Steed, M.B.; Perciaccante, V.J. Complications of third molar surgery. Oral Maxillofac. Surg. Clin. North Am., 2007, 19(1), 117-128. [vii.]
[http://dx.doi.org/10.1016/j.coms.2006.11.013] [PMID: 18088870]
[47]
Martin, A.; Perinetti, G.; Costantinides, F.; Maglione, M. Coronectomy as a surgical approach to impacted mandibular third molars: A systematic review. Head Face Med., 2015, 11(1), 9.
[http://dx.doi.org/10.1186/s13005-015-0068-7] [PMID: 25890111]
[48]
Semkin, V.A.; Gurin, A.N.; Vitrenko, D.V.; Levchenko, D.D. Prevention of inflammatory complications after removal of third molars of the mandible. Stomatologia, 2022, 101(3), 38-43.
[http://dx.doi.org/10.17116/stomat202210103138] [PMID: 35640178]
[49]
Gutiérrez-Corrales, A.; Campano-Cuevas, E.; Castillo-Dalí, G.; Serrera-Figallo, M.Á.; Torres-Lagares, D.; Gutiérrez-Pérez, J.L. Relationship between salivary biomarkers and postoperative swelling after the extraction of impacted lower third molars. Int. J. Oral Maxillofac. Surg., 2017, 46(2), 243-249.
[http://dx.doi.org/10.1016/j.ijom.2016.10.005] [PMID: 27816275]
[50]
Bailey, E.; Kashbour, W.; Shah, N.; Worthington, H.V.; Renton, T.F.; Coulthard, P. Surgical techniques for the removal of mandibular wisdom teeth. Cochrane Libr., 2020, 2020(7), CD004345.
[http://dx.doi.org/10.1002/14651858.CD004345.pub3] [PMID: 32712962]
[51]
Yamada, S.; Hasegawa, T.; Yoshimura, N.; Hakoyama, Y.; Nitta, T.; Hirahara, N.; Miyamoto, H.; Yoshimura, H.; Ueda, N.; Yamamura, Y.; Okuyama, H.; Takizawa, A.; Nakanishi, Y.; Iwata, E.; Akita, D.; Itoh, R.; Kubo, K.; Kondo, S.; Hata, H.; Koyama, Y.; Miyamoto, Y.; Nakahara, H.; Akashi, M.; Kirita, T.; Shibuya, Y.; Umeda, M.; Kurita, H. Prevalence of and risk factors for postoperative complications after lower third molar extraction: A multicenter prospective observational study in Japan. Medicine, 2022, 101(32), e29989.
[http://dx.doi.org/10.1097/MD.0000000000029989] [PMID: 35960058]
[52]
Slovin, S.; Carissimo, A.; Panariello, F.; Grimaldi, A.; Bouché, V.; Gambardella, G.; Cacchiarelli, D. Single-Cell RNA sequencing analysis: A step-by-step overview. Methods Mol. Biol., 2021, 2284, 343-365.
[http://dx.doi.org/10.1007/978-1-0716-1307-8_19] [PMID: 33835452]
[53]
Li, X.; Wang, C.Y. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci., 2021, 13(1), 36.
[http://dx.doi.org/10.1038/s41368-021-00146-0] [PMID: 34782601]
[54]
Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA sequencing: new technologies and applications in cancer research. J. Hematol. Oncol., 2020, 13(1), 166.
[http://dx.doi.org/10.1186/s13045-020-01005-x] [PMID: 33276803]
[55]
Iwasak, i A.; Kelsall, B. L. Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J. Exp. Med., 2000, 8, 1381-1394.
[http://dx.doi.org/10.1084/jem.191.8.1381]
[56]
Tanaka, Y.; Imai, T.; Baba, M.; Ishikawa, I.; Uehira, M.; Nomiyama, H.; Yoshie, O. Selective expression of liver and activation-regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol., 1999, 29(2), 633-642.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199902)29:02<633:AID-IMMU633>3.0.CO;2-I] [PMID: 10064080]
[57]
Liao, F.; Rabin, R.L.; Smith, C.S.; Sharma, G.; Nutman, T.B.; Farber, J.M. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J. Immunol., 1999, 162(1), 186-194.
[http://dx.doi.org/10.4049/jimmunol.162.1.186] [PMID: 9886385]
[58]
Smith, R.S.; Smith, T.J.; Blieden, T.M.; Phipps, R.P. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am. J. Pathol., 1997, 151(2), 317-322.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970825)81:4<253:AID-CNCR7>3.0.CO;2-Q] [PMID: 9250144]
[59]
Hosokawa, Y.; Hosokawa, I.; Ozaki, K.; Nakae, H.; Matsuo, T. Increase of CCL20 expression by human gingival fibroblasts upon stimulation with cytokines and bacterial endotoxin. Clin. Exp. Immunol., 2005, 142(2), 285-291.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02912.x] [PMID: 16232215]
[60]
Josino Soares, D.; Walker, J.; Pignitter, M.; Walker, J.M.; Imboeck, J.M.; Ehrnhoefer-Ressler, M.M.; Montenegro Brasil, I.; Somoza, V. Pitanga (Eugenia uniflora L.) fruit juice and two major constituents thereof exhibit anti-inflammatory properties in human gingival and oral gum epithelial cells. Food Funct., 2014, 5(11), 2981-2988.
[http://dx.doi.org/10.1039/C4FO00509K] [PMID: 25228206]
[61]
Filou, S.; Korpetinou, A.; Kyriakopoulou, D.; Bounias, D.; Stavropoulos, M.; Ravazoula, P.; Papachristou, D.J.; Theocharis, A.D.; Vynios, D.H. ADAMTS expression in colorectal cancer. PLoS One, 2015, 10(3), e0121209.
[http://dx.doi.org/10.1371/journal.pone.0121209] [PMID: 25786261]
[62]
Yi, J.M.; Guzzetta, A.A.; Bailey, V.J.; Downing, S.R.; Van Neste, L.; Chiappinelli, K.B.; Keeley, B.P.; Stark, A.; Herrera, A.; Wolfgang, C.; Pappou, E.P.; Iacobuzio-Donahue, C.A.; Goggins, M.G.; Herman, J.G.; Wang, T.H.; Baylin, S.B.; Ahuja, N. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin. Cancer Res., 2013, 19(23), 6544-6555.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3224] [PMID: 24088737]
[63]
Chen, J.; Zhi, Y.; Chang, X.; Zhang, S.; Dai, D. Expression of ADAMTS1 and its correlation with angiogenesis in primary gastric cancer and lymph node metastasis. Dig. Dis. Sci., 2013, 58(2), 405-413.
[http://dx.doi.org/10.1007/s10620-012-2379-x] [PMID: 23001403]
[64]
Guo, X.; Li, J.; Zhang, H.; Liu, H.; Liu, Z.; Wei, X. Relationship Between ADAMTS8, ADAMTS18, and ADAMTS20 (A disintegrin and metalloproteinase with thrombospondin motifs) expressions and tumor molecular classification, clinical pathological parameters, and prognosis in breast invasive ductal carcinoma. Med. Sci. Monit., 2018, 24, 3726-3735.
[http://dx.doi.org/10.12659/MSM.907310] [PMID: 29860265]
[65]
Carmo Bastos, M.L.; Silva-Silva, J.V.; Neves Cruz, J.; Palheta da Silva, A.R.; Bentaberry-Rosa, A.A.; da Costa Ramos, G.; de Sousa Siqueira, J.E.; Coelho-Ferreira, M.R.; Percário, S.; Santana Barbosa Marinho, P.; Marinho, A.M.R.; de Oliveira Bahia, M.; Dolabela, M.F. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex miers (apocynaceae) induce apoptosis by caspase pathway in human gastric cancer cells. Pharmaceuticals, 2023, 16(5), 765.
[http://dx.doi.org/10.3390/ph16050765] [PMID: 37242548]
[66]
Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: In vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583.
[http://dx.doi.org/10.1080/07391102.2021.1900916] [PMID: 33739225]
[67]
Springer, M.S.; Starrett, J.; Morin, P.A.; Lanzetti, A.; Hayashi, C.; Gatesy, J. Inactivation of C4orf26 in toothless placental mammals. Mol. Phylogenet. Evol., 2016, 95, 34-45.
[http://dx.doi.org/10.1016/j.ympev.2015.11.002] [PMID: 26596502]
[68]
Parry, D.A.; Brookes, S.J.; Logan, C.V.; Poulter, J.A.; El-Sayed, W.; Al-Bahlani, S.; Al Harasi, S.; Sayed, J.; Raïf, E.M.; Shore, R.C.; Dashash, M.; Barron, M.; Morgan, J.E.; Carr, I.M.; Taylor, G.R.; Johnson, C.A.; Aldred, M.J.; Dixon, M.J.; Wright, J.T.; Kirkham, J.; Inglehearn, C.F.; Mighell, A.J. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am. J. Hum. Genet., 2012, 91(3), 565-571.
[http://dx.doi.org/10.1016/j.ajhg.2012.07.020] [PMID: 22901946]
[69]
Prasad, M.K.; Laouina, S.; El Alloussi, M.; Dollfus, H.; Bloch-Zupan, A. Amelogenesis imperfecta. J. Dent. Res., 2016, 95(13), 1457-1463.
[http://dx.doi.org/10.1177/0022034516663200] [PMID: 27558265]
[70]
Min, M.; Chen, X.B.; Wang, P.; Landeck, L.; Chen, J.Q.; Li, W.; Cai, S.Q.; Zheng, M.; Man, X.Y. Role of keratin 24 in human epidermal keratinocytes. PLoS One, 2017, 12(3), e0174626.
[http://dx.doi.org/10.1371/journal.pone.0174626] [PMID: 28362807]
[71]
Presland, R.B.; Jurevic, R.J. Making sense of the epithelial barrier: What molecular biology and genetics tell us about the functions of oral mucosal and epidermal tissues. J. Dent. Educ., 2002, 66(4), 564-574.
[http://dx.doi.org/10.1002/j.0022-0337.2002.66.4.tb03536.x] [PMID: 12014572]
[72]
Tewari, M.; Tuncay, O.C.; Milchman, A.; Reddy, P.J.; Reddy, C.D.; Cressman, D.E.; Taub, R.; Newton, R.C.; Tewari, D.S. Association of interleukin-1-induced, NFκB DNA-binding activity with collagenase gene expression in human gingival fibroblasts. Arch. Oral Biol., 1996, 41(5), 461-468.
[http://dx.doi.org/10.1016/0003-9969(96)00148-3] [PMID: 8809309]
[73]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy