Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

n-3 PUFAs Show Promise as Adjuvants in Chemotherapy, Enhancing their Efficacy while Safeguarding Hematopoiesis and Promoting Bone Generation

Author(s): Pradnya Gurav, Suraj Garad and Kedar R. Nirmala*

Volume 24, Issue 1, 2024

Published on: 27 October, 2023

Page: [45 - 59] Pages: 15

DOI: 10.2174/0115680266258838231020102401

Price: $65

Abstract

Cancer ranks as the second leading cause of mortality in high-income countries, underscoring the critical need for effective therapeutic strategies. One prominent approach, chemotherapy, is widely employed for treating solid tumors. However, the significant adverse effects associated with chemotherapy, notably myeloablation and osteonecrosis, impart considerable challenges by compromising immune function and diminishing patients' quality of life. Furthermore, the emergence of chemotherapy resistance poses a formidable hurdle in achieving successful cancer treatment outcomes. In this context, the focus is on exploring alternative approaches to enhance the efficacy of cancer treatment and mitigate its adverse consequences. Among these approaches, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), two n-3 polyunsaturated fatty acids (PUFAs), have garnered substantial interest. These PUFAs exhibit the potential to influence membrane lipid composition and modulate critical gene expressions associated with cancer, such as Bcl-2, PI3K, NF-κB, and phosphorylated Akt, thereby potentially reducing cancer risk. Moreover, emerging evidence highlights their ability to augment chemotherapy efficacy, particularly in drug-resistant cancer cells. Importantly, both preclinical and clinical investigations have provided compelling evidence supporting the protective effects of n-3 PUFAs on healthy cells. Leveraging these findings, there has been growing attention on the exploration of n-3 PUFAs as adjuvants to chemotherapy. This strategic approach holds promise in mitigating the adverse effects linked to chemotherapy, notably myeloablation and osteonecrosis, while simultaneously enhancing its effectiveness in combating cancer. This comprehensive review delves into the multifaceted attributes of n-3 PUFAs, encompassing their cytotoxic properties, potential as chemopreventive agents, and their prospective role in ameliorating the adverse effects commonly associated with chemotherapy, with a particular emphasis on myeloablation and osteonecrosis. By elucidating the intricate interplay between n-3 PUFAs and cancer treatment paradigms, this review contributes to the expanding body of knowledge aimed at refining cancer therapeutic strategies and enhancing patient outcomes.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Wang, Z.; Yang, J.J.; Tu, H.Y.; Yan, H.H.; Wu, Y.L. Retrospective study on bevacizumab in the treatment of non-small cell lung cancer with brain metastases. Int. J. Clin. Oncol., 2020, 25(2), 267-273.
[http://dx.doi.org/10.1007/s10147-019-01552-5] [PMID: 31587134]
[3]
Hanson, S.; Thorpe, G.; Winstanley, L.; Abdelhamid, A.S.; Hooper, L. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: Systematic review and meta-analysis of randomised trials. Br. J. Cancer, 2020, 122(8), 1260-1270.
[http://dx.doi.org/10.1038/s41416-020-0761-6] [PMID: 32114592]
[4]
Mohammad, N.; Vikram Singh, S.; Malvi, P.; Chaube, B.; Athavale, D.; Vanuopadath, M.; Nair, S.S.; Nair, B.; Bhat, M.K. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci. Rep., 2015, 5(1), 11853.
[http://dx.doi.org/10.1038/srep11853] [PMID: 26149967]
[5]
Cassidy, T.; Humphries, A.R.; Craig, M.; Mackey, M.C. Characterizing chemotherapy-induced neutropenia and monocytopenia through mathematical modelling. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.02.022046]
[6]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[7]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[8]
Regnard, C.; Kindlen, M.; Regnard, C.; Kindlen, M. Chemotherapy: side effects. Support. Palliat. Care Cancer, 2018, 39–41, 39-41.
[http://dx.doi.org/10.1201/9781315378596-13]
[9]
Wilson, B.J. Chemotherapy and Immunotherapy Guidelines and Recommendations For Practice. Oncology Nursing Society; Oncology Nursing Society, 2019.
[10]
Chu, E. D. V. Physician’s Cancer Chemotherapy Drug Manual; Jones & Bartlett Learning, 2019.
[11]
Kuter, D.J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica, 2022, 107(6), 1243-1263.
[http://dx.doi.org/10.3324/haematol.2021.279512] [PMID: 35642485]
[12]
Weycker, D.; Hatfield, M.; Grossman, A.; Hanau, A.; Lonshteyn, A.; Sharma, A.; Chandler, D. Risk and consequences of chemotherapy-induced thrombocytopenia in US clinical practice. BMC Cancer, 2019, 19(1), 151.
[http://dx.doi.org/10.1186/s12885-019-5354-5] [PMID: 30764783]
[13]
Sturgeon, K.M.; Mathis, K.M.; Rogers, C.J.; Schmitz, K.H.; Waning, D.L. Cancer- and chemotherapy-induced musculoskeletal degradation. JBMR Plus, 2019, 3(3), e10187.
[http://dx.doi.org/10.1002/jbm4.10187] [PMID: 30918923]
[14]
Torricelli, P.; Antonelli, F.; Ferorelli, P.; Borromeo, I.; Shevchenko, A.; Lenzi, S.; De Martino, A. Oral nutritional supplement prevents weight loss and reduces side effects in patients in advanced lung cancer chemotherapy. Amino Acids, 2020, 52(3), 445-451.
[http://dx.doi.org/10.1007/s00726-020-02822-7] [PMID: 32034492]
[15]
de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health, 2020, 8(2), e180-e190.
[http://dx.doi.org/10.1016/S2214-109X(19)30488-7] [PMID: 31862245]
[16]
Ekheden, I.; Ebrahim, F.; Ólafsdóttir, H.; Raaschou, P.; Wettermark, B.; Henriksson, R.; Ye, W. Survival of esophageal and gastric cancer patients with adjuvant and palliative chemotherapy—a retrospective analysis of a register-based patient cohort. Eur. J. Clin. Pharmacol., 2020, 76(7), 1029-1041.
[http://dx.doi.org/10.1007/s00228-020-02883-3] [PMID: 32372150]
[17]
Gómez Candela, C.; Bermejo López, L.M.; Loria Kohen, V. Importancia del equilibrio del índice omega-6/omega-3 en el mantenimiento de un buen estado de salud. recomendaciones nutricionales. Nutr. Hosp., 2011, 26, 323-329.
[PMID: 21666970]
[18]
Simopoulos, A.P. Omega-6/omega-3 essential fatty acids: Biological effects. World Rev. Nutr. Diet., 2009, 99, 1-16.
[PMID: 19136835]
[19]
Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci., 2017, 96, 53-61.
[http://dx.doi.org/10.1016/j.ejps.2016.09.003] [PMID: 27613382]
[20]
Freitas, R.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients, 2019, 11(5), 945.
[http://dx.doi.org/10.3390/nu11050945] [PMID: 31035457]
[21]
Zhao, J. Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: A perspective on plant biotechnology application. Recent Pat. Biotechnol., 2007, 1(1), 75-97.
[http://dx.doi.org/10.2174/187220807779813893] [PMID: 19075834]
[22]
Turk, H.F.; Chapkin, R.S. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 43-47.
[http://dx.doi.org/10.1016/j.plefa.2012.03.008] [PMID: 22515942]
[23]
Yun, S.P.; Ryu, J.M.; Jang, M.W.; Han, H.J. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E2-induced human mesenchymal stem cells migration and proliferation. J. Cell. Physiol., 2011, 226(2), 559-571.
[http://dx.doi.org/10.1002/jcp.22366] [PMID: 20717968]
[24]
Calviello, G.; Serini, S.; Piccioni, E.; Pessina, G. Antineoplastic effects of n-3 polyunsaturated fatty acids in combination with drugs and radiotherapy: preventive and therapeutic strategies. Nutr. Cancer, 2009, 61(3), 287-301.
[http://dx.doi.org/10.1080/01635580802582777] [PMID: 19373602]
[25]
Colomer, R.; Moreno-Nogueira, J.M.; García-Luna, P.P.; García-Peris, P.; García-de-Lorenzo, A.; Zarazaga, A.; Quecedo, L.; del Llano, J.; Usán, L.; Casimiro, C. n -3 Fatty acids, cancer and cachexia: A systematic review of the literature. Br. J. Nutr., 2007, 97(5), 823-831.
[http://dx.doi.org/10.1017/S000711450765795X] [PMID: 17408522]
[26]
Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 2010, 68(5), 280-289.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x] [PMID: 20500789]
[27]
Schmitz, G.; Ecker, J. The opposing effects of n−3 and n−6 fatty acids. Prog. Lipid Res., 2008, 47(2), 147-155.
[http://dx.doi.org/10.1016/j.plipres.2007.12.004] [PMID: 18198131]
[28]
Kang, J.X.; Wan, J.B.; He, C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells, 2014, 32(5), 1092-1098.
[http://dx.doi.org/10.1002/stem.1620] [PMID: 24356924]
[29]
Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol., 2018, 9(1), 345-381.
[http://dx.doi.org/10.1146/annurev-food-111317-095850] [PMID: 29350557]
[30]
Ariel, A.; Serhan, C.N. Resolvins and protectins in the termination program of acute inflammation. Trends Immunol., 2007, 28(4), 176-183.
[http://dx.doi.org/10.1016/j.it.2007.02.007] [PMID: 17337246]
[31]
Gómez Candela, C.; Bermejo López, L.M.; Loria Kohen, V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutr. Hosp., 2011, 26(2), 323-329.
[PMID: 21666970]
[32]
Ismail, H. M. The role of omega-3 fatty acids in cardiac protection: An overview. Front Biosci, 2005, 10, 1079-1088.
[33]
Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci., 2019, 20(20), 5028.
[http://dx.doi.org/10.3390/ijms20205028]
[34]
Weicang, W.; Jun, Y.; Yoshiki, N. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice. J Nutr Biochem., 2017, 48, 29-35.
[35]
Vaughan, V.C.; Hassing, M-R.; Lewandowski, P.A. Marine polyunsaturated fatty acids and cancer therapy. Br. J. Cancer, 2013, 108(3), 486-492.
[http://dx.doi.org/10.1038/bjc.2012.586] [PMID: 23299528]
[36]
Park, M.; Kim, H. Anti-cancer mechanism of docosahexaenoic acid in pancreatic carcinogenesis: A mini-review. J. Cancer Prev., 2017, 22(1), 1-5.
[http://dx.doi.org/10.15430/JCP.2017.22.1.1] [PMID: 28382280]
[37]
Baracos, V.E.; Mazurak, V.C.; Ma, D.W.L. n -3 Polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr. Res. Rev., 2004, 17(2), 177-192.
[http://dx.doi.org/10.1079/NRR200488] [PMID: 19079925]
[38]
Du, J.; Wang, T.; Li, Y.; Zhou, Y.; Wang, X.; Yu, X.; Ren, X.; An, Y.; Wu, Y.; Sun, W.; Fan, W.; Zhu, Q.; Wang, Y.; Tong, X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med., 2019, 131, 356-369.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.011] [PMID: 30557609]
[39]
Bai, X.; Shao, J.; Zhou, S.; Zhao, Z.; Li, F.; Xiang, R.; Zhao, A.Z.; Pan, J. Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 479.
[http://dx.doi.org/10.1186/s13046-019-1478-3] [PMID: 31783879]
[40]
Zheng, H.; Tang, H.; Liu, M.; He, M.; Lai, P.; Dong, H.; Lin, J.; Jia, C.; Zhong, M.; Dai, Y.; Bai, X.; Wang, L. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models. Cancer Prev. Res., 2014, 7(8), 824-834.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0378-T] [PMID: 24866178]
[41]
Oono, K.; Takahashi, K.; Sukehara, S.; Kurosawa, H.; Matsumura, T.; Taniguchi, S.; Ohta, S. Inhibition of PC3 human prostate cancer cell proliferation, invasion and migration by eicosapentaenoic acid and docosahexaenoic acid. Mol. Clin. Oncol., 2017, 7(2), 217-220.
[http://dx.doi.org/10.3892/mco.2017.1287] [PMID: 28781788]
[42]
West, L.; Yajie, Y.; Stuart, R.P. Docosahexaenoic acid ( DHA ), an omega-3 fatty acid , inhibits tumor growth and metastatic potential of ovarian cancer. Am J Cancer Res., 2020, 10, 4450-4463.
[43]
Tanaka, A.; Yamamoto, A.; Murota, K.; Tsujiuchi, T.; Iwamori, M.; Fukushima, N. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation. Biochem. Biophys. Res. Commun., 2017, 493(1), 468-473.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.168] [PMID: 28882592]
[44]
Wang, Y.C.; Wu, Y.N.; Wang, S.L.; Lin, Q.H.; He, M.F.; Liu, Q.; Wang, J.H. Docosahexaenoic acid modulates invasion and metastasis of human ovarian cancer via multiple molecular pathways. Int. J. Gynecol. Cancer, 2016, 26(6), 994-1003.
[http://dx.doi.org/10.1097/IGC.0000000000000746] [PMID: 27258728]
[45]
Newell, M.; Baker, K.; Postovit, L.; Field, C. A critical review on the effect of docosahexaenoic acid (Dha) on cancer cell cycle progression. Int. J. Mol. Sci., 2017, 18(8), 1784.
[http://dx.doi.org/10.3390/ijms18081784] [PMID: 28817068]
[46]
Sawada, N.; Inoue, M.; Iwasaki, M.; Sasazuki, S.; Shimazu, T.; Yamaji, T.; Takachi, R.; Tanaka, Y.; Mizokami, M.; Tsugane, S. Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma. Gastroenterology, 2012, 142(7), 1468-1475.
[http://dx.doi.org/10.1053/j.gastro.2012.02.018] [PMID: 22342990]
[47]
Hardman, W.E.; Sun, L.; Short, N.; Cameron, I.L. Dietary omega-3 fatty acids and ionizing irradiation on human breast cancer xenograft growth and angiogenesis. Cancer Cell Int., 2005, 5(1), 12.
[http://dx.doi.org/10.1186/1475-2867-5-12] [PMID: 15860128]
[48]
Finstad, H.S.; Kolset, S.O.; Holme, J.A.; Wiger, R.; Farrants, A.K.; Blomhoff, R.; Drevon, C.A. Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood, 1994, 84(11), 3799-3809.
[http://dx.doi.org/10.1182/blood.V84.11.3799.bloodjournal84113799] [PMID: 7949136]
[49]
Corsetto, P.A.; Montorfano, G.; Zava, S.; Jovenitti, I.E.; Cremona, A.; Berra, B.; Rizzo, A.M. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis., 2011, 10(1), 73.
[http://dx.doi.org/10.1186/1476-511X-10-73] [PMID: 21569413]
[50]
Yao, Q.H.; Zhang, X.C.; Fu, T.; Gu, J.Z.; Wang, L.; Wang, Y.; Lai, Y.B.; Wang, Y.Q.; Guo, Y. ω-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Mol. Med. Rep., 2014, 9(2), 401-406.
[http://dx.doi.org/10.3892/mmr.2013.1829] [PMID: 24276408]
[51]
Abdi, J.; Garssen, J.; Faber, J.; Redegeld, F.A. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. J. Nutr. Biochem., 2014, 25(12), 1254-1262.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.013] [PMID: 25277647]
[52]
Geng, L.; Zhou, W.; Liu, B.; Wang, X.; Chen, B. DHA induces apoptosis of human malignant breast cancer tissues by the TLR-4/PPAR-α pathways. Oncol. Lett., 2018, 15(3), 2967-2977.
[PMID: 29435026]
[53]
Deshpande, R.; Mansara, P.; Kaul-Ghanekar, R. Alpha-linolenic acid regulates Cox2/VEGF/MAP kinase pathway and decreases the expression of HPV oncoproteins E6/E7 through restoration of p53 and Rb expression in human cervical cancer cell lines. Tumour Biol., 2016, 37(3), 3295-3305.
[http://dx.doi.org/10.1007/s13277-015-4170-z] [PMID: 26440049]
[54]
Sam, M.R.; Tavakoli-Mehr, M.; Safaralizadeh, R. Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells. Genes Nutr., 2018, 13(1), 8.
[http://dx.doi.org/10.1186/s12263-018-0596-4] [PMID: 29619114]
[55]
Pizato, N. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci. Rep., 2018, 8, 1-12.
[56]
Bratton, B.A.; Maly, I.V.; Hofmann, W.A. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells. PLoS One, 2019, 14(7), e0219822.
[http://dx.doi.org/10.1371/journal.pone.0219822] [PMID: 31314803]
[57]
Chagas, T.R.; Borges, D.S.; de Oliveira, P.F.; Mocellin, M.C.; Barbosa, A.M.; Camargo, C.Q.; Del Moral, J.Â.G.; Poli, A.; Calder, P.C.; Trindade, E.B.S.M.; Nunes, E.A. Oral fish oil positively influences nutritional-inflammatory risk in patients with haematological malignancies during chemotherapy with an impact on long-term survival: A randomised clinical trial. J. Hum. Nutr. Diet., 2017, 30(6), 681-692.
[http://dx.doi.org/10.1111/jhn.12471] [PMID: 28374923]
[58]
Lu, Y.; Chen, R.; Wei, S.; Hu, H.; Sun, F.; Yu, C. Effect of omega 3 fatty acids on C-reactive protein and interleukin-6 in patients with advanced nonsmall cell lung cancer. Medicine, 2018, 97(37), e11971.
[http://dx.doi.org/10.1097/MD.0000000000011971] [PMID: 30212928]
[59]
Khojastehfard, M.; Dolatkhah, H.; Somi, M.H.; Nazari Soltan Ahmad, S.; Estakhri, R.; sharifi, R.; Naghizadeh, M.; Rahmati-Yamchi, M. The effect of oral administration of PUFAs on the matrix metalloproteinase expression in gastric adenocarcinoma patients undergoing chemotherapy. Nutr. Cancer, 2019, 71(3), 444-451.
[http://dx.doi.org/10.1080/01635581.2018.1506494] [PMID: 30616380]
[60]
Song, E.; Kim, H. Docosahexaenoic acid induces oxidative DNA damage and apoptosis, and enhances the chemosensitivity of cancer cells. Int. J. Mol. Sci., 2016, 17(8), 1257.
[http://dx.doi.org/10.3390/ijms17081257] [PMID: 27527148]
[61]
Murphy, R.A.; Clandinin, M.T.; Chu, Q.S.; Arends, J.; Mazurak, V.C. A fishy conclusion regarding n-3 fatty acid supplementation in cancer patients. Clin. Nutr., 2013, 32(3), 466-467.
[http://dx.doi.org/10.1016/j.clnu.2012.05.013] [PMID: 22705090]
[62]
D’Eliseo, D.; Velotti, F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J. Clin. Med., 2016, 5(2), 15.
[http://dx.doi.org/10.3390/jcm5020015] [PMID: 26821053]
[63]
Vibet, S.; Goupille, C.; Bougnoux, P.; Steghens, J.P.; Goré, J.; Mahéo, K. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic. Biol. Med., 2008, 44(7), 1483-1491.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.009] [PMID: 18267129]
[64]
Murphy, R.A.; Mourtzakis, M.; Chu, Q.S.C.; Baracos, V.E.; Reiman, T.; Mazurak, V.C. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer, 2011, 117(16), 3774-3780.
[http://dx.doi.org/10.1002/cncr.25933] [PMID: 21328326]
[65]
Bougnoux, P.; Hajjaji, N.; Ferrasson, M.N.; Giraudeau, B.; Couet, C.; Le Floch, O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. Br. J. Cancer, 2009, 101(12), 1978-1985.
[http://dx.doi.org/10.1038/sj.bjc.6605441] [PMID: 19920822]
[66]
Merendino, N.; Costantini, L.; Manzi, L.; Molinari, R.; D’Eliseo, D.; Velotti, F. Dietary ω -3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/310186] [PMID: 23762838]
[67]
Henson, P.M. Dampening inflammation. Nat. Immunol., 2005, 6(12), 1179-1181.
[http://dx.doi.org/10.1038/ni1205-1179] [PMID: 16369556]
[68]
Khor, T.; Yu, S.; Kong, A.N. Dietary cancer chemopreventive agents - targeting inflammation and Nrf2 signaling pathway. Planta Med., 2008, 74(13), 1540-1547.
[http://dx.doi.org/10.1055/s-0028-1088303] [PMID: 18937168]
[69]
El-Ashmawy, N.E.; Khedr, E.G. ; El-Bahrawy, H.A.; Al-Tantawy, S.M. Chemopreventive effect of omega-3 polyunsaturated fatty acids and atorvastatin in rats with bladder cancer. Tumour Biol., 2017, 39(2)
[http://dx.doi.org/10.1177/1010428317692254] [PMID: 28218036]
[70]
Lee, J.Y.; Sim, T.B.; Lee, J.; Na, H.K. Chemopreventive and chemotherapeutic effects of fish oil derived omega-3 polyunsaturated fatty acids on colon carcinogenesis. Clin. Nutr. Res., 2017, 6(3), 147-160.
[http://dx.doi.org/10.7762/cnr.2017.6.3.147] [PMID: 28770178]
[71]
Tylichová, Z.; Neča, J.; Topinka, J.; Milcová, A.; Hofmanová, J.; Kozubík, A.; Machala, M.; Vondráček, J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem. Toxicol., 2019, 124, 374-384.
[http://dx.doi.org/10.1016/j.fct.2018.12.021] [PMID: 30572064]
[72]
Yum, H.W.; Na, H.K.; Surh, Y.J. Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin. Cancer Biol., 2016, 40_41, 141-159.
[73]
de Aguiar Pastore Silva, J.; Emilia de Souza Fabre, M.; Waitzberg, D.L. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review. Clin. Nutr., 2015, 34(3), 359-366.
[http://dx.doi.org/10.1016/j.clnu.2014.11.005] [PMID: 25907586]
[74]
Limaye, L.; Limbkar, K.; Kale, V. Oral feeding with Arachidonic Acid (AA) and Docosahexanoic Acid (DHA) help in better recovery of haematopoiesis in sub-lethally irradiated mice. Biomedical Research Journal, 2016, 3(2), 182.
[http://dx.doi.org/10.4103/2349-3666.240611]
[75]
Moloudizargari, M.; Mortaz, E.; Asghari, M.H.; Adcock, I.M.; Redegeld, F.A.; Garssen, J. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: A systematic review. Oncotarget, 2018, 9(14), 11858-11875.
[http://dx.doi.org/10.18632/oncotarget.24405] [PMID: 29545942]
[76]
Wang, Y.; Probin, V.; Zhou, D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr. Cancer Ther. Rev., 2006, 2(3), 271-279.
[http://dx.doi.org/10.2174/157339406777934717] [PMID: 19936034]
[77]
Taylor, S.J.; Duyvestyn, J.M.; Dagger, S.A.; Dishington, E.J.; Rinaldi, C.A.; Dovey, O.M.; Vassiliou, G.S.; Grove, C.S.; Langdon, W.Y. Preventing chemotherapy-induced myelosuppression by repurposing the FLT3 inhibitor quizartinib. Sci. Transl. Med., 2017, 9(402), eaam8060.
[http://dx.doi.org/10.1126/scitranslmed.aam8060] [PMID: 28794285]
[78]
Kasi, P.M.; Grothey, A. Chemotherapy-induced neutropenia as a prognostic and predictive marker of outcomes in solid-tumor patients. Drugs, 2018, 78(7), 737-745.
[http://dx.doi.org/10.1007/s40265-018-0909-3] [PMID: 29754293]
[79]
Al-Samkari, H.; Marshall, A.L.; Goodarzi, K.; Kuter, D.J. The use of romiplostim in treating chemotherapy-induced thrombocytopenia in patients with solid tumors. Haematologica, 2018, 103(4), e169-e172.
[http://dx.doi.org/10.3324/haematol.2017.180166] [PMID: 29242295]
[80]
Limbkar, K.; Dhenge, A.; Jadhav, D.D.; Thulasiram, H.V.; Kale, V.; Limaye, L. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice. J. Nutr. Biochem., 2017, 47, 94-105.
[http://dx.doi.org/10.1016/j.jnutbio.2017.05.002] [PMID: 28570944]
[81]
Tang, C.; Li, M.H.; Chen, Y.L.; Sun, H.Y.; Liu, S.L.; Zheng, W.W.; Zhang, M.Y.; Li, H.; Fu, W.; Zhang, W.J.; Liang, A.B.; Tang, Z.H.; Hong, D.L.; Zhou, B.B.S.; Duan, C.W. Chemotherapy-induced niche perturbs hematopoietic reconstitution in B-cell acute lymphoblastic leukemia. J. Exp. Clin. Cancer Res., 2018, 37(1), 204.
[http://dx.doi.org/10.1186/s13046-018-0859-3] [PMID: 30157922]
[82]
Rühle, A.; Lopez Perez, R.; Zou, B.; Grosu, A.L.; Huber, P.E.; Nicolay, N.H. The therapeutic potential of mesenchymal stromal cells in the treatment of chemotherapy-induced tissue damage. Stem Cell Rev., 2019, 15(3), 356-373.
[http://dx.doi.org/10.1007/s12015-019-09886-3] [PMID: 30937640]
[83]
Hoggatt, J.; Singh, P.; Sampath, J.; Pelus, L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 2009, 113(22), 5444-5455.
[http://dx.doi.org/10.1182/blood-2009-01-201335] [PMID: 19324903]
[84]
Storey, S. Chronic myelogenous leukaemia market. Nat. Rev. Drug Discov., 2009, 8(6), 447-448.
[http://dx.doi.org/10.1038/nrd2873] [PMID: 19483705]
[85]
Appel, S.; Boehmler, A.M.; Grünebach, F.; Müller, M.R.; Rupf, A.; Weck, M.M.; Hartmann, U.; Reichardt, V.L.; Kanz, L.; Brümmendorf, T.H.; Brossart, P. Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood, 2004, 103(2), 538-544.
[http://dx.doi.org/10.1182/blood-2003-03-0975] [PMID: 14504105]
[86]
Mellios, T.; Ko, H.L.; Beuth, J. Impact of adjuvant chemo- and radiotherapy on the cellular immune system of breast cancer patients. in vivo, 2010, 24, 227-230.
[87]
Appel, S.; Balabanov, S.; Brümmendorf, T.H.; Brossart, P. Effects of imatinib on normal hematopoiesis and immune activation. Stem Cells, 2005, 23(8), 1082-1088.
[http://dx.doi.org/10.1634/stemcells.2005-0069] [PMID: 16140870]
[88]
Barreto, J.N.; McCullough, K.B.; Ice, L.L.; Smith, J.A. Antineoplastic agents and the associated myelosuppressive effects: a review. J. Pharm. Pract., 2014, 27(5), 440-446.
[http://dx.doi.org/10.1177/0897190014546108] [PMID: 25147158]
[89]
Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia. Cancer, 2004, 100(2), 228-237.
[http://dx.doi.org/10.1002/cncr.11882] [PMID: 14716755]
[90]
Groopman, J.E.; Itri, L.M. Chemotherapy-induced anemia in adults: Incidence and treatment. J. Natl. Cancer Inst., 1999, 91(19), 1616-1634.
[http://dx.doi.org/10.1093/jnci/91.19.1616] [PMID: 10511589]
[91]
Mouser, C.L.; Antoniou, E.S.; Tadros, J.; Vassiliou, E.K. A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Theor. Biol. Med. Model., 2014, 11(1), 4.
[http://dx.doi.org/10.1186/1742-4682-11-4] [PMID: 24438084]
[92]
Xia, S.; Li, X.; Cheng, L.; Han, M.; Zhang, M.; Shao, Q.; Xu, H.; Qi, L. Fish oil-rich diet promotes hematopoiesis and alters hematopoietic niche. Endocrinology, 2015, 156(8), 2821-2830.
[http://dx.doi.org/10.1210/en.2015-1258] [PMID: 26061726]
[93]
Das, U.N. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev., 2011, 30(3-4), 311-324.
[http://dx.doi.org/10.1007/s10555-011-9316-x] [PMID: 22005953]
[94]
Mansara, P.; Ketkar, M.; Deshpande, R.; Chaudhary, A.; Shinde, K.; Kaul-Ghanekar, R. Improved antioxidant status by omega-3 fatty acid supplementation in breast cancer patients undergoing chemotherapy: A case series. J. Med. Case Reports, 2015, 9(1), 148.
[http://dx.doi.org/10.1186/s13256-015-0619-3] [PMID: 26104023]
[95]
Shridhar, K.; Singh, G.; Dey, S.; Singh Dhatt, S.; Paul Singh Gill, J.; Goodman, M.; Samar Magsumbol, M.; Pearce, N.; Singh, S.; Singh, A.; Singh, P.; Singh Thakur, J.; Kaur Dhillon, P. Dietary patterns and breast cancer risk: A multi-centre case control study among north Indian women. Int. J. Environ. Res. Public Health, 2018, 15(9), 1946.
[http://dx.doi.org/10.3390/ijerph15091946] [PMID: 30200632]
[96]
Shabrani, N.C.; Khan, N.F.Q.; Kale, V.P.; Limaye, L.S. Polyunsaturated fatty acids confer cryoresistance on megakaryocytes generated from cord blood and also enhance megakaryocyte production from cryopreserved cord blood cells. Cytotherapy, 2012, 14(3), 366-380.
[http://dx.doi.org/10.3109/14653249.2011.649186] [PMID: 22250991]
[97]
Varney, M.E.; Hardman, W.E.; Sollars, V.E. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation. Lipids Health Dis., 2009, 8(1), 9.
[http://dx.doi.org/10.1186/1476-511X-8-9] [PMID: 19296839]
[98]
Dhenge, A.; Limbkar, K.; Melinkeri, S.; Kale, V.P.; Limaye, L. Arachidonic acid and Docosahexanoic acid enhance platelet formation from human apheresis-derived CD34 + cells. Cell Cycle, 2017, 16(10), 979-990.
[http://dx.doi.org/10.1080/15384101.2017.1312233] [PMID: 28388313]
[99]
Rahman, M.M.; Veigas, J.M.; Williams, P.J.; Fernandes, G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res. Treat., 2013, 141(3), 341-352.
[http://dx.doi.org/10.1007/s10549-013-2703-y] [PMID: 24062211]
[100]
Bonatto, S.J.R.; Oliveira, H.H.P.; Nunes, E.A.; Pequito, D.; Iagher, F.; Coelho, I.; Naliwaiko, K.; Kryczyk, M.; Brito, G.A.P.; Repka, J.; Sabóia, L.V.; Fukujima, G.; Calder, P.C.; Fernandes, L.C. Fish oil supplementation improves neutrophil function during cancer chemotherapy. Lipids, 2012, 47(4), 383-389.
[http://dx.doi.org/10.1007/s11745-011-3643-0] [PMID: 22160495]
[101]
Eltweri, A.M.; Thomas, A.L.; Chung, W.; Morgan, B.; Thompson, J.; Dennison, A.R.; Bowrey, D.J. The effect of supplementary omegaven ® on the clinical outcome of patients with advanced esophagogastric adenocarcinoma receiving palliative epirubicin, oxaliplatin, and capecitabine chemotherapy: A Phase II clinical trial. Anticancer Res., 2019, 39(2), 853-861.
[http://dx.doi.org/10.21873/anticanres.13185] [PMID: 30711967]
[102]
Poulsen, R.C.; Moughan, P.J.; Kruger, M.C. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp. Biol. Med., 2007, 232(10), 1275-1288.
[http://dx.doi.org/10.3181/0704-MR-100] [PMID: 17959840]
[103]
Yang, Y.C.; Yang, C.Y. The influence of residual stress on the shear strength between the bone and plasma-sprayed hydroxyapatite coating. J. Mater. Sci. Mater. Med., 2008, 19(3), 1051-1060.
[http://dx.doi.org/10.1007/s10856-007-3197-0] [PMID: 17701301]
[104]
van de Rest, O.; Yulianto, K.M.; de Groot, L.C.P.G.M. The impact of omega-3 fatty acids on quality of life. Omega Fat. Acids Brain Neurol. Heal., 2019, 33-41.
[http://dx.doi.org/10.1016/B978-0-12-815238-6.00003-1]
[105]
Kayl, A.E.; Meyers, C.A. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr. Opin. Obstet. Gynecol., 2006, 18(1), 24-28.
[http://dx.doi.org/10.1097/01.gco.0000192996.20040.24] [PMID: 16493256]
[106]
Wissing, M.D. Chemotherapy- and irradiation-induced bone loss in adults with solid tumors. Curr. Osteoporos. Rep., 2015, 13(3), 140-145.
[http://dx.doi.org/10.1007/s11914-015-0266-z] [PMID: 25712619]
[107]
Fang, J.; Xu, Q. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin. Transl. Oncol., 2015, 17(3), 173-179.
[http://dx.doi.org/10.1007/s12094-014-1247-x] [PMID: 25351174]
[108]
Guise, T. Examining the metastatic niche: Targeting the microenvironment. Semin. Oncol., 2010, 37(S2), S2-S14.
[http://dx.doi.org/10.1053/j.seminoncol.2010.10.007] [PMID: 21111245]
[109]
Kingsley, L.A.; Fournier, P.G.J.; Chirgwin, J.M.; Guise, T.A. Molecular biology of bone metastasis. Mol. Cancer Ther., 2007, 6(10), 2609-2617.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0234] [PMID: 17938257]
[110]
Brown, S.A.; Guise, T.A. Cancer-associated bone disease. Curr. Osteoporos. Rep., 2007, 5(3), 120-127.
[http://dx.doi.org/10.1007/s11914-007-0027-8] [PMID: 17925193]
[111]
Garg, A.; Leitzel, K.; Ali, S.; Lipton, A. Antiresorptive therapy in the management of cancer treatment-induced bone loss. Curr. Osteoporos. Rep., 2015, 13(2), 73-77.
[http://dx.doi.org/10.1007/s11914-014-0252-x] [PMID: 25575469]
[112]
Taxel, P.; Faircloth, E.; Idrees, S.; Van Poznak, C. Cancer treatment-induced bone loss in women with breast cancer and men with prostate cancer. J. Endocr. Soc., 2018, 2(7), 574-588.
[http://dx.doi.org/10.1210/js.2018-00052] [PMID: 29942922]
[113]
Gilliam, L.A.A.; St Clair, D.K. Chemotherapy-induced weakness and fatigue in skeletal muscle: The role of oxidative stress. Antioxid. Redox Signal., 2011, 15(9), 2543-2563.
[http://dx.doi.org/10.1089/ars.2011.3965] [PMID: 21457105]
[114]
Guise, T.A. Bone loss and fracture risk associated with cancer therapy. Oncologist, 2006, 11(10), 1121-1131.
[http://dx.doi.org/10.1634/theoncologist.11-10-1121] [PMID: 17110632]
[115]
von Moos, R.; Costa, L.; Gonzalez-Suarez, E.; Terpos, E.; Niepel, D.; Body, J.J. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat. Rev., 2019, 76, 57-67.
[http://dx.doi.org/10.1016/j.ctrv.2019.05.003] [PMID: 31136850]
[116]
Rajput, R.; Wairkar, S.; Gaud, R. Nutraceuticals for better management of osteoporosis: An overview. J. Funct. Foods, 2018, 47, 480-490.
[http://dx.doi.org/10.1016/j.jff.2018.06.013]
[117]
Fang, S.; Li, Y.; Chen, P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des. Devel. Ther., 2018, 13, 45-55.
[http://dx.doi.org/10.2147/DDDT.S178698] [PMID: 30587927]
[118]
Raghu Nadhanan, R.; Skinner, J.; Chung, R.; Su, Y.W.; Howe, P.R.; Xian, C.J. Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PLoS One, 2013, 8(8), e71592.
[http://dx.doi.org/10.1371/journal.pone.0071592] [PMID: 23951199]
[119]
Matsushita, H.; Barrios, J.A.; Shea, J.E.; Miller, S.C. Dietary fish oil results in a greater bone mass and bone formation indices in aged ovariectomized rats. J. Bone Miner. Metab., 2008, 26(3), 241-247.
[http://dx.doi.org/10.1007/s00774-007-0815-3] [PMID: 18470664]
[120]
Raghu Nadhanan, R.; Abimosleh, S.M.; Su, Y.W.; Scherer, M.A.; Howarth, G.S.; Xian, C.J. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. Am. J. Physiol. Endocrinol. Metab., 2012, 302(11), E1440-E1449.
[http://dx.doi.org/10.1152/ajpendo.00587.2011] [PMID: 22436700]
[121]
Koren, N.; Simsa-Maziel, S.; Shahar, R.; Schwartz, B.; Monsonego-Ornan, E. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality. J. Nutr. Biochem., 2014, 25(6), 623-633.
[http://dx.doi.org/10.1016/j.jnutbio.2014.01.012] [PMID: 24746838]
[122]
Fong, L.; Muhlhausler, B.S.; Gibson, R.A.; Xian, C.J. Perinatal maternal dietary supplementation of ω3-fatty acids transiently affects bone marrow microenvironment, osteoblast and osteoclast formation, and bone mass in male offspring. Endocrinology, 2012, 153(5), 2455-2465.
[http://dx.doi.org/10.1210/en.2011-1917] [PMID: 22374977]
[123]
Li, S. Clinical efficacy and potential mechanisms of acupoint stimulation combined with c hemotherapy in combating cancer: A review and prospects. Front. Oncol., 2022, 12, 1-18.
[124]
Hou, L.; Gu, F.; Gao, G.; Zhou, C. Transcutaneous electrical acupoint stimulation (TEAS) ameliorates chemotherapy-induced bone marrow suppression in lung cancer patients. J. Thorac. Dis., 2017, 9, 809-817.
[125]
Xue, N.; Fu, X.; Zhu, Y.; Da, N.; Zhang, J. Moxibustion enhances chemotherapy of breast cancer by affecting tumor microenvironment. Cancer Manag. Res., 2020, 12, 8015-8022.
[http://dx.doi.org/10.2147/CMAR.S249797] [PMID: 32943934]
[126]
Fodil, M.; Blanckaert, V.; Ulmann, L.; Mimouni, V.; Chénais, B. Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors. Int. J. Environ. Res. Public Health, 2022, 19(13), 7936.
[http://dx.doi.org/10.3390/ijerph19137936] [PMID: 35805595]
[127]
Fuentes, N. R. composition. 2019, 78, 3899-3912.
[128]
Wei, L.; Wu, Z.; Chen, Y.Q. Multi-targeted therapy of cancer by omega-3 fatty acids-an update. Cancer Lett., 2022, 526, 193-204.
[http://dx.doi.org/10.1016/j.canlet.2021.11.023] [PMID: 34843864]
[129]
Terme, N.; Chénais, B.; Fournière, M.; Bourgougnon, N.; Bedoux, G. Algal derived functional lipids and their role in promoting health. In: Recent Advances in Micro and Macroalgal Processing; Wiley, 2021; pp. 370-417.
[http://dx.doi.org/10.1002/9781119542650.ch13]
[130]
Tsugane, S. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. Eur. J. Clin. Nutr., 2021, 75(6), 921-928.
[http://dx.doi.org/10.1038/s41430-020-0677-5] [PMID: 32661353]
[131]
Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Association of dietary intake ratio of n-3/n-6 polyunsaturated fatty acids with breast cancer risk in western and asian countries: A meta-analysis. Asian Pac. J. Cancer Prev., 2019, 20(5), 1321-1327.
[http://dx.doi.org/10.31557/APJCP.2019.20.5.1321] [PMID: 31127884]
[132]
Allegra, A.G.; Mannino, F.; Innao, V.; Musolino, C.; Allegra, A. Radioprotective agents and enhancers factors. Preventive and therapeutic strategies for oxidative induced radiotherapy damages in hematological malignancies. Antioxidants, 2020, 9(11), 1116.
[http://dx.doi.org/10.3390/antiox9111116] [PMID: 33198328]
[133]
Xu, Q.; Zhang, Z.; Tang, M.; Xing, C.; Chen, H.; Zheng, K.; Zhao, Z.; Zhou, S.; Zhao, A.Z.; Li, F.; Mu, Y. Endogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathway. Free Radic. Biol. Med., 2023, 201, 14-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.03.005] [PMID: 36906190]
[134]
Reis, L.G.; Silva, T.H.; Salles, M.S.V.; Andrade, A.F.C.; Martins, S.M.M.K.; Takeuchi, P.L.; Vidal, A.M.C.; Netto, A.S. Effect of cow’s milk with different PUFA n-6: n-3 ratios on performance, serum lipid profile, and blood parameters of grower gilts. PLoS One, 2022, 17(5), e0258629.
[http://dx.doi.org/10.1371/journal.pone.0258629] [PMID: 35617293]
[135]
Tompkins, Y.H.; Chen, C.; Sweeney, K.M.; Kim, M.; Voy, B.H.; Wilson, J.L.; Kim, W.K. The effects of maternal fish oil supplementation rich in n-3 PUFA on offspring-broiler growth performance, body composition and bone microstructure. PLoS One, 2022, 17(8), e0273025.
[http://dx.doi.org/10.1371/journal.pone.0273025] [PMID: 35972954]
[136]
Chen, L.; Mao, Z.; Wang, Y.; Kang, Y.; Wang, Y.; Mei, L.; Ji, X. Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy. Sci. Adv., 2022, 8(39), eabo7372.
[http://dx.doi.org/10.1126/sciadv.abo7372] [PMID: 36179019]
[137]
Kang, Y.; Mao, Z.; Wang, Y.; Pan, C.; Ou, M.; Zhang, H.; Zeng, W.; Ji, X. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy. Nat. Commun., 2022, 13(1), 2425.
[http://dx.doi.org/10.1038/s41467-022-30166-1] [PMID: 35504879]
[138]
Zhang, R.X.; Liu, F.F.C.; Lip, H.; Liu, J.; Zhang, Q.; Wu, X.Y. Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv. Transl. Res., 2022, 12(10), 2303-2334.
[http://dx.doi.org/10.1007/s13346-021-01104-3] [PMID: 35064476]
[139]
Callaghan, B.; Vallabh, N.A.; Willoughby, C.E. Deuterated polyunsaturated fatty acids provided protection against oxidative stress in ocular fibroblasts derived from glaucoma patients. Mech. Ageing Dev., 2023, 211, 111778.
[http://dx.doi.org/10.1016/j.mad.2023.111778] [PMID: 36716826]
[140]
Ng, S.C.W.; Furman, R.; Axelsen, P.H.; Shchepinov, M.S. Free radical chain reactions and polyunsaturated fatty acids in brain lipids. ACS Omega, 2022, 7(29), 25337-25345.
[http://dx.doi.org/10.1021/acsomega.2c02285] [PMID: 35910174]
[141]
Zou, H.Y.; Zhang, H.J.; Zhao, Y.C.; Li, X.Y.; Wang, Y.M.; Zhang, T.T.; Xue, C.H. N-3 PUFA deficiency aggravates streptozotocin-induced pancreatic injury in mice but dietary supplementation with DHA/EPA protects the pancreas via suppressing inflammation, oxidative stress and apoptosis. Mar. Drugs, 2023, 21(1), 39.
[http://dx.doi.org/10.3390/md21010039] [PMID: 36662212]
[142]
Bathina, S.; Das, U.N. Resolvin D1 decreases severity of streptozotocin-induced type 1 diabetes mellitus by enhancing BDNF levels, reducing oxidative stress, and suppressing inflammation. Int. J. Mol. Sci., 2021, 22(4), 1516.
[http://dx.doi.org/10.3390/ijms22041516] [PMID: 33546300]
[143]
Liu, Q.; Wu, D.; Ni, N.; Ren, H.; Luo, C.; He, C.; Kang, J.X.; Wan, J.B.; Su, H. Omega-3 polyunsaturated fatty acids protect neural progenitor cells against oxidative injury. Mar. Drugs, 2014, 12(5), 2341-2356.
[http://dx.doi.org/10.3390/md12052341] [PMID: 24786451]
[144]
Muratore, E.; Leardini, D.; Baccelli, F.; Venturelli, F.; Cerasi, S.; Zanaroli, A.; Lanari, M.; Prete, A.; Masetti, R.; Zama, D. The emerging role of nutritional support in the supportive care of pediatric patients undergoing hematopoietic stem cell transplantation. Front. Nutr., 2023, 10, 1075778.
[http://dx.doi.org/10.3389/fnut.2023.1075778] [PMID: 36875838]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy