Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects

Author(s): Kah Man Liau, An Gie Ooi, Chian Huey Mah, Penny Yong, Ling Siik Kee, Cheng Ze Loo, Ming Yu Tay, Jhi Biau Foo and Sharina Hamzah*

Volume 25, Issue 12, 2024

Published on: 25 October, 2023

Page: [1500 - 1522] Pages: 23

DOI: 10.2174/0113892010258617231020062637

Price: $65

conference banner
Abstract

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.

Graphical Abstract

[1]
Koonin, E.V.; Makarova, K.S. CRISPR-Cas: An Adaptive Immunity System in Prokaryotes. F1000 Biol. Rep., 2009.
[http://dx.doi.org/10.3410/b1-95]
[2]
Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J. Bacteriol., 2018, 200(7), e00580-e17.
[http://dx.doi.org/10.1128/JB.00580-17]
[3]
Zaidi, S.S-A.; Mahas, A.; Vanderschuren, H.; Mahfouz, M.M. Engineering Crops of the Future: CRISPR Approaches to Develop Climate-Resilient and Disease-Resistant Plants. Genome Biol., 2020, 21(1)
[4]
Liu, W.; Li, L.; Jiang, J.; Wu, M.; Lin, P. Applications and Challenges of CRISPR-Cas Gene-Editing to Disease Treatment in Clinics. Precis. Clin. Med., 2021, 4(3), 179-191.
[http://dx.doi.org/10.1093/pcmedi/pbab014]
[5]
Doudna, J.A.; Charpentier, E. The New Frontier of Genome Engineering with CRISPR-Cas9. Science, 2014, 346(6213), 1258096-1258096.
[http://dx.doi.org/10.1126/science.1258096]
[6]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829]
[7]
(a)) Marino, M. Biography of Jennifer A. Doudna. Proc. Natl. Acad. Sci. USA, 2004, 101(49), 16987-16989.
[http://dx.doi.org/10.1073/pnas.0408147101];
(b)) Özcan, A.; Krajeski, R.; Ioannidi, E.; Lee, B.; Gardner, A.; Makarova, K.S. Koonin.E.V.; Abudayyeh, O.O; Gootenberg, J.S. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, 597(7878), 720-725.
[http://dx.doi.org/10.1038/s41586-021-03886-5]
[8]
Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics : Targets & Therapy, 2021, 15, 353-361.
[http://dx.doi.org/10.2147/BTT.S326422]
[9]
Xu, Y.; Li, Z. CRISPR-Cas Systems: Overview, Innovations and Applications in Human Disease Research and Gene Therapy. Comput. Struct. Biotechnol. J., 2020, 18, 2401-2415.
[http://dx.doi.org/10.1016/j.csbj.2020.08.031]
[10]
Sun, W.; Yang, J.; Cheng, Z.; Amrani, N.; Liu, C.; Wang, K.; Ibraheim, R.; Edraki, A.; Huang, X.; Wang, M.; Wang, J.; Liu, L.; Sheng, J.; Liu, L.; Sheng, G.; Yang, Y.; Lou, J.; Sontheimer, E.J.; Wang, Y. Structures of Neisseria Meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Mol. Cell, 2019, 76(6), 938-952.e5.
[http://dx.doi.org/10.1016/j.molcel.2019.09.025]
[11]
Vilela, A. An Overview of CRISPR-Based Technologies in Wine Yeasts to Improve Wine Flavor and Safety. Fermentation, 2021, 7(1), 5.
[http://dx.doi.org/10.3390/fermentation7010005]
[12]
Xue, C.; Greene, E.C. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet., 2021, 37(7), 639-656.
[http://dx.doi.org/10.1016/j.tig.2021.02.008]
[13]
Rupnik, A.; Grenon, M.; Lowndes, N. The MRN Complex. Curr. Biol., 2008, 18(11), R455-R457.
[http://dx.doi.org/10.1016/j.cub.2008.03.040]
[14]
Reuven, N.; Adler, J.; Broennimann, K.; Myers, N.; Shaul, Y. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing. Biomolecules, 2019, 9(10), 584.
[http://dx.doi.org/10.3390/biom9100584]
[15]
Zou, Y.; Liu, Y.; Wu, X.; Shell, S.M. Functions of Human Replication Protein a (RPA): From DNA Replication to DNA Damage and Stress Responses. J. Cell. Physiol., 2006, 208(2), 267-273.
[http://dx.doi.org/10.1002/jcp.20622]
[16]
Herrero, A.B.; San Miguel, J.; Gutierrez, N.C. Deregulation of DNA Double-Strand Break Repair in Multiple Myeloma: Implications for Genome Stability. PLoS One, 2015, 10(3)
[http://dx.doi.org/10.1371/journal.pone.0121581]
[17]
Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002, 23(5), 687-696.
[http://dx.doi.org/10.1093/carcin/23.5.687]
[18]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033]
[19]
McGowan, E.; Lin, Q.; Ma, G.; Yin, H.; Chen, S.; Lin, Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed. Pharmacother., 2020, 121, 109625.
[http://dx.doi.org/10.1016/j.biopha.2019.109625]
[20]
Sever, R.; Brugge, J.S. Signal Transduction in Cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098-a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098]
[21]
Tuveson, D.; Clevers, H. Cancer Modeling Meets Human Organoid Technology. Science, 2019, 364(6444), 952-955.
[http://dx.doi.org/10.1126/science.aaw6985]
[22]
Banerjee, A.; Malonia, S.K.; Dutta, S. Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000(000)
[http://dx.doi.org/10.14218/jerp.2020.00033]
[23]
Vankeerberghen, A.; Cuppens, H.; Cassiman, J-J. The Cystic Fibrosis Transmembrane Conductance Regulator: An Intriguing Protein with Pleiotropic Functions. J. Cyst. Fibros., 2002, 1(1), 13-29.
[http://dx.doi.org/10.1016/s1569-1993(01)00003-0]
[24]
Schwank, G.; Koo, B-K.; Sasselli, V. Dekkers, Johanna F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, Cornelis K.; Nieuwenhuis, Edward E. S.; Beekman, Jeffrey M.; Clevers, H. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell, 2013, 13(6), 653-658.
[http://dx.doi.org/10.1016/j.stem.2013.11.002]
[25]
Drost, J.; van Jaarsveld, R.H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R.M.; Offerhaus, G.J.; Begthel, H.; Korving, J.; van de Wetering, M.; Schwank, G.; Logtenberg, M.; Cuppen, E.; Snippert, H.J.; Medema, J.P.; Kops, G.J.P.L.; Clevers, H. Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature, 2015, 521(7550), 43-47.
[http://dx.doi.org/10.1038/nature14415]
[26]
Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling Colorectal Cancer Using CRISPR-Cas9–Mediated Engineering of Human Intestinal Organoids. Nat. Med., 2015, 21(3), 256-262.
[http://dx.doi.org/10.1038/nm.3802]
[27]
Drost, J.; Boxtel, R. van; Blokzijl, F.; Mizutani, T.; Sasaki, N.; Sasselli, V.; Ligt, J. de; Behjati, S.; Grolleman, J. E.; Wezel, T. van; Nik-Zainal, S.; Kuiper, R. P.; Cuppen, E.; Clevers, H. Use of CRISPR-Modified Human Stem Cell Organoids to Study the Origin of Mutational Signatures in Cancer. Science, 2017, 358(6360), 234-238.
[http://dx.doi.org/10.1126/science.aao3130]
[28]
Tang, J.; Salama, R.; Gadgeel, S.M.; Sarkar, F.H.; Ahmad, A. Erlotinib Resistance in Lung Cancer: Current Progress and Future Perspectives. Front. Pharmacol., 2013, 4.
[http://dx.doi.org/10.3389/fphar.2013.00015]
[29]
Kosaka, T.; Yamaki, E.; Mogi, A.; Kuwano, H. Mechanisms of Resistance to EGFR TKIs and Development of a New Generation of Drugs in Non-Small-Cell Lung Cancer. J. Biomed. Biotechnol., 2011, 2011, 1-7.
[http://dx.doi.org/10.1155/2011/165214]
[30]
Oxnard, G.R.; Arcila, M.E.; Chmielecki, J.; Ladanyi, M.; Miller, V.A.; Pao, W. New Strategies in Overcoming Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Lung Cancer. Clin. Cancer Res., 2011, 17(17), 5530-5537.
[http://dx.doi.org/10.1158/1078-0432.ccr-10-2571]
[31]
Terai, H.; Kitajima, S.; Potter, D.S.; Matsui, Y.; Quiceno, L.G.; Chen, T.; Kim, T.; Rusan, M.; Thai, T.C.; Piccioni, F.; Donovan, K.A.; Kwiatkowski, N.; Hinohara, K.; Wei, G.; Gray, N.S.; Fischer, E.S.; Wong, K-K.; Shimamura, T.; Letai, A.; Hammerman, P.S. ER Stress Signaling Promotes the Survival of Cancer “Persister Cells” Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Res., 2017, 78(4), 1044-1057.
[http://dx.doi.org/10.1158/0008-5472.can-17-1904]
[32]
Qin, S.; Ingle, J.N.; Liu, M.; Yu, J.; Wickerham, D.L.; Kubo, M.; Weinshilboum, R.M.; Wang, L. Calmodulin-like Protein 3 Is an Estrogen Receptor Alpha Coregulator for Gene Expression and Drug Response in a SNP, Estrogen, and SERM-Dependent Fashion. Breast Cancer Res., 2017, 19(1)
[http://dx.doi.org/10.1186/s13058-017-0890-x]
[33]
Reinshagen, C.; Bhere, D.; Choi, S.H.; Hutten, S.; Nesterenko, I.; Wakimoto, H.; Le Roux, E.; Rizvi, A.; Du, W.; Minicucci, C.; Shah, K. CRISPR-Enhanced Engineering of Therapy-Sensitive Cancer Cells for Self-Targeting of Primary and Metastatic Tumors. Sci. Transl. Med., 2018, 10(449), eaao3240.
[http://dx.doi.org/10.1126/scitranslmed.aao3240]
[34]
Zhang, M.; Eshraghian, E.A.; Jammal, O.A.; Zhang, Z.; Zhu, X. CRISPR Technology: The Engine That Drives Cancer Therapy. Biomed. Pharmacother., 2021, 133, 111007.
[http://dx.doi.org/10.1016/j.biopha.2020.111007]
[35]
Gebler, C.; Lohoff, T.; Paszkowski-Rogacz, M.; Mircetic, J.; Chakraborty, D.; Camgoz, A.; Hamann, M.V.; Theis, M.; Thiede, C.; Buchholz, F. Inactivation of Cancer Mutations Utilizing CRISPR/Cas9. J. Natl. Cancer Inst., 2016, 109(1), djw183.
[http://dx.doi.org/10.1093/jnci/djw183]
[36]
Ren, J.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2017, 23(9), 2255-2266.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1300]
[37]
Liu, X.; Zhang, Y.; Cheng, C.; Cheng, A.W.; Zhang, X.; Li, N.; Xia, C.; Wei, X.; Liu, X.; Wang, H. CRISPR-Cas9-Mediated Multiplex Gene Editing in CAR-T Cells. Cell Res., 2016, 27(1), 154-157.
[http://dx.doi.org/10.1038/cr.2016.142]
[38]
Su, S.; Hu, B.; Shao, J.; Shen, B.; Du, J.; Du, Y.; Zhou, J.; Yu, L.; Zhang, L.; Chen, F.; Sha, H.; Cheng, L.; Meng, F.; Zou, Z.; Huang, X.; Liu, B. CRISPR-Cas9 Mediated Efficient PD-1 Disruption on Human Primary T Cells from Cancer Patients. Sci. Rep., 2016, 6(1)
[http://dx.doi.org/10.1038/srep20070]
[39]
Guo, N.; Liu, J-B.; Li, W.; Ma, Y-S.; Fu, D. The Power and the Promise of CRISPR/Cas9 Genome Editing for Clinical Application with Gene Therapy. J. Adv. Res., 2021, 40.
[http://dx.doi.org/10.1016/j.jare.2021.11.018]
[40]
Lu, Y.; Xue, J.; Deng, T.; Zhou, X.; Yu, K.; Deng, L.; Huang, M.; Yi, X.; Liang, M.; Wang, Y.; Shen, H.; Tong, R.; Wang, W.; Li, L.; Song, J.; Li, J.; Su, X.; Ding, Z.; Gong, Y.; Zhu, J. Safety and Feasibility of CRISPR-Edited T Cells in Patients with Refractory Non- Small-Cell Lung Cancer. In: Nature Medicine; , 2020; 26, pp. (5)732-740.
[http://dx.doi.org/10.1038/s41591-020-0840-5]
[41]
Liu, Q. World-First Phase I Clinical Trial for CRISPR-Cas9 PD-1- Edited T-Cells in Advanced Nonsmall Cell Lung Cancer.Global Medical Genetics; , 2020, 07, pp. (03)073-074.
[http://dx.doi.org/10.1055/s-0040-1721451]
[42]
Cohen, D.J.; Pant, S.; O’Neil, B.; Marinis, J.; Winnberg, J.; Ahlers, C.M.; Callaway, J.; Rathi, C.; Acusta, A.; Verticelli, A.; Bertin, J.; Smothers, J.F. A Phase I/II Study of GSK3145095 Alone and in Combination with Anticancer Agents Including Pembrolizumab in Adults with Selected Solid Tumors. J. Clin. Oncol., 2019, 37(15)(Suppl.), TPS4165-TPS4165.
[http://dx.doi.org/10.1200/jco.2019.37.15_suppl.tps4165]
[43]
GlaxoSmithKline; Parexel. A Phase I/II, Open-Label Study to Investigate the Safety, Clinical Activity, Pharmacokinetics, and Pharmacodynamics of GSK3145095 Administered Alone and in Combination With Anticancer Agents Including Pembrolizumab in Adult Participants With Selected Advanced Solid Tumors. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT03681951?term=CRISPR&cond=cancers&draw=2&rank=10 (accessed 2022-06-23).
[44]
Jing, Z.; Zhang, N.; Ding, L.; Wang, X.; Hua, Y.; Jiang, M.; Wu, S.X. Safety and Activity of Programmed Cell Death-1 Gene Knockout Engineered T Cells in Patients with Previously Treated Advanced Esophageal Squamous Cell Carcinoma: An Open-Label, Single-Arm Phase I Study. J. Clin. Oncol., 2018, 36(15)(Suppl.), 3054-3054.
[http://dx.doi.org/10.1200/jco.2018.36.15_suppl.3054]
[45]
Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; Tian, L.; Gonzalez, V.E.; Xu, J.; Jung, I.; Melenhorst, J.J.; Plesa, G.; Shea, J.; Matlawski, T.; Cervini, A.; Gaymon, A.L. CRISPR-Engineered T Cells in Patients with Refractory Cancer. Science, 2020, 367(6481)
[http://dx.doi.org/10.1126/science.aba7365]
[46]
McGuirk, J.; Bachier, C.R.; Bishop, M.R.; Ho, P.J.; Murthy, H.S.; Dickinson, M.J.; Maakaron, J.E.; Andreadis, C.; Ghobadi, A.; Waller, E.K.; Benton, M.D.; Suh, S.; Xu, H.; Morawa, E.; Awan, F.T.; Shaughnessy, P.; Tam, C.S.L.; Kroeger, N.; Maziarz, R.T. A Phase 1 Dose Escalation and Cohort Expansion Study of the Safety and Efficacy of Allogeneic CRISPR-Cas9–Engineered T Cells (CTX110) in Patients (Pts) with Relapsed or Refractory (R/R) B-Cell Malignancies (CARBON). J. Clin. Oncol., 2021, 39(15)(Suppl.), TPS7570-TPS7570.
[http://dx.doi.org/10.1200/jco.2021.39.15_suppl.tps7570]
[47]
Kulkarni, S.; Morawa, E.; Ho, T. Updated Results from the Phase 1 CARBON Trial of CTX110TM; CRISPR Therapeutics AG: Cambridge, Massachusetts, United States, 2021. https://crisprtx.gcs-web.com/static-files/e5304031-1ceb-4db3-8451-08b1adcd3ee8 (accessed 2023-01-15)
[48]
Li, Y.; Glass, Z.; Huang, M.; Chen, Z-Y.; Xu, Q. Ex Vivo Cell-Based CRISPR/Cas9 Genome Editing for Therapeutic Applications. Biomaterials, 2020, 234, 119711.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119711]
[49]
Banakar, R.; Schubert, M.; Kurgan, G.; Rai, K. M.; Beaudoin, S. F.; Collingwood, M. A.; Vakulskas, C. A.; Wang, K.; Zhang, F. Efficiency, Specificity and Temperature Sensitivity of Cas9 and Cas12a RNPs for DNA-Free Genome Editing in Plants. Frontiers in Genome Editing, 2022, 3.
[http://dx.doi.org/10.3389/fgeed.2021.760820]
[50]
Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the Delivery of Cas9 Ribonucleoprotein for CRISPR/Cas9 Genome Editing. Theranostics, 2021, 11(2), 614-648.
[http://dx.doi.org/10.7150/thno.47007]
[51]
Nambiar, M.; Raghavan, S.C. How Does DNA Break during Chromosomal Translocations? Nucleic Acids Res., 2011, 39(14), 5813-5825.
[http://dx.doi.org/10.1093/nar/gkr223]
[52]
Wu, H.; Yu, Y.; Zheng, Q.; Liu, T.; Wu, Y.; Wang, Z.; Zheng, H.; Liu, L.; Li, J. Benefit of Chemotherapy Based on Platinum with Definitive Radiotherapy in Older Patients with Locally Advanced Esophageal Squamous Cell Carcinoma. Radiat. Oncol., 2021, 16(1)
[http://dx.doi.org/10.1186/s13014-021-01931-1]
[53]
Yu, J.; Zhong, B.; Zhao, L.; Hou, Y.; Wang, X.; Chen, X. Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) Inhibitors Necrostatin-1 (Nec-1) and 7-Cl-O-Nec-1 (Nec-1s) Are Potent Inhibitors of NAD(P)H: Quinone Oxidoreductase 1 (NQO1). Free Radic. Biol. Med., 2021, 173, 64-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.017]
[54]
Srivastava, S.; Riddell, S.R. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-To-Bedside Efficacy. J. Immunol., 2018, 200(2), 459-468.
[http://dx.doi.org/10.4049/jimmunol.1701155]
[55]
Sadelain, M.; Brentjens, R.; Rivière, I. The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discov., 2013, 3(4), 388-398.
[http://dx.doi.org/10.1158/2159-8290.cd-12-0548]
[56]
Office of the Commissioner. FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. U.S. Food and Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-car-t-cell-therapy-treat-adults-certain-types-large-b-cell-lymphoma (accessed 2022-06-30).
[57]
Zheng, X.; Qi, C.; Yang, L.; Quan, Q.; Liu, B.; Zhong, Z.; Tang, X.; Fan, T.; Zhou, J.; Zhang, Y. The Improvement of CRISPR-Cas9 System with Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing. Front. Plant Sci., 2020, 11, 621.
[http://dx.doi.org/10.3389/fpls.2020.00621]
[58]
Zhang, X-H.; Tee, L.Y.; Wang, X-G.; Huang, Q-S.; Yang, S-H. Off-Target Effects in CRISPR/Cas9-Mediated Genome Engineering. Mol. Ther. Nucleic Acids, 2015, 4(1), e264.
[http://dx.doi.org/10.1038/mtna.2015.37]
[59]
Tycko, J. Myer, Vic E.; Hsu, Patrick D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell, 2016, 63(3), 355-370.
[http://dx.doi.org/10.1016/j.molcel.2016.07.004]
[60]
Wu, X.; Kriz, A.J.; Sharp, P.A. Target Specificity of the CRISPR-Cas9 System. Quant. Biol., 2014, 2(2), 59-70.
[http://dx.doi.org/10.1007/s40484-014-0030-x]
[61]
Vouillot, L.; Thélie, A.; Pollet, N. Comparison of T7E1 and Surveyor Mismatch Cleavage Assays to Detect Mutations Triggered by Engineered Nucleases. G3: Genes, Genomes. Genetics, 2015, 5(3), 407-415.
[http://dx.doi.org/10.1534/g3.114.015834]
[62]
Sentmanat, M.F.; Peters, S.T.; Florian, C.P.; Connelly, J.P.; Pruett-Miller, S.M. A Survey of Validation Strategies for CRISPR-Cas9 Editing. Sci. Rep., 2018, 8(1)
[http://dx.doi.org/10.1038/s41598-018-19441-8]
[63]
Qiu, P.; Shandilya, H.; D’Alessio, J.M.; O’Connor, K.; Durocher, J.; Gerard, G.F. Mutation Detection Using Surveyor Nuclease. Biotechniques, 2004, 36(4), 702-707.
[http://dx.doi.org/10.2144/04364PF01]
[64]
Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Tusubira, D.; Khan, M.W.A.; Mani, P.; Rao, T.N.; Sekar, D. CRISPR/Cas9 and next Generation Sequencing in the Personalized Treatment of Cancer. Mol. Cancer, 2022, 21(1)
[http://dx.doi.org/10.1186/s12943-022-01565-1]
[65]
Wong, N.; Liu, W.; Wang, X. WU-CRISPR: Characteristics of Functional Guide RNAs for the CRISPR/Cas9 System. Genome Biol., 2015, 16(1)
[http://dx.doi.org/10.1186/s13059-015-0784-0]
[66]
Höijer, I.; Emmanouilidou, A.; Östlund, R.; van Schendel, R.; Bozorgpana, S.; Tijsterman, M.; Feuk, L.; Gyllensten, U.; den Hoed, M.; Ameur, A. CRISPR-Cas9 Induces Large Structural Variants at On-Target and Off-Target Sites in Vivo That Segregate across Generations. Nat. Commun., 2022, 13(1)
[http://dx.doi.org/10.1038/s41467-022-28244-5]
[67]
Pattanayak, V.; Ramirez, C.L.; Joung, J.K.; Liu, D.R. Revealing Off-Target Cleavage Specificities of Zinc-Finger Nucleases by in Vitro Selection. Nat. Methods, 2011, 8(9), 765-770.
[http://dx.doi.org/10.1038/nmeth.1670]
[68]
Pacesa, M.; Lin, C.-H.; Cléry, A.; Bargsten, K.; Irby, M. J.; Allain, F. H. T.; Cameron, P.; Donohoue, P. D.; Jinek, M. Structural Basis for Cas9 Off-Target Activity. 2021.
[http://dx.doi.org/10.1101/2021.11.18.469088]
[69]
McKnight, J.N.; Tsukiyama, T.; Bowman, G.D. Sequence-Targeted Nucleosome Sliding in Vivo by a Hybrid Chd1 Chromatin Remodeler. Genome Res., 2016, 26(5), 693-704.
[http://dx.doi.org/10.1101/gr.199919.115]
[70]
Zimin, A.; Stevens, K.A.; Crepeau, M.W.; Holtz-Morris, A.; Koriabine, M.; Marçais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J.L.; de Jong, P.J.; Neale, D.B.; Salzberg, S.L.; Yorke, J.A.; Langley, C.H. Sequencing and Assembly of the 22-Gb Loblolly Pine Genome. Genetics, 2014, 196(3), 875-890.
[http://dx.doi.org/10.1534/genetics.113.159715]
[71]
Zischewski, J.; Fischer, R.; Bortesi, L. Detection of On-Target and Off-Target Mutations Generated by CRISPR/Cas9 and Other Sequence-Specific Nucleases. Biotechnol. Adv., 2017, 35(1), 95-104.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.003]
[72]
Yang, L.; Grishin, D.; Wang, G.; Aach, J.; Zhang, C-Z.; Chari, R.; Homsy, J.; Cai, X.; Zhao, Y.; Fan, J-B.; Seidman, C.; Seidman, J.; Pu, W.; Church, G. Targeted and Genome-Wide Sequencing Reveal Single Nucleotide Variations Impacting Specificity of Cas9 in Human Stem Cells. Nat. Commun., 2014, 5(1)
[http://dx.doi.org/10.1038/ncomms6507]
[73]
Levy, A.; Goren, M.G.; Yosef, I.; Auster, O.; Manor, M.; Amitai, G.; Edgar, R.; Qimron, U.; Sorek, R. CRISPR Adaptation Biases Explain Preference for Acquisition of Foreign DNA. Nature, 2015, 520(7548), 505-510.
[http://dx.doi.org/10.1038/nature14302]
[74]
Husnik, F.; McCutcheon, J.P. Functional Horizontal Gene Transfer from Bacteria to Eukaryotes. Nat. Rev. Microbiol., 2017, 16(2), 67-79.
[http://dx.doi.org/10.1038/nrmicro.2017.137]
[75]
Bondy-Denomy, J.; Pawluk, A.; Maxwell, K.L.; Davidson, A.R. Bacteriophage Genes That Inactivate the CRISPR/Cas Bacterial Immune System. Nature, 2013, 493(7432), 429-432.
[http://dx.doi.org/10.1038/nature11723]
[76]
Li, Y. Bondy-Denomy, J. Anti-CRISPRs Go Viral: The Infection Biology of CRISPR-Cas Inhibitors. Cell Host Microbe, 2021.
[http://dx.doi.org/10.1016/j.chom.2020.12.007]
[77]
Pinilla-Redondo, R.; Shehreen, S.; Marino, N.D.; Fagerlund, R.D.; Brown, C.M.; Sørensen, S.J.; Fineran, P.C.; Bondy-Denomy, J. Discovery of Multiple Anti-CRISPRs Highlights Anti-Defense Gene Clustering in Mobile Genetic Elements. Nat. Commun., 2020, 11(1)
[http://dx.doi.org/10.1038/s41467-020-19415-3]
[78]
Marino, N.D.; Pinilla-Redondo, R. Csörgő, B.; Bondy-Denomy, J. Anti-CRISPR Protein Applications: Natural Brakes for CRISPR-Cas Technologies. Nat. Methods, 2020, 17(5), 471-479.
[http://dx.doi.org/10.1038/s41592-020-0771-6]
[79]
Bondy-Denomy, J.; Davidson, A.R.; Doudna, J.A.; Fineran, P.C.; Maxwell, K.L.; Moineau, S.; Peng, X.; Sontheimer, E.J.; Wiedenheft, B. A Unified Resource for Tracking Anti-CRISPR Names. CRISPR J., 2018, 1(5), 304-305.
[http://dx.doi.org/10.1089/crispr.2018.0043]
[80]
Wiegand, T.; Karambelkar, S.; Bondy-Denomy, J.; Wiedenheft, B. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annu. Rev. Microbiol., 2020, 74(1), 21-37.
[http://dx.doi.org/10.1146/annurev-micro-020518-120107]
[81]
Shin, J.; Jiang, F.; Liu, J-J.; Bray, N.L.; Rauch, B.J.; Baik, S.H.; Nogales, E.; Bondy-Denomy, J.; Corn, J.E.; Doudna, J.A. Disabling Cas9 by an Anti-CRISPR DNA Mimic. Sci. Adv., 2017, 3(7), e1701620.
[http://dx.doi.org/10.1126/sciadv.1701620]
[82]
Yourik, P.; Fuchs, R.T.; Mabuchi, M.; Curcuru, J.L.; Robb, G.B. Staphylococcus Aureus Cas9 Is a Multiple-Turnover Enzyme. RNA, 2018, 25(1), 35-44.
[http://dx.doi.org/10.1261/rna.067355.118]
[83]
Zhang, Y.; Marchisio, M.A.; Type, I.I. Anti-CRISPR Proteins as a New Tool for Synthetic Biology. RNA Biol., 2020, 18(8), 1085-1098.
[http://dx.doi.org/10.1080/15476286.2020.1827803]
[84]
Jiang, F.; Zhou, K.; Ma, L.; Gressel, S.; Doudna, J.A.A. Cas9-Guide RNA Complex Preorganized for Target DNA Recognition. Science, 2015, 348(6242), 1477-1481.
[http://dx.doi.org/10.1126/science.aab1452]
[85]
Harrington, L.B.; Doxzen, K.W.; Ma, E.; Liu, J-J.; Knott, G.J.; Edraki, A.; Garcia, B.; Amrani, N.; Chen, J.S.; Cofsky, J.C.; Kranzusch, P.J.; Sontheimer, E.J.; Davidson, A.R.; Maxwell, K.L.; Doudna, J.A. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell, 2017, 170(6), 1224-1233.e15.
[http://dx.doi.org/10.1016/j.cell.2017.07.037]
[86]
Sternberg, S.H.; LaFrance, B.; Kaplan, M.; Doudna, J.A. Conformational Control of DNA Target Cleavage by CRISPR–Cas9. Nature, 2015, 527(7576), 110-113.
[http://dx.doi.org/10.1038/nature15544]
[87]
Pawluk, A.; Amrani, N.; Zhang, Y.; Garcia, B.; Hidalgo-Reyes, Y.; Lee, J.; Edraki, A.; Shah, M.; Sontheimer, E.J.; Maxwell, K.L.; Davidson, A.R. Naturally Occurring Off-Switches for CRISPR-Cas9. Cell, 2016, 167(7), 1829-1838.e9.
[http://dx.doi.org/10.1016/j.cell.2016.11.017]
[88]
Yang, Y.; Xu, J.; Ge, S.; Lai, L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, •••, 8.
[http://dx.doi.org/10.3389/fmed.2021.649896]
[89]
Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for Genome Editing: Progress, Implications and Challenges. Hum. Mol. Genet., 2014, 23(R1), R40-R46.
[http://dx.doi.org/10.1093/hmg/ddu125]
[90]
Rasul, M.F.; Hussen, B.M.; Salihi, A.; Ismael, B.S.; Jalal, P.J.; Zanichelli, A.; Jamali, E.; Baniahmad, A.; Ghafouri-Fard, S.; Basiri, A.; Taheri, M. Strategies to Overcome the Main Challenges of the Use of CRISPR/Cas9 as a Replacement for Cancer Therapy. Mol. Cancer, 2022, 21(1)
[http://dx.doi.org/10.1186/s12943-021-01487-4]
[91]
Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet., 2021, 12.
[http://dx.doi.org/10.3389/fgene.2021.673286]
[92]
Chistiakov, D.A.; Voronova, N.V.; Chistiakov, P.A. Genetic Variations in DNA Repair Genes, Radiosensitivity to Cancer and Susceptibility to Acute Tissue Reactions in Radiotherapy-Treated Cancer Patients. Acta Oncologica (Stockholm, Sweden), 2008, 47(5), 809-824.
[http://dx.doi.org/10.1080/02841860801885969]
[93]
Bremnes, R.M.; Dønnem, T.; Al-Saad, S.; Al-Shibli, K.; Andersen, S.; Sirera, R.; Camps, C.; Marinez, I.; Busund, L-T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol., 2011, 6(1), 209-217.
[http://dx.doi.org/10.1097/jto.0b013e3181f8a1bd]
[94]
Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the Tumour Stroma to Improve Cancer Therapy. Nat. Rev. Clin. Oncol., 2018, 15(6), 366-381.
[http://dx.doi.org/10.1038/s41571-018-0007-1]
[95]
Yi, L.; Li, J. CRISPR-Cas9 Therapeutics in Cancer: Promising Strategies and Present Challenges. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2016, 1866(2), 197-207.
[http://dx.doi.org/10.1016/j.bbcan.2016.09.002]
[96]
Tang, H.; Shrager, J.B. CRISPR/Cas-Mediated Genome Editing to Treat EGFR-Mutant Lung Cancer: A Personalized Molecular Surgical Therapy. EMBO Mol. Med., 2016, 8(2), 83-85.
[http://dx.doi.org/10.15252/emmm.201506006]
[97]
Regalado, A. The creator of the CRISPR babies has been released from a Chinese prison., MIT Technology Review. https://www.technologyreview.com/2022/04/04/1048829/he-jiankui-prison-free-crispr-babies/.
[98]
Peng, Y.; Lv, J.; Ding, L.; Gong, X.; Zhou, Q. Responsible Governance of Human Germline Genome Editing in China. Biol. Reprod., 2022.
[http://dx.doi.org/10.1093/biolre/ioac114]
[99]
Kondo, K.; Taguchi, C. Japanese Regulatory Framework and Approach for Genome-Edited Foods Based on Latest Scientific Findings.Food Safety; , 2022, 10, pp. (4)113-128.
[http://dx.doi.org/10.14252/foodsafetyfscj.d-21-00016]
[100]
Callaway, E. CRISPR Plants Now Subject to Tough GM Laws in European Union. Nature, 2018, 560(7716), 16-16.
[http://dx.doi.org/10.1038/d41586-018-05814-6]
[101]
Hamaguchi, M.; O’Connor, E.; Chen, T.; Parnell, L.; Richard McCombie, W.; Wigler, M. Rapid Isolation of CDNA by Hybridization. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3764-3769.
[http://dx.doi.org/10.1073/pnas.95.7.3764]
[102]
Richardson, C.D.; Ray, G.J.; DeWitt, M.A.; Curie, G.L.; Corn, J.E. Enhancing Homology-Directed Genome Editing by Catalytically Active and Inactive CRISPR-Cas9 Using Asymmetric Donor DNA. Nat. Biotechnol., 2016, 34(3), 339-344.
[http://dx.doi.org/10.1038/nbt.3481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy