Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Construction and Validation of a Prognostic Model Based on Pyroptosis-related Genes in Bladder Cancer

Author(s): Chong Shen, Chenyang Han, Zhi Li, Yan Yan, Chenyun Li, Houyuan Chen, Zhenqian Fan* and Hailong Hu*

Volume 27, Issue 16, 2024

Published on: 17 October, 2023

Page: [2335 - 2349] Pages: 15

DOI: 10.2174/0113862073256363230929200157

Price: $65

Abstract

Background: Bladder cancer (BCa) is a highly prevalent disease with a poor prognosis. There is no better forecasting method for it yet. Current studies demonstrate that pyroptosis is involved in the development and progression of various cancers.

Methods: This study employed bioinformatics techniques to analyze the data of BCa patients obtained from the TCGA and GEO databases in order to construct a prognostic risk model. The TCGA dataset was used for the training set, and the multiple external datasets (including GSE13507, GSE31684, GSE48075, IMvigor210, and GSE32894) were applied as the validation sets. Prognostic-associated pyroptosis genes screened by univariate Cox regression analysis were utilized to construct the lasso Cox regression model. GO and KEGG analysis results identified the selected genes that are primarily involved in the inflammation and cell death processes. The related patients were grouped into low- and high-risk groups. Kaplan–Meier survival analysis was performed to compare survival differences between the risk groups. The accuracy of this risk prediction model was assessed by ROC. We also applied the Human Protein Atlas (HPA) to detect the protein expression of these genes. Subsequently, qRT-PCR was performed to verify the expression of these model genes.

Results: There are 29 pyroptosis-related genes with significant expression differences between BCa and corresponding adjacent tissues, and 11 genes (SH2D2A, CHMP4C, MRFAP1L1, GBP2, EHBP1, RAD9A, ANXA1, TMEM109, HEYL, APOL2, ORMDL1) were picked by univariate and LASSO Cox regression analysis. Immunological cell infiltration and ssGSEA results further indicated that the low and high-risk groups were substantially correlated with the immune status of BCa patients. According to TCGA and multiple external datasets, Kaplan-Meier survival curves showed the overall survival rate of the high-risk group to be decreased. ROC curves showed the model established to be accurate and reliable. Moreover, the HPA database also demonstrated the verification of the modeled genes’ expression in BCa and normal bladder tissue using the HPA database. qRT-PCR results also suggested the up-regulated EHBP1 and down-regulated RAD9A mRNA expression levels to be confirmed in 15 pairs of BCa and corresponding adjacent tissues.

Conclusion: This study presents the development and validation of a novel gene signature associated with pyroptosis, which holds the potential for predicting patient outcomes in BCa and providing insights into the immune microenvironment of BCa.

[1]
Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder Cancer. JAMA, 2020, 324(19), 1980-1991.
[http://dx.doi.org/10.1001/jama.2020.17598] [PMID: 33201207]
[2]
Martinez, R.R.H.; Buisan, R.O.; Ibarz, L. Tumor vesical: Presente y futuro. Med. Clin., 2017, 149(10), 449-455.
[http://dx.doi.org/10.1016/j.medcli.2017.06.009] [PMID: 28736063]
[3]
Lu, H.; Wu, J.; Liang, L.; Wang, X.; Cai, H. Identifying a novel defined pyroptosis-associated long noncoding RNA signature contributes to predicting prognosis and tumor microenvironment of bladder cancer. Front. Immunol., 2022, 13, 803355.
[http://dx.doi.org/10.3389/fimmu.2022.803355] [PMID: 35154117]
[4]
Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595.
[http://dx.doi.org/10.1016/j.biopha.2019.109595] [PMID: 31710896]
[5]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[6]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[7]
Xia, X.; Wang, X.; Cheng, Z.; Qin, W.; Lei, L.; Jiang, J.; Hu, J. The role of pyroptosis in cancer: Pro-cancer or pro-“host”? Cell Death Dis., 2019, 10(9), 650.
[http://dx.doi.org/10.1038/s41419-019-1883-8] [PMID: 31501419]
[8]
Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214.
[http://dx.doi.org/10.1038/s41568-019-0123-y] [PMID: 30842595]
[9]
Wei, X.; Xie, F.; Zhou, X.; Wu, Y.; Yan, H.; Liu, T.; Huang, J.; Wang, F.; Zhou, F.; Zhang, L. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol., 2022, 19(9), 971-992.
[http://dx.doi.org/10.1038/s41423-022-00905-x] [PMID: 35970871]
[10]
Wang, W.J.; Chen, D.; Jiang, M.Z.; Xu, B.; Li, X.W.; Chu, Y.; Zhang, Y.J.; Mao, R.; Liang, J.; Fan, D.M. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J. Dig. Dis., 2018, 19(2), 74-83.
[http://dx.doi.org/10.1111/1751-2980.12576] [PMID: 29314754]
[11]
Qiu, S.; Liu, J.; Xing, F. ‘Hints’ in the killer protein gasdermin D: Unveiling the secrets of gasdermins driving cell death. Cell Death Differ., 2017, 24(4), 588-596.
[http://dx.doi.org/10.1038/cdd.2017.24] [PMID: 28362726]
[12]
Hage, C.; Hoves, S.; Strauss, L.; Bissinger, S.; Prinz, Y.; Pöschinger, T.; Kiessling, F.; Ries, C.H. Sorafenib induces pyroptosis in macrophages and triggers natural killer cell–mediated cytotoxicity against hepatocellular carcinoma. Hepatology, 2019, 70(4), 1280-1297.
[http://dx.doi.org/10.1002/hep.30666] [PMID: 31002440]
[13]
Wang, Y.Y.; Liu, X.L.; Zhao, R. Induction of pyroptosis and its implications in cancer management. Front. Oncol., 2019, 9, 971.
[http://dx.doi.org/10.3389/fonc.2019.00971] [PMID: 31616642]
[14]
Zhou, Z.; He, H.; Wang, K.; Shi, X.; Wang, Y.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y.; Shen, L.; Han, W.; Shen, L.; Ding, J.; Shao, F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368(6494), eaaz7548.
[http://dx.doi.org/10.1126/science.aaz7548] [PMID: 32299851]
[15]
Latz, E.; Xiao, T.S.; Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, 13(6), 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[16]
Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771.
[http://dx.doi.org/10.1038/nrc3611] [PMID: 24154716]
[17]
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[18]
Bladder cancer: Diagnosis and management of bladder cancer. BJU Int., 2017, 120(6), 755-765.
[http://dx.doi.org/10.1111/bju.14045] [PMID: 29168333]
[19]
Li, M.; Fu, S.; Xiao, H. Genome-wide analysis of microRNA and mRNA expression signatures in cancer. Acta Pharmacol. Sin., 2015, 36(10), 1200-1211.
[http://dx.doi.org/10.1038/aps.2015.67] [PMID: 26299954]
[20]
Nie, Z.; Chen, M.; Gao, Y.; Huang, D.; Cao, H.; Peng, Y.; Guo, N.; Zhang, S. Regulated cell death in urinary malignancies. Front. Cell Dev. Biol., 2021, 9, 789004.
[http://dx.doi.org/10.3389/fcell.2021.789004] [PMID: 34869390]
[21]
Fu, J.; Wang, Y. Identification of a novel pyroptosis-related gene signature for predicting prognosis in bladder cancer. Cancer Invest., 2022, 40(2), 134-150.
[http://dx.doi.org/10.1080/07357907.2021.1991944] [PMID: 34644219]
[22]
Berge, T.; Grønningsæter, I.H.B.; Lorvik, K.B.; Abrahamsen, G.; Granum, S.; Sundvold-Gjerstad, V.; Corthay, A.; Bogen, B.; Spurkland, A. SH2D2A modulates T cell mediated protection to a B cell derived tumor in transgenic mice. PLoS One, 2012, 7(10), e48239.
[http://dx.doi.org/10.1371/journal.pone.0048239] [PMID: 23144743]
[23]
Pharoah, P.D.; Tsai, Y.Y.; Ramus, S.J.; Phelan, C.M.; Goode, E.L.; Lawrenson, K.; Buckley, M.; Fridley, B.L.; Tyrer, J.P.; Shen, H.; Weber, R.; Karevan, R.; Larson, M.C.; Song, H.; Tessier, D.C.; Bacot, F.; Vincent, D.; Cunningham, J.M.; Dennis, J.; Dicks, E. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet., 2013, 45(4), 362-370. 370e1-2
[http://dx.doi.org/10.1038/ng.2564]
[24]
Han, L.; Korangath, P.; Nguyen, N.K.; Diehl, A.; Cho, S.; Teo, W.W.; Cope, L.; Gessler, M.; Romer, L.; Sukumar, S. HEYL regulates neoangiogenesis through overexpression in both breast tumor epithelium and endothelium. Front. Oncol., 2021, 10, 581459.
[http://dx.doi.org/10.3389/fonc.2020.581459] [PMID: 33520697]
[25]
Li, D.Z.; Liu, S.F.; Zhu, L.; Wang, Y.X.; Chen, Y.X.; Liu, J.; Hu, G.; Yu, X.; Li, J.; Zhang, J.; Wu, Z.X.; Lu, H.; Liu, W.; Liu, B. FBXW8-dependent degradation of MRFAP1 in anaphase controls mitotic cell death. Oncotarget, 2017, 8(57), 97178-97186.
[http://dx.doi.org/10.18632/oncotarget.21843] [PMID: 29228602]
[26]
Wang, L.; Wang, Y.; Wang, J.; Li, L.; Bi, J. Identification of a prognosis-related risk signature for bladder cancer to predict survival and immune landscapes. J. Immunol. Res., 2021, 2021, 1-26.
[http://dx.doi.org/10.1155/2021/3236384] [PMID: 34708131]
[27]
Zhang, J.; Zhang, Y.; Wu, W.; Wang, F.; Liu, X.; Shui, G.; Nie, C. Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis., 2017, 8(10), e3151.
[http://dx.doi.org/10.1038/cddis.2017.559] [PMID: 29072687]
[28]
Liu, C.X.; Yin, R.X.; Shi, Z.H.; Deng, G.X.; Zheng, P.F.; Wei, B.L.; Guan, Y.Z. EHBP1 SNPs, their haplotypes, and gene–environment interactive effects on serum lipid levels. ACS Omega, 2020, 5(13), 7158-7169.
[http://dx.doi.org/10.1021/acsomega.9b03522] [PMID: 32280856]
[29]
Hopkins, K.M.; Wang, X.; Berlin, A.; Hang, H.; Thaker, H.M.; Lieberman, H.B. Expression of mammalian paralogues of HRAD9 and Mrad9 checkpoint control genes in normal and cancerous testicular tissue. Cancer Res., 2003, 63(17), 5291-5298.
[PMID: 14500360]
[30]
Wang, L.; Hsu, C.L.; Ni, J.; Wang, P.H.; Yeh, S.; Keng, P.; Chang, C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells. Mol. Cell. Biol., 2004, 24(5), 2202-2213.
[http://dx.doi.org/10.1128/MCB.24.5.2202-2213.2004] [PMID: 14966297]
[31]
Weis, E.; Schoen, H.; Victor, A.; Spix, C.; Ludwig, M.; Schneider-Raetzke, B.; Kohlschmidt, N.; Bartsch, O.; Gerhold-Ay, A.; Boehm, N.; Grus, F.; Haaf, T.; Galetzka, D. Reduced mRNA and protein expression of the genomic caretaker RAD9A in primary fibroblasts of individuals with childhood and independent second cancer. PLoS One, 2011, 6(10), e25750.
[http://dx.doi.org/10.1371/journal.pone.0025750] [PMID: 21991345]
[32]
Fu, Z.; Zhang, S.; Wang, B.; Huang, W.; Zheng, L.; Cheng, A. Annexin A1: A double-edged sword as novel cancer biomarker. Clin. Chim. Acta, 2020, 504, 36-42.
[http://dx.doi.org/10.1016/j.cca.2020.01.022] [PMID: 32006544]
[33]
Kunitomi, H.; Kobayashi, Y.; Wu, R.C.; Takeda, T.; Tominaga, E.; Banno, K.; Aoki, D. LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer. J. Gynecol. Oncol., 2020, 31(2), e11.
[http://dx.doi.org/10.3802/jgo.2020.31.e11] [PMID: 31912669]
[34]
Kang, W.; Wang, Q.; Dai, Y.; Wang, H.; Wang, M.; Wang, J.; Zhang, D.; Sun, P.; Qi, T.; Jin, X.; Cui, Z. Hypomethylation of PlncRNA-1 promoter enhances bladder cancer progression through the miR-136-5p/Smad3 axis. Cell Death Dis., 2020, 11(12), 1038.
[http://dx.doi.org/10.1038/s41419-020-03240-z] [PMID: 33288752]
[35]
Zhu, T.; Chen, Y.; Min, S.; Li, F.; Tian, Y. Expression patterns and prognostic values of ORMDL1 in different cancers. BioMed Res. Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/5178397] [PMID: 33145351]
[36]
Wan, G.; Zhaorigetu, S.; Liu, Z.; Kaini, R.; Jiang, Z.; Hu, C.A. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem., 2008, 283(31), 21540-21549.
[http://dx.doi.org/10.1074/jbc.M800214200] [PMID: 18505729]
[37]
Liu, Z.; Lu, H.; Jiang, Z.; Pastuszyn, A.; Hu, C.A. Apolipoprotein l6, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol. Cancer Res., 2005, 3(1), 21-31.
[http://dx.doi.org/10.1158/1541-7786.21.3.1] [PMID: 15671246]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy