Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Insights into the Mechanism of Osteoporosis and the Available Treatment Options

Author(s): Rajeshwari Muniyasamy and Inderchand Manjubala*

Volume 25, Issue 12, 2024

Published on: 02 November, 2023

Page: [1538 - 1551] Pages: 14

DOI: 10.2174/0113892010273783231027073117

Price: $65

Abstract

Osteoporosis, one of the most prevalent bone illnesses, majorly affects postmenopausal women and men over 50 years of age. Osteoporosis is associated with an increased susceptibility to fragility fractures and can result in persistent pain and significant impairment in affected individuals. The primary method for diagnosing osteoporosis involves the assessment of bone mineral density (BMD) through the utilisation of dual energy x-ray absorptiometry (DEXA). The integration of a fracture risk assessment algorithm with bone mineral density (BMD) has led to significant progress in the diagnosis of osteoporosis. Given that osteoporosis is a chronic condition and multiple factors play an important role in maintaining bone mass, comprehending its underlying mechanism is crucial for developing more effective pharmaceutical interventions for the disease. The effective management of osteoporosis involves the utilisation of appropriate pharmacological agents in conjunction with suitable dietary interventions and lifestyle modifications. This review provides a comprehensive understanding of the types of osteoporosis and elucidates the currently available pharmacological treatment options and their related mechanism of action and usage.

Graphical Abstract

[1]
Klibanski, A.; Adams-Campbell, L.; Bassford, T.; Blair, S.N.; Boden, S.D.; Dickersin, K. Osteoporosis prevention, diagnosis, and therapy. JAMA, 2001, 285(6), 785-795.
[http://dx.doi.org/10.1001/jama.285.6.785] [PMID: 11176917]
[2]
Sözen, T. Özışık, L.; Calik Basaran, N. An overview and management of osteoporosis. Eur. J. Rheumatol., 2017, 4(1), 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[3]
Mahakala, A.; Thoutreddy, S.; Kleerekoper, M. Prevention and treatment of postmenopausal osteoporosis. Treat. Endocrinol., 2003, 2(5), 331-345.
[http://dx.doi.org/10.2165/00024677-200302050-00005] [PMID: 15981950]
[4]
Johnell, O.; Kanis, J. Epidemiology of osteoporotic fractures. Osteoporos. Int., 2005, 16(S02), S3-S7.
[http://dx.doi.org/10.1007/s00198-004-1702-6] [PMID: 15365697]
[5]
Akkawi, I.; Zmerly, H. Osteoporosis: Current concepts. Joints, 2018, 6(2), 122-127.
[http://dx.doi.org/10.1055/s-0038-1660790] [PMID: 30051110]
[6]
Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17(12), 1726-1733.
[http://dx.doi.org/10.1007/s00198-006-0172-4] [PMID: 16983459]
[7]
Key statistic for Asia. International osteoporosis foundation. 2006. Available from: https://www.osteoporosis.foundation/factsstatistics/key-statistic-for-asia.
[8]
Pouresmaeili, F.; Kamali Dehghan, B.; Kamarehei, M.; Yong Meng, G. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag., 2018, 14, 2029-2049.
[http://dx.doi.org/10.2147/TCRM.S138000] [PMID: 30464484]
[9]
Pinkerton, J.; Thomas, S.; Dalkin, A.C. Osteoporosis treatment and prevention for postmenopausal women: Current and future therapeutic options. Clin. Obstet. Gynecol., 2013, 56(4), 711-721.
[http://dx.doi.org/10.1097/GRF.0b013e3182a9fb02] [PMID: 24100598]
[10]
Barnsley, J.; Buckland, G.; Chan, P.E.; Ong, A.; Ramos, A.S.; Baxter, M.; Laskou, F.; Dennison, E.M.; Cooper, C.; Patel, H.P. Pathophysiology and treatment of osteoporosis: Challenges for clinical practice in older people. Aging Clin. Exp. Res., 2021, 33(4), 759-773.
[http://dx.doi.org/10.1007/s40520-021-01817-y] [PMID: 33742387]
[11]
Seeman, E.; Martin, T.J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol., 2019, 15(4), 225-236.
[http://dx.doi.org/10.1038/s41584-019-0172-3] [PMID: 30755735]
[12]
Pavone, V.; Testa, G.; Giardina, S.M.C.; Vescio, A.; Restivo, D.A.; Sessa, G. Pharmacological therapy of osteoporosis: A systematic current review of literature. Front. Pharmacol., 2017, 8, 803.
[http://dx.doi.org/10.3389/fphar.2017.00803] [PMID: 29163183]
[13]
Del Valle, H.; Yaktine, A.; Taylor, C.; Ross, A. Dietary reference intakes for calcium and vitamin D; National Academies Press: US, 2011.
[http://dx.doi.org/10.17226/13050]
[14]
Sinaki, M.; Pfeifer, M. Non-Pharmacological Management of Osteoporosis: Exercise, Nutrition, Fall and Fracture Prevention, 1st ed; Springer Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-54016-0]
[15]
Bauman, A.; Merom, D.; Bull, F.C.; Buchner, D.M.; Fiatarone Singh, M.A. Updating the evidence for physical activity: Summative reviews of the epidemiological evidence, prevalence, and interventions to promote “Active Aging”. Gerontologist, 2016, 56(Suppl. 2), S268-S280.
[http://dx.doi.org/10.1093/geront/gnw031] [PMID: 26994266]
[16]
Fares, A. Pharmacological and non-pharmacological means for prevention of fractures among elderly. Int. J. Prev. Med., 2018, 9(1), 78.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_114_18] [PMID: 30283610]
[17]
Ansari, N.; Sims, N.A. The cells of bone and their interactions. Handb. Exp. Pharmacol., 2019, 262, 1-25.
[http://dx.doi.org/10.1007/164_2019_343] [PMID: 32006260]
[18]
Franz-Odendaal, T.A.; Hall, B.K.; Witten, P.E. Buried alive: How osteoblasts become osteocytes. Dev. Dyn., 2006, 235(1), 176-190.
[http://dx.doi.org/10.1002/dvdy.20603] [PMID: 16258960]
[19]
Rochefort, G.Y.; Pallu, S.; Benhamou, C.L. Osteocyte: The unrecognized side of bone tissue. Osteoporos. Int., 2010, 21(9), 1457-1469.
[http://dx.doi.org/10.1007/s00198-010-1194-5] [PMID: 20204595]
[20]
Florencio-Silva, R.; Sasso, G.R.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[21]
Mohamed, A.M.F.S. An overview of bone cells and their regulating factors of differentiation. Malays. J. Med. Sci., 2008, 15(1), 4-12.
[PMID: 22589609]
[22]
Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature, 2003, 423(6937), 337-342.
[http://dx.doi.org/10.1038/nature01658] [PMID: 12748652]
[23]
Henriksen, K.; Bollerslev, J.; Everts, V.; Karsdal, M.A. Osteoclast activity and subtypes as a function of physiology and pathology--implications for future treatments of osteoporosis. Endocr. Rev., 2011, 32(1), 31-63.
[http://dx.doi.org/10.1210/er.2010-0006] [PMID: 20851921]
[24]
Tella, S.H.; Gallagher, J.C. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol., 2014, 142, 155-170.
[http://dx.doi.org/10.1016/j.jsbmb.2013.09.008] [PMID: 24176761]
[25]
Sebastian, A. Loots, GG Genetics of Sost/SOST in sclerosteosis and van Buchem disease animal models. Metab - Clin. Exp., 2018, 80, 38-47.
[http://dx.doi.org/10.1016/j.metabol.2017.10.005]
[26]
Della Corte, A.; Giorgio, I.; Scerrato, D. A review of recent developments in mathematical modeling of bone remodeling. Proc. Inst. Mech. Eng. H, 2020, 234(3), 273-281.
[http://dx.doi.org/10.1177/0954411919857599] [PMID: 31203749]
[27]
Allen, M.R.; Burr, D.B. Bone Modeling and Remodeling. In: Basic and Applied Bone Biology; Elsevier, 2013; pp. 75-90.
[http://dx.doi.org/10.1016/B978-0-12-416015-6.00004-6]
[28]
Langdahl, B.; Ferrari, S.; Dempster, D.W. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis., 2016, 8(6), 225-235.
[http://dx.doi.org/10.1177/1759720X16670154] [PMID: 28255336]
[29]
Feng, X.; McDonald, J.M. Disorders of bone remodeling. Annu. Rev. Pathol., 2011, 6(1), 121-145.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130203] [PMID: 20936937]
[30]
Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med., 2015, 1(1), 9-13.
[http://dx.doi.org/10.1016/j.cdtm.2015.02.006] [PMID: 29062981]
[31]
Novais, A.; Chatzopoulou, E.; Chaussain, C.; Gorin, C. The potential of FGF-2 in craniofacial bone tissue engineering: A review. Cells, 2021, 10, 932.
[http://dx.doi.org/10.3390/cells10040932]
[32]
Kontulainen, S.; Sievänen, H.; Kannus, P.; Pasanen, M.; Vuori, I. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: A peripheral quantitative computed tomography study between young and old starters and controls. J. Bone Miner. Res., 2002, 17(12), 2281-2289.
[http://dx.doi.org/10.1359/jbmr.2002.17.12.2281] [PMID: 12469923]
[33]
Sugiyama, T.; Oda, H. Osteoporosis therapy: Bone modeling during growth and aging. Front. Endocrinol., 2017, 8, 46.
[http://dx.doi.org/10.3389/fendo.2017.00046] [PMID: 28337176]
[34]
Ozel, S.; Switzer, L.; Macintosh, A.; Fehlings, D. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: An update. Dev. Med. Child Neurol., 2016, 58(9), 918-923.
[http://dx.doi.org/10.1111/dmcn.13196] [PMID: 27435427]
[35]
Hattner, R.; Epker, B.N.; Frost, H.M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature, 1965, 206(4983), 489-490.
[http://dx.doi.org/10.1038/206489a0] [PMID: 5319106]
[36]
Mora, S.; Gilsanz, V. Establishment of peak bone mass. Endocrinol. Metab. Clin. North Am., 2003, 32(1), 39-63.
[http://dx.doi.org/10.1016/S0889-8529(02)00058-0] [PMID: 12699292]
[37]
Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med., 2014, 14(2), 187-191.
[http://dx.doi.org/10.7861/clinmedicine.14-2-187] [PMID: 24715132]
[38]
Tuck, S.P.; Francis, R.M. Osteoporosis. Postgrad. Med. J., 2002, 78(923), 526-532.
[http://dx.doi.org/10.1136/pmj.78.923.526] [PMID: 12357012]
[39]
Sheu, A.; Diamond, T. Diagnostic Tests: Bone mineral density: Testing for osteoporosis. Aust. Prescr., 2016, 39(2), 35-39.
[http://dx.doi.org/10.18773/austprescr.2016.020] [PMID: 27340320]
[40]
World Health Organization. FRAXA WHO Fracture Risk Assessment Tool., Available from: http://www.shef.ac.uk/FRAX/
[41]
Compston, J.; Cooper, A.; Cooper, C.; Gittoes, N.; Gregson, C.; Harvey, N.; Hope, S.; Kanis, J.A.; McCloskey, E.V.; Poole, K.E.S.; Reid, D.M.; Selby, P.; Thompson, F.; Thurston, A.; Vine, N. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos., 2017, 12(1), 43.
[http://dx.doi.org/10.1007/s11657-017-0324-5] [PMID: 28425085]
[42]
Mirza, F.; Canalis, E. Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur. J. Endocrinol., 2015, 173(3), R131-R151.
[http://dx.doi.org/10.1530/EJE-15-0118] [PMID: 25971649]
[43]
Pacifici, R. Mechanisms of estrogen action in bone. Princ Bone Biol Two-Volume Set, 2008, 1, 921-933.
[http://dx.doi.org/10.1016/B978-0-12-373884-4.00059-8]
[44]
Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab., 2012, 23(11), 576-581.
[http://dx.doi.org/10.1016/j.tem.2012.03.008] [PMID: 22595550]
[45]
Zhang, D-M; Cui, D-X; Xu, R-S; Zhou, Y-C; Zheng, L-W Liu, P Phenotypic research on senile osteoporosis caused by SIRT6 deficiency. Int. J. Oral Sci., 2016, 8, 84-92.
[http://dx.doi.org/10.1038/ijos.2015.57]
[46]
Qadir, A; Liang, S; Wu, Z; Chen, Z; Hu, L; Qian, A Senile osteoporosis: The involvement of differentiation and senescence of bone marrow stromal cells. Int. J. Mol. Sci., 2020, 21(1), 349.
[http://dx.doi.org/10.3390/ijms21010349]
[47]
Johnston, C.B.; Dagar, M. Osteoporosis in older adults. Med. Clin. North Am., 2020, 104(5), 873-884.
[http://dx.doi.org/10.1016/j.mcna.2020.06.004] [PMID: 32773051]
[48]
Santos, L.; Elliott-Sale, K.J.; Sale, C. Exercise and bone health across the lifespan. Biogerontology, 2017, 18, 931-946.
[http://dx.doi.org/10.1007/s10522-017-9732-6]
[49]
Lane, N.E. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol., 2006, 194(2), S3-S11.
[http://dx.doi.org/10.1016/j.ajog.2005.08.047] [PMID: 16448873]
[50]
Minisola, S.; Cipriani, C.; Occhiuto, M.; Pepe, J. New anabolic therapies for osteoporosis. Intern. Emerg. Med., 2017, 12(7), 915-921.
[http://dx.doi.org/10.1007/s11739-017-1719-4] [PMID: 28780668]
[51]
Palacios, S. Medical treatment of osteoporosis. Climacteric, 2022, 25(1), 43-49.
[http://dx.doi.org/10.1080/13697137.2021.1951697] [PMID: 34382489]
[52]
Haas, A.V.; LeBoff, M.S. Osteoanabolic agents for osteoporosis. J. Endocr. Soc., 2018, 2(8), 922-932.
[http://dx.doi.org/10.1210/js.2018-00118] [PMID: 30087947]
[53]
Mihaylova, L.; Peikova, L.; Obreshkova, D. Osteoporosis: Therapeutic options. Folia Med., 2015, 57(3-4), 181-190.
[http://dx.doi.org/10.1515/folmed-2015-0037]
[54]
Banu, J.; Varela, E.; Fernandes, G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr. Rev., 2012, 70(1), 22-40.
[http://dx.doi.org/10.1111/j.1753-4887.2011.00451.x] [PMID: 22221214]
[55]
Chen, L.R.; Ko, N.Y.; Chen, K.H. Medical treatment for osteoporosis: From molecular to clinical opinions. Int. J. Mol. Sci., 2019, 20(9), 2213.
[http://dx.doi.org/10.3390/ijms20092213] [PMID: 31064048]
[56]
Camacho, P.M.; Petak, S.M.; Binkley, N.; Clarke, B.L.; Harris, S.T.; Hurley, D.L.; Kleerekoper, M.; Lewiecki, E.M.; Miller, P.D.; Narula, H.S.; Pessah-Pollack, R.; Tangpricha, V.; Wimalawansa, S.J.; Watts, N.B. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis - 2016--Executive Summary. Endocr. Pract., 2016, 22(9), 1111-1118.
[http://dx.doi.org/10.4158/EP161435.ESGL] [PMID: 27643923]
[57]
Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A review of treatment options. P T, 2018, 43(2), 92-104.
[PMID: 29386866]
[58]
Lewiecki, E.M. Bisphosphonates for the treatment of osteoporosis: Insights for clinicians. Ther. Adv. Chronic Dis., 2010, 1(3), 115-128.
[http://dx.doi.org/10.1177/2040622310374783] [PMID: 23251734]
[59]
Watts, N.B.; Diab, D.L. Long-term use of bisphosphonates in osteoporosis. J. Clin. Endocrinol. Metab., 2010, 95(4), 1555-1565.
[http://dx.doi.org/10.1210/jc.2009-1947] [PMID: 20173017]
[60]
Fleisch, H. Bisphosphonates in osteoporosis. S. Afr. Pharm. J., 2017, 12, 60-64.
[http://dx.doi.org/10.1007/3-540-27376-X_8]
[61]
Caires, E.L.P.; Bezerra, M.C.; Junqueira, A.F.T de A.; Fontenele, S.M de A.; Andrade, S.C de A.; d’Alva, C.B. Treatment of postmenopausal osteoporosis: A literature-based algorithm for use in the public health care system. In: Rev. Bras. Reumatol. Engl. Ed;; , 2017; 57, pp. (3)254-263.
[http://dx.doi.org/10.1016/j.rbre.2017.01.001]
[62]
Bone, H.G.; Hosking, D.; Devogelaer, J.P.; Tucci, J.R.; Emkey, R.D.; Tonino, R.P.; Rodriguez-Portales, J.A.; Downs, R.W.; Gupta, J.; Santora, A.C.; Liberman, U.A. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N. Engl. J. Med., 2004, 350(12), 1189-1199.
[http://dx.doi.org/10.1056/NEJMoa030897] [PMID: 15028823]
[63]
Compston, J. Practical guidance for the use of bisphosphonates in osteoporosis. Bone, 2020, 136, 115330.
[http://dx.doi.org/10.1016/j.bone.2020.115330] [PMID: 32222607]
[64]
Chesnut, C.H., III; Skag, A.; Christiansen, C.; Recker, R.; Stakkestad, J.A.; Hoiseth, A.; Felsenberg, D.; Huss, H.; Gilbride, J.; Schimmer, R.C.; Delmas, P.D. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res., 2004, 19(8), 1241-1249.
[http://dx.doi.org/10.1359/JBMR.040325] [PMID: 15231010]
[65]
Delmas, P.D.; Adami, S.; Strugala, C.; Stakkestad, J.A.; Reginster, J.Y.; Felsenberg, D.; Christiansen, C.; Civitelli, R.; Drezner, M.K.; Recker, R.R.; Bolognese, M.; Hughes, C.; Masanauskaite, D.; Ward, P.; Sambrook, P.; Reid, D.M. Intravenous ibandronate injections in postmenopausal women with osteoporosis: One-year results from the dosing intravenous administration study. Arthritis Rheum., 2006, 54(6), 1838-1846.
[http://dx.doi.org/10.1002/art.21918] [PMID: 16729277]
[66]
Ringe, J.D.; Dorst, A.; Faber, H.; Ibach, K.; Sorenson, F. Intermittent intravenous ibandronate injections reduce vertebral fracture risk in corticosteroid-induced osteoporosis: Results from a long-term comparative study. Osteoporos. Int., 2003, 14(10), 801-807.
[http://dx.doi.org/10.1007/s00198-003-1425-0] [PMID: 14610641]
[67]
Black, D.M.; Rosen, C.J. Postmenopausal osteoporosis. N. Engl. J. Med., 2016, 374(3), 254-262.
[http://dx.doi.org/10.1056/NEJMcp1513724] [PMID: 26789873]
[68]
Grey, A.; Bolland, M.; Wattie, D.; Horne, A.; Gamble, G.; Reid, I.R. Prolonged antiresorptive activity of zoledronate: A randomized, controlled trial. J. Bone Miner. Res., 2010, 25(10), 2251-2255.
[http://dx.doi.org/10.1002/jbmr.103] [PMID: 20499349]
[69]
Kennel, K.A.; Drake, M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc., 2009, 84(7), 632-638.
[http://dx.doi.org/10.1016/S0025-6196(11)60752-0]
[70]
Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int., 2019, 30(1), 3-44.
[http://dx.doi.org/10.1007/s00198-018-4704-5] [PMID: 30324412]
[71]
Khosla, S.; Burr, D.; Cauley, J.; Dempster, D.W.; Ebeling, P.R.; Felsenberg, D.; Gagel, R.F.; Gilsanz, V.; Guise, T.; Koka, S.; McCauley, L.K.; McGowan, J.; McKee, M.D.; Mohla, S.; Pendrys, D.G.; Raisz, L.G.; Ruggiero, S.L.; Shafer, D.M.; Shum, L.; Silverman, S.L.; Van Poznak, C.H.; Watts, N.; Woo, S.B.; Shane, E. Bisphosphonate-associated osteonecrosis of the jaw: Report of a task force of the american society for bone and mineral research. J. Bone Miner. Res., 2007, 22(10), 1479-1491.
[http://dx.doi.org/10.1359/jbmr.0707onj] [PMID: 17663640]
[72]
Cummings, S.R.; Schwartz, A.V.; Black, D.M. Alendronate and atrial fibrillation. N. Engl. J. Med., 2007, 356(18), 1895-1896.
[http://dx.doi.org/10.1056/NEJMc076132] [PMID: 17476024]
[73]
Simm, P.J.; Biggin, A.; Zacharin, M.R.; Rodda, C.P.; Tham, E.; Siafarikas, A.; Jefferies, C.; Hofman, P.L.; Jensen, D.E.; Woodhead, H.; Brown, J.; Wheeler, B.J.; Brookes, D.; Lafferty, A.; Munns, C.F. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J. Paediatr. Child Health, 2018, 54(3), 223-233.
[http://dx.doi.org/10.1111/jpc.13768] [PMID: 29504223]
[74]
Adler, R.A.; El-Hajj Fuleihan, G.; Bauer, D.C.; Camacho, P.M.; Clarke, B.L.; Clines, G.A.; Compston, J.E.; Drake, M.T.; Edwards, B.J.; Favus, M.J.; Greenspan, S.L.; McKinney, R., Jr; Pignolo, R.J.; Sellmeyer, D.E. Managing osteoporosis in patients on long-term bisphosphonate treatment: Report of a task force of the american society for bone and mineral research. J. Bone Miner. Res., 2016, 31(1), 16-35.
[http://dx.doi.org/10.1002/jbmr.2708] [PMID: 26350171]
[75]
Milat, F.; Ebeling, P.R. Osteoporosis treatment: A missed opportunity. Med. J. Aust., 2016, 205(4), 185-190.
[http://dx.doi.org/10.5694/mja16.00568] [PMID: 27510350]
[76]
David, P.S.; Sobel, T.; Sahni, S.; Mehta, J.; Kling, J.M. Menopausal hormone therapy in older women: Examining the current balance of evidence. Drugs Aging, 2023, 40(8), 675-683.
[http://dx.doi.org/10.1007/s40266-023-01043-3] [PMID: 37344689]
[77]
Shah, N.; Ariel, D. The role of menopausal hormone therapy in the prevention and treatment of low bone density in perimenopausal and postmenopausal women. Curr. Opin. Obstet. Gynecol., 2023, 35(2), 141-149.
[http://dx.doi.org/10.1097/GCO.0000000000000858] [PMID: 36912327]
[78]
Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: Nested case-control studies using the QResearch and CPRD databases. BMJ, 2020, 371, m3873.
[http://dx.doi.org/10.1136/bmj.m3873] [PMID: 33115755]
[79]
Mehta, J.; Kling, J.M.; Manson, J.E. Risks, benefits, and treatment modalities of menopausal hormone therapy: Current concepts. Front. Endocrinol., 2021, 12, 564781.
[http://dx.doi.org/10.3389/fendo.2021.564781] [PMID: 33841322]
[80]
Muñoz-Torres, M.; Alonso, G.; Raya, M.P. Calcitonin therapy in osteoporosis. Treat. Endocrinol., 2004, 3(2), 117-132.
[http://dx.doi.org/10.2165/00024677-200403020-00006] [PMID: 15743107]
[81]
Peña-Rodríguez, Z.A.; Haro-García, M.; Benito-Navarro, J.R. Nasal osteoma and inhaled salmon calcitonin: Coincidence or consequence? Acta Otorrinolaringologica, 2017, 68(6), 366-368.
[http://dx.doi.org/10.1016/j.otoeng.2017.10.002] [PMID: 28069111]
[82]
Nelson, E.R.; Wardell, S.E.; McDonnell, D.P. The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: Implications for the treatment and prevention of osteoporosis. Bone, 2013, 53(1), 42-50.
[http://dx.doi.org/10.1016/j.bone.2012.11.011] [PMID: 23168292]
[83]
An, K.C. Selective estrogen receptor modulators. Asian Spine J., 2016, 10(4), 787-791.
[http://dx.doi.org/10.4184/asj.2016.10.4.787] [PMID: 27559463]
[84]
Hadji, P. The evolution of selective estrogen receptor modulators in osteoporosis therapy. Climacteric, 2012, 15(6), 513-523.
[http://dx.doi.org/10.3109/13697137.2012.688079] [PMID: 22853318]
[85]
Johnston, C.C., Jr; Bjarnason, N.H.; Cohen, F.J.; Shah, A.; Lindsay, R.; Mitlak, B.H.; Huster, W.; Draper, M.W.; Harper, K.D.; Heath, H., III; Gennari, C.; Christiansen, C.; Arnaud, C.D.; Delmas, P.D. Long-term effects of raloxifene on bone mineral density, bone turnover, and serum lipid levels in early postmenopausal women: Three-year data from 2 double-blind, randomized, placebo-controlled trials. Arch. Intern. Med., 2000, 160(22), 3444-3450.
[http://dx.doi.org/10.1001/archinte.160.22.3444] [PMID: 11112238]
[86]
Gennari, L.; Merlotti, D.; Nuti, R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: Focus on lasofoxifene. Clin. Interv. Aging, 2010, 5, 19-29.
[http://dx.doi.org/10.2147/CIA.S6083] [PMID: 20169039]
[87]
Gennari, L.; Merlotti, D.; De Paola, V.; Martini, G.; Nuti, R. Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther. Clin. Risk Manag., 2008, 4(6), 1229-1242.
[http://dx.doi.org/10.2147/TCRM.S3476] [PMID: 19337430]
[88]
Orwoll, E.S.; Bilezikian, J.P.; Vanderschueren, D. Osteoporosis in Men; Elsevier, 2010.
[http://dx.doi.org/10.1016/C2009-0-02210-7]
[89]
Zaheer, S.; LeBoff, M.; Lewiecki, E.M. Denosumab for the treatment of osteoporosis. Expert Opin. Drug Metab. Toxicol., 2015, 11(3), 461-470.
[http://dx.doi.org/10.1517/17425255.2015.1000860] [PMID: 25614274]
[90]
Cummings, SR; Martin, JS; McClung, MR; Siris, ES; Eastell, R; Reid, IR Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med., 2009, 361(8), 756-765.
[http://dx.doi.org/10.1056/NEJMoa0809493]
[91]
Zhang, N.; Zhang, Z.K.; Yu, Y.; Zhuo, Z.; Zhang, G.; Zhang, B.T. Pros and cons of denosumab treatment for osteoporosis and implication for RANKL aptamer therapy. Front. Cell Dev. Biol., 2020, 8, 325.
[http://dx.doi.org/10.3389/fcell.2020.00325] [PMID: 32478071]
[92]
Lane, N.E.; Kelman, A. A review of anabolic therapies for osteoporosis. Arthritis Res., 2003, 5(5), 214-222.
[http://dx.doi.org/10.1186/ar797] [PMID: 12932280]
[93]
Martin, T.J. Bone biology and anabolic therapies for bone: Current status and future prospects. J. Bone Metab., 2014, 21(1), 8-20.
[http://dx.doi.org/10.11005/jbm.2014.21.1.8] [PMID: 24707463]
[94]
Wojda, S.J.; Donahue, S.W. Parathyroid hormone for bone regeneration. J. Orthop. Res., 2018, 36(10), 2586-2594.
[http://dx.doi.org/10.1002/jor.24075] [PMID: 29926970]
[95]
Riggs; Redman, C.; Riggs, A. Teriparatide in the management of osteoporosis. Clin. Interv. Aging, 2008, 2(4), 499-507.
[http://dx.doi.org/10.2147/CIA.S241] [PMID: 18225450]
[96]
Langdahl, B.L.; Silverman, S.; Fujiwara, S.; Saag, K.; Napoli, N.; Soen, S.; Enomoto, H.; Melby, T.E.; Disch, D.P.; Marin, F.; Krege, J.H. Real-world effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures: Integrated analysis of 4 prospective observational studies. Bone, 2018, 116, 58-66.
[http://dx.doi.org/10.1016/j.bone.2018.07.013] [PMID: 30021126]
[97]
Miller, P.D.; Hattersley, G.; Lau, E.; Fitzpatrick, L.A.; Harris, A.G.; Williams, G.C.; Hu, M.Y.; Riis, B.J.; Russo, L.; Christiansen, C. Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: Results from the ACTIVE phase 3 trial. Bone, 2019, 120, 137-140.
[http://dx.doi.org/10.1016/j.bone.2018.10.015] [PMID: 30359763]
[98]
Chandler, H.; Lanske, B.; Varela, A.; Guillot, M.; Boyer, M.; Brown, J.; Pierce, A.; Ominsky, M.; Mitlak, B.; Baron, R.; Kostenuik, P.; Hattersley, G. Abaloparatide, a novel osteoanabolic PTHrP analog, increases cortical and trabecular bone mass and architecture in orchiectomized rats by increasing bone formation without increasing bone resorption. Bone, 2019, 120, 148-155.
[http://dx.doi.org/10.1016/j.bone.2018.10.012] [PMID: 30343166]
[99]
Leder, B.Z.; Tsai, J.N.; Uihlein, A.V.; Burnett-Bowie, S.A.M.; Zhu, Y.; Foley, K.; Lee, H.; Neer, R.M. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): A randomized controlled trial. J. Clin. Endocrinol. Metab., 2014, 99(5), 1694-1700.
[http://dx.doi.org/10.1210/jc.2013-4440] [PMID: 24517156]
[100]
Girotra, M.; Rubin, M.R.; Bilezikian, J.P. Anabolic skeletal therapy for osteoporosis. Arq. Bras. Endocrinol. Metabol, 2006, 50(4), 745-754.
[http://dx.doi.org/10.1590/S0004-27302006000400019] [PMID: 17117299]
[101]
Blake, G.M.; Fogelman, I. Strontium ranelate: A novel treatment for postmenopausal osteoporosis: A review of safety and efficacy. Clin. Interv. Aging, 2006, 1(4), 367-375.
[http://dx.doi.org/10.2147/ciia.2006.1.4.367] [PMID: 18046914]
[102]
McGreevy, C.; Williams, D. Safety of drugs used in the treatment of osteoporosis. Ther. Adv. Drug Saf., 2011, 2(4), 159-172.
[http://dx.doi.org/10.1177/2042098611411012] [PMID: 25083210]
[103]
Cianferotti, L.; D’Asta, F.; Brandi, M.L. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther. Adv. Musculoskelet. Dis., 2013, 5(3), 127-139.
[http://dx.doi.org/10.1177/1759720X13483187] [PMID: 23858336]
[104]
Kaufman, J.M.; Audran, M.; Bianchi, G.; Braga, V.; Diaz-Curiel, M.; Francis, R.M.; Goemaere, S.; Josse, R.; Palacios, S.; Ringe, J.D.; Felsenberg, D.; Boonen, S. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J. Clin. Endocrinol. Metab., 2013, 98(2), 592-601.
[http://dx.doi.org/10.1210/jc.2012-3048] [PMID: 23341486]
[105]
Lim, S.Y.; Bolster, M. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des. Devel. Ther., 2017, 11, 1221-1231.
[http://dx.doi.org/10.2147/DDDT.S127568] [PMID: 28458516]
[106]
McClung, M.R.; Grauer, A.; Boonen, S.; Bolognese, M.A.; Brown, J.P.; Diez-Perez, A.; Langdahl, B.L.; Reginster, J-Y.; Zanchetta, J.R.; Wasserman, S.M.; Katz, L.; Maddox, J.; Yang, Y-C.; Libanati, C.; Bone, H.G. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med., 2014, 370(5), 412-420.
[http://dx.doi.org/10.1056/NEJMoa1305224]
[107]
Langdahl, B.L.; Libanati, C.; Crittenden, D.B.; Bolognese, M.A.; Brown, J.P.; Daizadeh, N.S.; Dokoupilova, E.; Engelke, K.; Finkelstein, J.S.; Genant, H.K.; Goemaere, S.; Hyldstrup, L.; Jodar-Gimeno, E.; Keaveny, T.M.; Kendler, D.; Lakatos, P.; Maddox, J.; Malouf, J.; Massari, F.E.; Molina, J.F.; Ulla, M.R.; Grauer, A. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: A randomised, open-label, phase 3 trial. Lancet, 2017, 390(10102), 1585-1594.
[http://dx.doi.org/10.1016/S0140-6736(17)31613-6] [PMID: 28755782]
[108]
Ferrari, SL Romosozumab to rebuild the foundations of bone strength. Nat. Rev. Rheumatol., 2018, 14, 128.
[http://dx.doi.org/10.1038/nrrheum.2018.5]
[109]
Kaveh, S.; Hosseinifard, H.; Ghadimi, N.; Vojdanian, M.; Aryankhesal, A. Efficacy and safety of Romosozumab in treatment for low bone mineral density: A systematic review and meta-analysis. Clin. Rheumatol., 2020, 39(11), 3261-3276.
[http://dx.doi.org/10.1007/s10067-020-04948-1] [PMID: 32385757]
[110]
Zhang, C.; Song, C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front. Pharmacol., 2021, 11, 607017.
[http://dx.doi.org/10.3389/fphar.2020.607017] [PMID: 33584284]
[111]
Lou, S.; Lv, H.; Li, Z.; Zhang, L.; Tang, P. Combination therapy of anabolic agents and bisphosphonates on bone mineral density in patients with osteoporosis: A meta-analysis of randomised controlled trials. BMJ Open, 2018, 8(3), e015187.
[http://dx.doi.org/10.1136/bmjopen-2016-015187] [PMID: 29500198]
[112]
Tsai, J.N.; Uihlein, A.V.; Burnett-Bowie, S.M.; Neer, R.M.; Derrico, N.P.; Lee, H.; Bouxsein, M.L.; Leder, B.Z. Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J. Clin. Endocrinol. Metab., 2016, 101(5), 2023-2030.
[http://dx.doi.org/10.1210/jc.2016-1160] [PMID: 26964731]
[113]
Ramchand, S.K.; David, N.L.; Lee, H.; Bruce, M.; Bouxsein, M.L.; Leder, B.Z.; Tsai, J.N. Effects of combination denosumab and HIGH-DOSE teriparatide administration on bone microarchitecture and estimated strength: The DATA-HD HR-PQCT study. J. Bone Miner. Res., 2021, 36(1), 41-51.
[http://dx.doi.org/10.1002/jbmr.4161] [PMID: 32790196]
[114]
Nakamura, Y.; Suzuki, T.; Kamimura, M.; Ikegami, S.; Murakami, K.; Uchiyama, S.; Taguchi, A.; Kato, H. Two-year clinical outcome of denosumab treatment alone and in combination with teriparatide in Japanese treatment-naive postmenopausal osteoporotic women. Bone Res., 2017, 5(1), 16055.
[http://dx.doi.org/10.1038/boneres.2016.55] [PMID: 28690911]
[115]
Finkelstein, J.S.; Wyland, J.J.; Lee, H.; Neer, R.M. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab., 2010, 95(4), 1838-1845.
[http://dx.doi.org/10.1210/jc.2009-1703] [PMID: 20164296]
[116]
Li, Y.F.; Zhou, C.C.; Li, J.H.; Luo, E.; Zhu, S.S.; Feng, G.; Hu, J. The effects of combined human parathyroid hormone (1-34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos. Int., 2012, 23(4), 1463-1474.
[http://dx.doi.org/10.1007/s00198-011-1751-6] [PMID: 21892678]
[117]
Roux, S. New treatment targets in osteoporosis. Joint Bone Spine, 2010, 77(3), 222-228.
[http://dx.doi.org/10.1016/j.jbspin.2010.02.004] [PMID: 20381400]
[118]
Iñiguez-Ariza, N.M.; Clarke, B.L. Bone biology, signaling pathways, and therapeutic targets for osteoporosis. Maturitas, 2015, 82(2), 245-255.
[http://dx.doi.org/10.1016/j.maturitas.2015.07.003] [PMID: 26255682]
[119]
Dai, R.; Wu, Z.; Chu, H.Y.; Lu, J.; Lyu, A.; Liu, J.; Zhang, G.; Cathepsin, K. The action in and beyond bone. Front. Cell Dev. Biol., 2020, 8, 433.
[http://dx.doi.org/10.3389/fcell.2020.00433] [PMID: 32582709]
[120]
Muniyasamy, R.; Manjubala, I. Identification of potential sclerostin inhibiting flavonoids from Oroxylum indicum: An in silico approach. J. Biomol. Struct. Dyn., 2023, 1-12.
[http://dx.doi.org/10.1080/07391102.2023.2239955] [PMID: 37493468]
[121]
Adhish, M.; Manjubala, I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J. Biomol. Struct. Dyn., 2023, 0, 1-16.
[http://dx.doi.org/10.1080/07391102.2023.2249103] [PMID: 37608541]
[122]
Jiang, H.; Zhang, Z.; Yu, Y.; Chu, H.Y.; Yu, S.; Yao, S.; Zhang, G.; Zhang, B.T. Drug discovery of DKK1 inhibitors. Front. Pharmacol., 2022, 13, 847387.
[http://dx.doi.org/10.3389/fphar.2022.847387] [PMID: 35355709]
[123]
Jiang, Y.; Zhang, P.; Zhang, X.; Lv, L.; Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif., 2021, 54(1), e12956.
[http://dx.doi.org/10.1111/cpr.12956] [PMID: 33210341]
[124]
Rudiansyah, M.; El-Sehrawy, A.A.; Ahmad, I.; Terefe, E.M.; Abdelbasset, W.K.; Bokov, D.O.; Salazar, A.; Rizaev, J.A.; Muthanna, F.M.S.; Shalaby, M.N. Osteoporosis treatment by mesenchymal stromal/stem cells and their exosomes: Emphasis on signaling pathways and mechanisms. Life Sci., 2022, 306, 120717.
[http://dx.doi.org/10.1016/j.lfs.2022.120717] [PMID: 35792178]
[125]
Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. Recent trends in the development of bone regenerative biomaterials. Front. Cell Dev. Biol., 2021, 9, 665813.
[http://dx.doi.org/10.3389/fcell.2021.665813] [PMID: 34026758]
[126]
Arcos, D.; Boccaccini, A.R.; Bohner, M.; Díez-Pérez, A.; Epple, M.; Gómez-Barrena, E.; Herrera, A.; Planell, J.A.; Rodríguez-Mañas, L.; Vallet-Regí, M. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater., 2014, 10(5), 1793-1805.
[http://dx.doi.org/10.1016/j.actbio.2014.01.004] [PMID: 24418434]
[127]
Arkin, V.H.; Narendrakumar, U.; Madhyastha, H.; Manjubala, I. Characterization and in vitro evaluations of injectable calcium phosphate cement doped with magnesium and strontium. ACS Omega, 2021, 6(4), 2477-2486.
[http://dx.doi.org/10.1021/acsomega.0c03927] [PMID: 33553866]
[128]
v K, A.D.; Ray, S.; Arora, U.; Mitra, S.; Sionkowska, A.; Jaiswal, A.K. Dual drug delivery platforms for bone tissue engineering. Front. Bioeng. Biotechnol., 2022, 10, 969843.
[http://dx.doi.org/10.3389/fbioe.2022.969843] [PMID: 36172012]
[129]
Ding, K.; Hua, F.; Ding, W. Gut microbiome and osteoporosis. Aging Dis., 2020, 11(2), 438-447.
[http://dx.doi.org/10.14336/AD.2019.0523] [PMID: 32257552]
[130]
Black, D.M.; Cummings, S.R.; Karpf, D.B.; Cauley, J.A.; Thompson, D.E.; Nevitt, M.C.; Bauer, D.C.; Genant, H.K.; Haskell, W.L.; Marcus, R.; Ott, S.M.; Torner, J.C.; Quandt, S.A.; Reiss, T.F.; Ensrud, K.E. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet, 1996, 348(9041), 1535-1541.
[http://dx.doi.org/10.1016/S0140-6736(96)07088-2] [PMID: 8950879]
[131]
McClung, M.R.; Geusens, P.; Miller, P.D.; Zippel, H.; Bensen, W.G.; Roux, C.; Adami, S.; Fogelman, I.; Diamond, T.; Eastell, R.; Meunier, P.J.; Wasnich, R.D.; Greenwald, M.; Kaufman, J-M.; Chesnut, C.H.; Reginster, J-Y. Effect of risedronate on the risk of hip fracture in elderly women. N. Engl. J. Med., 2001, 344(5), 333-340.
[http://dx.doi.org/10.1056/NEJM200102013440503] [PMID: 11172164]
[132]
Black, D.M.; Delmas, P.D.; Eastell, R.; Reid, I.R.; Boonen, S.; Cauley, J.A.; Cosman, F.; Lakatos, P.; Leung, P.C.; Man, Z.; Mautalen, C.; Mesenbrink, P.; Hu, H.; Caminis, J.; Tong, K.; Rosario-Jansen, T.; Krasnow, J.; Hue, T.F.; Sellmeyer, D.; Eriksen, E.F.; Cummings, S.R. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med., 2007, 356(18), 1809-1822.
[http://dx.doi.org/10.1056/NEJMoa067312] [PMID: 17476007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy