Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Enhancement in Biological Availability of Vitamins by Nano-engineering and its Applications: An Update

Author(s): Sadhna Mishra*, Shalini Sahani*, Shikha Pandhi, Arvind Kumar, Dipendra Kumar Mahato, Pradeep Kumar, Kaustubh Chandrakant Khaire and Ashutosh Rai

Volume 25, Issue 12, 2024

Published on: 02 November, 2023

Page: [1523 - 1537] Pages: 15

DOI: 10.2174/0113892010251234231025085759

Price: $65

conference banner
Abstract

Vitamin nano-engineering has been accomplished by synthesizing various nanostructures to improve their stability, bioavailability, shelf life, and functioning. This review provides a detailed description of recent advances in the art of encapsulation with high efficiency through the use of practical and logistic nano-engineering techniques such as nanofibres, nanogels, nanobeads, nanotubes, nanoparticles, nanoliposomes, and many other nanostructures. To demonstrate the interaction of molecules with nano-forms, the bioavailability of several vitamins such as B, C, E, A, D, and others in the form of nanostructures is explored. This review will provide a thorough understanding of how to improve bioavailability and nanostructure selection to extend the utility, shelf life, and structural stability of vitamins. While nanoencapsulation can improve vitamin stability and distribution, the materials employed in nanotechnologies may offer concerns if they are not sufficiently tested for safety. If nanoparticles are not adequately designed and evaluated, they may cause inflammation, oxidative stress, or other unwanted effects. Researchers and makers of nanomaterials and medication delivery systems should adhere to established rules and regulations. Furthermore, long-term studies are required to monitor any negative consequences that may result from the use of nanostructure.

Graphical Abstract

[1]
Graulet, B.; Girard, C.L. Chapter 15 - B Vitamins in cow milk: Their relevance to human health. In: Dairy in Human Health and Disease Across the Lifespan; , 2017; pp. 211-224.
[http://dx.doi.org/10.1016/B978-0-12-809868-4.00015-7]
[2]
Gamboa, O.D.; Gonçalves, L.G.; Grosso, C.F. Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci., 2011, 1, 1732-1739.
[http://dx.doi.org/10.1016/j.profoo.2011.09.255]
[3]
Dhakal, S.P.; He, J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res. Int., 2020, 137, 109326.
[http://dx.doi.org/10.1016/j.foodres.2020.109326] [PMID: 33233045]
[4]
Donsì, F. Chapter 11 - Applications of nanoemulsions in foods. In: Nanoemulsions, Formulation, Applications, and Characterization; , 2018; pp. 349-377.
[http://dx.doi.org/10.1016/B978-0-12-811838-2.00011-4]
[5]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[6]
Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. In: Trends Food Sci. Technol., 2016, 53, 34-48.
[http://dx.doi.org/10.1016/j.tifs.2016.05.002]
[7]
Yang, P.; Wang, H.; Li, L.; Zhang, N.; Ma, Y. Determination and evaluation of bioavailability of vitamins from different multivitamin supplements using a pig model. Agriculture, 2021, 11(5), 418.
[http://dx.doi.org/10.3390/agriculture11050418]
[8]
Mishra, S.; Sahani, S.; Arvind, V. Encapsulation of herbal extracts. In: Sustainable Agriculture Reviews 55, Micro and Nano Engineering in Food Science; , 2021; 1, pp. 115-133.
[http://dx.doi.org/10.1007/978-3-030-76813-3_5]
[9]
Zeichner, L.O.; Shoham, S.; Vazquez, J.; Reboli, A.; Betts, R. (2014) 1–26.
[10]
Borthakur, P.; Boruah, P.K.; Sharma, B.; Das, M.R. 5 - Nanoemulsion: preparation and its application in food industry. In: Emulsions Nanotechnology in the Agri-Food Industry Volume 3 Nanotechnology in the Agri-Food Industry; , 2016; pp. 153-191.
[http://dx.doi.org/10.1016/B978-0-12-804306-6.00005-2]
[11]
Bartusik, D.; Aebisher, D.; Tomanek, B. 15 - The synthesis and application of vitamins in nanoemulsion delivery systems. In: Emulsions Nanotechnology in the Agri-Food Industry Volume 3 Nanotechnology in the Agri-Food Industry; , 2016; pp. 519-555.
[http://dx.doi.org/10.1016/B978-0-12-804306-6.00015-5]
[12]
Sahani, S.; Sharma, Y.C. Advancements in applications of nanotechnology in global food industry. Food Chem., 2021, 342, 128318.
[http://dx.doi.org/10.1016/j.foodchem.2020.128318] [PMID: 33189478]
[13]
Walia, N.; Dasgupta, N.; Ranjan, S.; Ramalingam, C.; Gandhi, M. Food-grade nanoencapsulation of vitamins. Environ. Chem. Lett., 2019, 17(2), 991-1002.
[http://dx.doi.org/10.1007/s10311-018-00855-9]
[14]
Panigrahi, S.S.; Syed, I.; Sivabalan, S.; Sarkar, P. Nanoencapsulation strategies for lipid-soluble vitamins. Chem. Pap., 2019, 73(1), 1-16.
[http://dx.doi.org/10.1007/s11696-018-0559-7]
[15]
Muscogiuri, G.; Barrea, L. Nutritional recommendations for CoVID-19 quarantine. Eur. J. Clin. Nutr., 2020, 74(6), 850-851.
[http://dx.doi.org/10.1038/s41430-020-0635-2]
[16]
Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr., 2020, 7, 101.
[http://dx.doi.org/10.3389/fnut.2020.00101] [PMID: 32793622]
[17]
Methods, A.; Kaushik, R.; Sachdeva, B.; Arora, S.; Kapila, S.; Wadhwa, K. Manuscript, 2013.
[18]
Meijer, G.W.; Lähteenmäki, L.; Stadler, R.H.; Weiss, J. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit. Rev. Food Sci. Nutr., 2021, 61(1), 97-115.
[http://dx.doi.org/10.1080/10408398.2020.1718597] [PMID: 32003225]
[19]
Jiménez-carvelo, A.M.; González-casado, A.; Gracia, M.; Cuadros-rodríguez, L. 2019.
[20]
Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int., 2018, 110, 42-51.
[http://dx.doi.org/10.1016/j.foodres.2017.03.045] [PMID: 30029705]
[21]
Shurson, G.C.; Salzer, T.M.; Koehler, D.D.; Whitney, M.H. Effect of metal specific amino acid complexes and inorganic trace minerals on vitamin stability in premixes. Anim. Feed Sci. Technol., 2011, 163(2-4), 200-206.
[http://dx.doi.org/10.1016/j.anifeedsci.2010.11.001]
[22]
Narwal, S.; Gupta, O.P.; Pandey, V.; Kumar, D.; Ram, S. Effect of storage and processing conditions on nutrient composition of wheat and barley; Wheat and Barley Grain Biofortification, 2020, pp. 229-256.
[http://dx.doi.org/10.1016/B978-0-12-818444-8.00009-2]
[23]
Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res., 2020, 36(1), 115-126.
[http://dx.doi.org/10.1007/s12550-019-00375-7] [PMID: 31515765]
[24]
Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Burak, B.; Ozgür, B. Trends in food science & technology the bioaccessibility of water-soluble vitamins. RE:view, 2021, 109, 552-563.
[25]
Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – a comprehensive review. Crit. Rev. Food Sci. Nutr., 2019, 59(9), 1408-1432.
[http://dx.doi.org/10.1080/10408398.2017.1409192] [PMID: 29261333]
[26]
Knecht, K.; Sandfuchs, K.; Kulling, S.E.; Bunzel, D. Tocopherol and tocotrienol analysis in raw and cooked vegetables: A validated method with emphasis on sample preparation. Food Chem., 2015, 169, 20-27.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.099] [PMID: 25236193]
[27]
Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Effects of thermal treatment on polysaccharide degradation during black garlic processing. Lebensm. Wiss. Technol., 2018, 95, 223-229.
[http://dx.doi.org/10.1016/j.lwt.2018.04.059]
[28]
Arshad, R.; Gulshad, L.; Haq, I.U.; Farooq, M.A.; Al-Farga, A.; Siddique, R.; Manzoor, M.F.; Karrar, E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr., 2021, 9(6), 3354-3361.
[http://dx.doi.org/10.1002/fsn3.2311] [PMID: 34136200]
[29]
Maurya, V.K.; Aggarwal, M. Enhancing bio-availability of vitamin d by nano-engineered based delivery systems- an overview. Int. J. Curr. Microbiol. Appl. Sci., 2017, 6(7), 340-353.
[http://dx.doi.org/10.20546/ijcmas.2017.607.040]
[30]
McClements, D.J. Nanotechnology approaches for improving the healthiness and sustainability of the modern food supply. ACS Omega, 2020, 5(46), 29623-29630.
[http://dx.doi.org/10.1021/acsomega.0c04050] [PMID: 33251398]
[31]
Aman Mohamadi, M.; Farshi, P.; Ahmadi, P.; Ahmadi, A.; Yousefi, M.; Ghorbani, M.; Hosseini, S.M. Encapsulation of vitamins using nanoliposome: Recent advances and perspectives. Adv. Pharm. Bull., 2021, 13(1), 48-68.
[http://dx.doi.org/10.34172/apb.2023.005] [PMID: 36721823]
[32]
Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: an overview. J. Food Sci. Technol., 2017, 54(12), 3753-3765.
[http://dx.doi.org/10.1007/s13197-017-2840-0] [PMID: 29085118]
[33]
Singh, A.R.; Desu, P.K.; Nakkala, R.K.; Kondi, V.; Devi, S.; Alam, M.S.; Hamid, H.; Athawale, R.B.; Kesharwani, P. Nanotechnology-based approaches applied to nutraceuticals. Drug Deliv. Transl. Res., 2022, 12(3), 485-499.
[http://dx.doi.org/10.1007/s13346-021-00960-3] [PMID: 33738677]
[34]
Olloqui, E.J.; Castañeda-Ovando, A.; Contreras-López, E.; Hernandez-Sanchez, D.; Tapia-Maruri, D.; Piloni-Martini, J.; Añorve-Morga, J. Encapsulation of fish oil into low-cost alginate beads and EPA-DHA release in a rumino-intestinal in vitro digestion model. Eur. J. Lipid Sci. Technol., 2018, 120(9), 1800036.
[http://dx.doi.org/10.1002/ejlt.201800036]
[35]
Zhang, J.; Zhang, R.; Zhang, Y.; Pan, Y.; Shum, H.C.; Jiang, Z. Alginate-gelatin emulsion droplets for encapsulation of vitamin A by 3D printed microfluidics. Particuology, 2022, 64, 164-170.
[http://dx.doi.org/10.1016/j.partic.2021.09.004]
[36]
McClements, D.J. Recent advances in the production and application of nano-enabled bioactive food ingredients. Curr. Opin. Food Sci., 2020, 33, 85-90.
[http://dx.doi.org/10.1016/j.cofs.2020.02.004]
[37]
Shah, B.R.; Xu, W.; Mráz, J. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D3. Int. J. Biol. Macromol., 2021, 191, 803-810.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.159] [PMID: 34597693]
[38]
Baek, J.; Ramasamy, M.; Willis, N.C.; Kim, D.S.; Anderson, W.A.; Tam, K.C. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Current Research in Food Science, 2021, 4, 215-223.
[http://dx.doi.org/10.1016/j.crfs.2021.03.010] [PMID: 33937869]
[39]
Coelho, S.C.; Laget, S.; Benaut, P.; Rocha, F.; Estevinho, B.N. A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. Powder Technol., 2021, 392, 47-57.
[http://dx.doi.org/10.1016/j.powtec.2021.06.056]
[40]
Hsu, C.Y.; Wang, P.W.; Alalaiwe, A.; Lin, Z.C.; Fang, J.Y. Use of lipid nanocarriers to improve oral delivery of vitamins. Nutrients, 2019, 11(1), 68.
[http://dx.doi.org/10.3390/nu11010068] [PMID: 30609658]
[41]
Cimino, R.; Bhangu, S.K.; Baral, A.; Ashokkumar, M.; Cavalieri, F. Vitamin D using bare glycogen nanoparticles, 2021.
[42]
Mohammed, A.S.Y.; Dyab, A.K.F.; Taha, F.; Abd El-Mageed, A.I.A. Encapsulation of folic acid (vitamin B9) into sporopollenin microcapsules: Physico-chemical characterisation, in vitro controlled release and photoprotection study. Mater. Sci. Eng. C, 2021, 128, 112271.
[http://dx.doi.org/10.1016/j.msec.2021.112271] [PMID: 34474830]
[43]
Resende, D.; Costa Lima, S.A.; Reis, S. Nanoencapsulation approaches for oral delivery of vitamin A. Colloids Surf. B Biointerfaces, 2020, 193, 111121.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111121] [PMID: 32464354]
[44]
Liang, L.; Qiu, L. Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int. J. Pharm., 2021, 600, 120457.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120457] [PMID: 33676991]
[45]
Campos-Cerqueira, M.; Aide, T.M. Changes in the acoustic structure and composition along a tropical elevational gradient. Journal of Ecoacoustics, 2017, 1(1), 1-1.
[http://dx.doi.org/10.22261/JEA.PNCO7I]
[46]
Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon, 2022, 8(1), e08674.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08674] [PMID: 35028457]
[47]
Muhamad, I.I.; Abang Zaidel, D.N.; Hashim, Z.; Mohammad, N.A.; Abu Bakar, N.F. 10 - Improving the delivery system and bioavailability of beverages through nanoencapsulation. In: Nanoengineering in the Beverage Industry Volume 20: the Science of Beverages; , 2020; pp. 301-332.
[http://dx.doi.org/10.1016/B978-0-12-816677-2.00010-7]
[48]
Zhu, H.; Mettu, S.; Cavalieri, F.; Ashokkumar, M. Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food. Food Chem., 2021, 353, 129432.
[http://dx.doi.org/10.1016/j.foodchem.2021.129432] [PMID: 33714120]
[49]
Chaves, M.A.; Baldino, L.; Pinho, S.C.; Reverchon, E. Supercritical CO2 assisted process for the production of mixed phospholipid nanoliposomes: Unloaded and vitamin D3-loaded vesicles. J. Food Eng., 2022, 316, 110851.
[http://dx.doi.org/10.1016/j.jfoodeng.2021.110851]
[50]
Chaves, M.A.; Baldino, L.; Pinho, S.C.; Reverchon, E. Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J. Taiwan Inst. Chem. Eng., 2022, 132, 104120.
[http://dx.doi.org/10.1016/j.jtice.2021.10.020]
[51]
Walia, N.; Dasgupta, N.; Ranjan, S.; Chen, L.; Ramalingam, C. Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason. Sonochem., 2017, 39, 623-635.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.021] [PMID: 28732987]
[52]
Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M.S.; Sandhu, M.A. Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: An ultrasonic homogenization approach. Food Chem., 2018, 253, 179-184.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.136] [PMID: 29502819]
[53]
Chapeau, A.L.; Tavares, G.M.; Hamon, P.; Croguennec, T.; Poncelet, D.; Bouhallab, S. Spontaneous co-assembly of lactoferrin and β-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocoll., 2016, 57, 280-290.
[http://dx.doi.org/10.1016/j.foodhyd.2016.02.003]
[54]
Patel, M.R.; San Martin-Gonzalez, M.F. Characterization of ergocalciferol loaded solid lipid nanoparticles. J. Food Sci., 2012, 77(1), N8-N13.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02517.x] [PMID: 22260120]
[55]
Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem., 2013, 141(1), 117-123.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.080] [PMID: 23768336]
[56]
Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. In: LWT - Food Science and Technology; , 2016; 69, pp. 9-16.
[57]
Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S.M. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit. Rev. Food Sci. Nutr., 2020.
[http://dx.doi.org/10.1080/10408398.2020.1865258] [PMID: 33350318]
[58]
de Melo, A.P.Z.; da Rosa, C.G.; Noronha, C.M.; Machado, M.H.; Sganzerla, W.G.; Bellinati, N.V.C.; Nunes, M.R.; Verruck, S.; Prudêncio, E.S.; Barreto, P.L.M. Nanoencapsulation of vitamin D3 and fortification in an experimental jelly model of Acca sellowiana: Bioaccessibility in a simulated gastrointestinal system. Lebensm. Wiss. Technol., 2021, 145, 111287.
[http://dx.doi.org/10.1016/j.lwt.2021.111287]
[59]
Groo, A.C.; Matougui, N.; Umerska, A.; Saulnier, P. Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine, 2018, 13, 7565-7574.
[http://dx.doi.org/10.2147/IJN.S180040] [PMID: 30532539]
[60]
Akbari Alavijeh, M.; Sarvi, M.N.; Ramazani Afarani, Z. Properties of adsorption of vitamin B12 on nanoclay as a versatile carrier. Food Chem., 2017, 219, 207-214.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.140] [PMID: 27765218]
[61]
Santos, M.B.; Wanderlei, C.; De Carvalho, P.; Elard, E.; De Carvalho, W.P.; Garcia-rojas, E. carboxymethyl tara gum ( C aesalpinia spinosa ) and gelatin A. 2020.
[62]
Mahdi Jafari, S.; Masoudi, S.; Bahrami, A. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D 3. Dry. Technol., 2019, 37(16), 2059-2071.
[http://dx.doi.org/10.1080/07373937.2018.1552598]
[63]
Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Physical, mechanical, thermal and structural characteristics of nanoencapsulated vitamin E loaded carboxymethyl cellulose films. Prog. Org. Coat., 2020, 138, 105383.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105383]
[64]
Schoonjans, R.; Eryasa, B. Annual report of the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed for 2018. EFSA Support. Publ., 2019, 16(4), 1-11.
[http://dx.doi.org/10.2903/sp.efsa.2019.EN-1626]
[65]
More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; Machera, K.; Naegeli, H.; Nielsen, S.; Schlatter, J.; Schrenk, D.; Silano Deceased, V.; Turck, D.; Younes, M.; Castenmiller, J.; Chaudhry, Q.; Cubadda, F.; Franz, R.; Gott, D.; Mast, J.; Mortensen, A.; Oomen, A.G.; Weigel, S.; Barthelemy, E.; Rincon, A.; Tarazona, J.; Schoonjans, R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J., 2021, 19(8), e06768.
[http://dx.doi.org/10.2903/j.efsa.2021.6768] [PMID: 34377190]
[66]
Maiorova, L.A.; Erokhina, S.I.; Pisani, M.; Barucca, G.; Marcaccio, M.; Koifman, O.I.; Salnikov, D.S.; Gromova, O.A.; Astolfi, P.; Ricci, V.; Erokhin, V. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf. B Biointerfaces, 2019, 182, 110366.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110366] [PMID: 31351273]
[67]
Bedhiafi, T.; Idoudi, S.; Fernandes, Q.; Al-Zaidan, L.; Uddin, S.; Dermime, S.; Billa, N.; Merhi, M.; Nano-vitamin, C. Nano-vitamin C: A promising candidate for therapeutic applications. Biomed. Pharmacother., 2023, 158, 114093.
[http://dx.doi.org/10.1016/j.biopha.2022.114093] [PMID: 36495664]
[68]
Genç, L.; Kutlu, H.M.; Güney, G. Vitamin B 12 -loaded solid lipid nanoparticles as a drug carrier in cancer therapy. Pharm. Dev. Technol., 2015, 20(3), 337-344.
[http://dx.doi.org/10.3109/10837450.2013.867447] [PMID: 24344935]
[69]
Zhang, J.; Xu, W.; Xu, F.; Lu, W.; Hu, L.; Zhou, J.; Zhang, C.; Jiang, Z. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. J. Food Eng., 2021, 290, 110212.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110212]
[70]
Chaves, M.A.; Ferreira, L.S.; Baldino, L.; Pinho, S.C.; Reverchon, E. Current applications of liposomes for the delivery of vitamins: A systematic review. Nanomaterials (Basel), 2023, 13(9), 1557.
[http://dx.doi.org/10.3390/nano13091557] [PMID: 37177102]
[71]
Nejatian, M.; Darabzadeh, N.; Bodbodak, S.; Saberian, H.; Rafiee, Z.; Kharazmi, M.S.; Jafari, S.M. Practical application of nanoencapsulated nutraceuticals in real food products; a systematic review. Adv. Colloid Interface Sci., 2022, 305, 102690.
[http://dx.doi.org/10.1016/j.cis.2022.102690] [PMID: 35525089]
[72]
Misra, S.; Pandey, P.; Mishra, H.N. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci. Technol., 2021, 109, 340-351.
[http://dx.doi.org/10.1016/j.tifs.2021.01.039]
[73]
Stavis, S.M.; Fagan, J.A.; Stopa, M.; Liddle, J.A. Nanoparticle manufacturing – heterogeneity through processes to products. ACS Appl. Nano Mater., 2018, 1(9), 4358-4385.
[http://dx.doi.org/10.1021/acsanm.8b01239]
[74]
Jagtiani, E. Advancements in nanotechnology for food science and industry. Food Front., 2022, 3(1), 56-82.
[http://dx.doi.org/10.1002/fft2.104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy