Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Protein Dynamics Mediated by Cardiolipin in Bacteria

Author(s): Yanyang Wang, Jiawen Chen, Liyang Hang, Jichao Zhu, Xinhua Qiang, Mingjian Yang, Xiangliang Sun, Sha Wang, Hongchang Zhou, Yibin Lin* and Shengwen Shao*

Volume 24, Issue 1, 2024

Published on: 27 October, 2023

Page: [31 - 44] Pages: 14

DOI: 10.2174/0115680266266646231023091215

Price: $65

Abstract

Bacterial proteins targeting the appropriate subcellular sites are the base for their proper function. Several studies have shown that the anionic phospholipid cardiolipin (CL), a conical lipid preferring negative membrane curvature, modulates the lipid bilayers’ structure, which impacts the activity of their resident proteins. Due to the favor of negative membrane curvature, CL is not randomly distributed in the bacterial plasma membrane. In contrast, it gathers in particular parts of the cell membrane to form microdomains, in which many functional membrane proteins are accumulated and carry out diverse physiological processes of bacteria, such as cell division, metabolism, infection, and antibiotic residence. In addition, CL has a unique structure that carries two negative charges, which makes it play a pivotal role in protein assembly, interaction, and location. These characteristics of CL make it closely related to many crucial physiological functions of bacteria. Here, we have reviewed the mechanism of protein dynamics mediated by CL initiated on the bacterial membrane. Furthermore, we studied the effect of CL on bacterial infection and antibiotic residence. Finally, the CL-targeting therapeutic agents for antibacterial therapy are also examined.

Graphical Abstract

[1]
Wood, J.M. Perspective: Challenges and opportunities for the study of cardiolipin, a key player in bacterial cell structure and function. Curr. Genet., 2018, 64(4), 795-798.
[http://dx.doi.org/10.1007/s00294-018-0811-2] [PMID: 29427078]
[2]
Epand, R.M.; Epand, R.F. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta, 2009, 1788(1), 289-294.
[http://dx.doi.org/10.1016/j.bbamem.2008.08.023] [PMID: 18822270]
[3]
López, G.A.; Heredia, R.M.; Boeris, P.S.; Lucchesi, G.I. Content of cardiolipin of the membrane and sensitivity to cationic surfactants in Pseudomonas putida. J. Appl. Microbiol., 2016, 121(4), 1004-1014.
[http://dx.doi.org/10.1111/jam.13238] [PMID: 27442261]
[4]
Romantsov, T.; Guan, Z.; Wood, J.M. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta, 2009, 1788(10), 2092-2100.
[http://dx.doi.org/10.1016/j.bbamem.2009.06.010] [PMID: 19539601]
[5]
Luévano-Martínez, L.A.; Kowaltowski, A.J. Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch. Biochem. Biophys., 2015, 585, 90-97.
[http://dx.doi.org/10.1016/j.abb.2015.09.015] [PMID: 26391924]
[6]
Keller, R.; Ariöz, C.; Hansmeier, N.; Stenberg-Bruzell, F.; Burstedt, M.; Vikström, D.; Kelly, A.; Wieslander, Å.; Daley, D.O.; Hunke, S. The Escherichia coli Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Biochemistry, 2015, 54(23), 3670-3676.
[http://dx.doi.org/10.1021/acs.biochem.5b00242] [PMID: 25993101]
[7]
Lewis, R.N.A.H.; McElhaney, R.N. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim. Biophys. Acta, 2009, 1788(10), 2069-2079.
[http://dx.doi.org/10.1016/j.bbamem.2009.03.014] [PMID: 19328771]
[8]
Sathappa, M.; Alder, N.N. The ionization properties of cardiolipin and its variants in model bilayers. Biochim. Biophys. Acta, 2016, 1858(6), 1362-1372.
[http://dx.doi.org/10.1016/j.bbamem.2016.03.007] [PMID: 26965987]
[9]
Exterkate, M.; de Kok, N.A.W.; Andringa, R.L.H.; Wolbert, N.H.J.; Minnaard, A.J.; Driessen, A.J.M. A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids. J. Biol. Chem., 2021, 296, 100691.
[http://dx.doi.org/10.1016/j.jbc.2021.100691] [PMID: 33894204]
[10]
Beltrán-Heredia, E.; Tsai, F.C.; Salinas-Almaguer, S.; Cao, F.J.; Bassereau, P.; Monroy, F. Membrane curvature induces cardiolipin sorting. Commun. Biol., 2019, 2(1), 225.
[http://dx.doi.org/10.1038/s42003-019-0471-x] [PMID: 31240263]
[11]
Ikon, N.; Ryan, R.O. Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta Biomembr., 2017, 1859(6), 1156-1163.
[http://dx.doi.org/10.1016/j.bbamem.2017.03.013] [PMID: 28336315]
[12]
Olofsson, G.; Sparr, E. Ionization constants pKa of cardiolipin. PLoS One, 2013, 8(9), e73040.
[http://dx.doi.org/10.1371/journal.pone.0073040] [PMID: 24058458]
[13]
Mileykovskaya, E.; Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta, 2009, 1788(10), 2084-2091.
[http://dx.doi.org/10.1016/j.bbamem.2009.04.003] [PMID: 19371718]
[14]
Mileykovskaya, E.; Dowhan, W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol., 2000, 182(4), 1172-1175.
[http://dx.doi.org/10.1128/JB.182.4.1172-1175.2000] [PMID: 10648548]
[15]
Dowhan, W.; Mileykovskaya, E.; Bogdanov, M. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim. Biophys. Acta, 2004, 1666(1-2), 19-39.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.010] [PMID: 15519306]
[16]
Renner, L.D.; Weibel, D.B. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl. Acad. Sci., 2011, 108(15), 6264-6269.
[http://dx.doi.org/10.1073/pnas.1015757108] [PMID: 21444798]
[17]
Kawai, F.; Shoda, M.; Harashima, R.; Sadaie, Y.; Hara, H.; Matsumoto, K. Cardiolipin domains in Bacillus subtilis marburg membranes. J. Bacteriol., 2004, 186(5), 1475-1483.
[http://dx.doi.org/10.1128/JB.186.5.1475-1483.2004] [PMID: 14973018]
[18]
Alami, M.; Dalal, K.; Lelj-Garolla, B.; Sligar, S.G.; Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J., 2007, 26(8), 1995-2004.
[http://dx.doi.org/10.1038/sj.emboj.7601661] [PMID: 17396152]
[19]
Benach, J.; Chou, Y.T.; Fak, J.J.; Itkin, A.; Nicolae, D.D.; Smith, P.C.; Wittrock, G.; Floyd, D.L.; Golsaz, C.M.; Gierasch, L.M.; Hunt, J.F. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem., 2003, 278(6), 3628-3638.
[http://dx.doi.org/10.1074/jbc.M205992200] [PMID: 12403785]
[20]
Or, E.; Navon, A.; Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J., 2002, 21(17), 4470-4479.
[http://dx.doi.org/10.1093/emboj/cdf471] [PMID: 12198149]
[21]
Dowhan, W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu. Rev. Biochem., 1997, 66(1), 199-232.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.199] [PMID: 9242906]
[22]
Edman, M.; Berg, S.; Storm, P.; Wikström, M.; Vikström, S.; Öhman, A.; Wieslander, A. Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J. Biol. Chem., 2003, 278(10), 8420-8428.
[http://dx.doi.org/10.1074/jbc.M211492200] [PMID: 12464611]
[23]
Rietveld, A.G.; Killian, J.A.; Dowhan, W.; de Kruijff, B. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem., 1993, 268(17), 12427-12433.
[http://dx.doi.org/10.1016/S0021-9258(18)31407-8] [PMID: 8509382]
[24]
Arnarez, C.; Marrink, S.J.; Periole, X. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci. Rep., 2013, 3(1), 1263.
[http://dx.doi.org/10.1038/srep01263] [PMID: 23405277]
[25]
Arnarez, C.; Marrink, S.J.; Periole, X. Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chem. Sci., 2016, 7(7), 4435-4443.
[http://dx.doi.org/10.1039/C5SC04664E] [PMID: 30155091]
[26]
Hedger, G.; Rouse, S.L.; Domański, J.; Chavent, M.; Koldsø, H.; Sansom, M.S.P. Lipid-loving ANTs: Molecular simulations of cardiolipin interactions and the organization of the adenine nucleotide translocase in model mitochondrial membranes. Biochemistry, 2016, 55(45), 6238-6249.
[http://dx.doi.org/10.1021/acs.biochem.6b00751] [PMID: 27786441]
[27]
Mehmood, S.; Corradi, V.; Choudhury, H.G.; Hussain, R.; Becker, P.; Axford, D.; Zirah, S.; Rebuffat, S.; Tieleman, D.P.; Robinson, C.V.; Beis, K. Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD. J. Biol. Chem., 2016, 291(41), 21656-21668.
[http://dx.doi.org/10.1074/jbc.M116.732107] [PMID: 27555327]
[28]
Kalli, A.C.; Sansom, M.S.P.; Reithmeier, R.A.F. Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLOS Comput. Biol., 2015, 11(3), e1004123.
[http://dx.doi.org/10.1371/journal.pcbi.1004123] [PMID: 25729859]
[29]
Gupta, K.; Donlan, J.A.C.; Hopper, J.T.S.; Uzdavinys, P.; Landreh, M.; Struwe, W.B.; Drew, D.; Baldwin, A.J.; Stansfeld, P.J.; Robinson, C.V. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature, 2017, 541(7637), 421-424.
[http://dx.doi.org/10.1038/nature20820] [PMID: 28077870]
[30]
Zhukovsky, M.A.; Filograna, A.; Luini, A.; Corda, D.; Valente, C. Protein amphipathic helix insertion: A mechanism to induce membrane fission. Front. Cell Dev. Biol., 2019, 7, 291.
[http://dx.doi.org/10.3389/fcell.2019.00291] [PMID: 31921835]
[31]
Baussanne, I.; Bussière, A.; Halder, S.; Ganem-Elbaz, C.; Ouberai, M.; Riou, M.; Paris, J.M.; Ennifar, E.; Mingeot-Leclercq, M.P.; Décout, J.L. Synthesis and antimicrobial evaluation of amphiphilic neamine derivatives. J. Med. Chem., 2010, 53(1), 119-127.
[http://dx.doi.org/10.1021/jm900615h] [PMID: 20000576]
[32]
Poger, D.; Pöyry, S.; Mark, A.E. Could cardiolipin protect membranes against the action of certain antimicrobial peptides? aurein 1.2, a case study. ACS Omega, 2018, 3(12), 16453-16464.
[http://dx.doi.org/10.1021/acsomega.8b02710] [PMID: 30613806]
[33]
Schlame, M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res., 2008, 49(8), 1607-1620.
[http://dx.doi.org/10.1194/jlr.R700018-JLR200] [PMID: 18077827]
[34]
Yao, J.; Rock, C.O. Phosphatidic acid synthesis in bacteria. Biochim. Biophys. Acta, 2013, 1831(3), 495-502.
[http://dx.doi.org/10.1016/j.bbalip.2012.08.018] [PMID: 22981714]
[35]
Zhang, Y.M.; Rock, C.O. Thematic review series: Glycerolipids. acyltransferases in bacterial glycerophospholipid synthesis. J. Lipid Res., 2008, 49(9), 1867-1874.
[http://dx.doi.org/10.1194/jlr.R800005-JLR200] [PMID: 18369234]
[36]
Icho, T.; Sparrow, C.P.; Raetz, C.R. Molecular cloning and sequencing of the gene for CDP-diglyceride synthetase of Escherichia coli. J. Biol. Chem., 1985, 260(22), 12078-12083.
[http://dx.doi.org/10.1016/S0021-9258(17)38988-3] [PMID: 2995358]
[37]
Gopalakrishnan, A.S.; Chen, Y.C.; Temkin, M.; Dowhan, W. Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J. Biol. Chem., 1986, 261(3), 1329-1338.
[http://dx.doi.org/10.1016/S0021-9258(17)36095-7] [PMID: 3003065]
[38]
Lu, Y.H.; Guan, Z.; Zhao, J.; Raetz, C.R.H. Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J. Biol. Chem., 2011, 286(7), 5506-5518.
[http://dx.doi.org/10.1074/jbc.M110.199265] [PMID: 21148555]
[39]
Zang, M.; Ascari, A.; Adams, F.G.; Alquethamy, S.; Eijkelkamp, B.A. Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance. Cell Surf., 2022, 9, 100092.
[http://dx.doi.org/10.1016/j.tcsw.2022.100092] [PMID: 36545493]
[40]
Tong, S.; Lin, Y.; Lu, S.; Wang, M.; Bogdanov, M.; Zheng, L. Structural insight into substrate selection and catalysis of lipid phosphate phosphatase pgpb in the cell membrane. J. Biol. Chem., 2016, 291(35), 18342-18352.
[http://dx.doi.org/10.1074/jbc.M116.737874] [PMID: 27405756]
[41]
Pluschke, G.; Hirota, Y.; Overath, P. Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolipin synthesis. J. Biol. Chem., 1978, 253(14), 5048-5055.
[http://dx.doi.org/10.1016/S0021-9258(17)34655-0] [PMID: 353047]
[42]
Guo, D.; Tropp, B.E. A second Escherichia coli protein with CL synthase activity. Biochim. Biophys. Acta, 2000, 1483(2), 263-274.
[http://dx.doi.org/10.1016/S1388-1981(99)00193-6] [PMID: 10634942]
[43]
Tan, B.K.; Bogdanov, M.; Zhao, J.; Dowhan, W.; Raetz, C.R.H.; Guan, Z. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc. Natl. Acad. Sci., 2012, 109(41), 16504-16509.
[http://dx.doi.org/10.1073/pnas.1212797109] [PMID: 22988102]
[44]
Wieczorek, A.; Sendobra, A.; Maniyeri, A.; Sugalska, M.; Klein, G.; Raina, S. A new factor LapD is required for the regulation of LpxC amounts and lipopolysaccharide trafficking. Int. J. Mol. Sci., 2022, 23(17), 9706.
[http://dx.doi.org/10.3390/ijms23179706] [PMID: 36077106]
[45]
Gorzelak, P.; Klein, G.; Raina, S. Molecular basis of essentiality of early critical steps in the lipopolysaccharide biogenesis in escherichia coli K-12: Requirement of MsbA, cardiolipin, LpxL, LpxM and GcvB. Int. J. Mol. Sci., 2021, 22(10), 5099.
[http://dx.doi.org/10.3390/ijms22105099] [PMID: 34065855]
[46]
Simpson, B.W.; Douglass, M.V.; Trent, M.S. Restoring balance to the outer membrane: YejM’s role in LPS regulation. MBio, 2020, 11(6), e02624-20.
[http://dx.doi.org/10.1128/mBio.02624-20] [PMID: 33323515]
[47]
Dong, H.; Zhang, Z.; Tang, X.; Huang, S.; Li, H.; Peng, B.; Dong, C. Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria. Sci. Rep., 2016, 6(1), 30815.
[http://dx.doi.org/10.1038/srep30815] [PMID: 27487745]
[48]
Schlame, M. Cardiolipin remodeling and the function of tafazzin. Biochim. Biophys. Acta, 2013, 1831(3), 582-588.
[http://dx.doi.org/10.1016/j.bbalip.2012.11.007] [PMID: 23200781]
[49]
Cao, J.; Liu, Y.; Lockwood, J.; Burn, P.; Shi, Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA :Lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem., 2004, 279(30), 31727-31734.
[http://dx.doi.org/10.1074/jbc.M402930200] [PMID: 15152008]
[50]
Lin, Y.; Bogdanov, M.; Tong, S.; Guan, Z.; Zheng, L. Substrate selectivity of lysophospholipid transporter LplT involved in membrane phospholipid remodeling in Escherichia coli. J. Biol. Chem., 2016, 291(5), 2136-2149.
[http://dx.doi.org/10.1074/jbc.M115.700419] [PMID: 26613781]
[51]
Chiu, T.H.; Morimoto, H.; Baker, J.J. Biosynthesis and characterization of phosphatidylglycerophosphoglycerol, a possible intermediate in lipoteichoic acid biosynthesis in Streptococcus sanguis. Biochim. Biophys. Acta, 1993, 1166(2-3), 222-228.
[http://dx.doi.org/10.1016/0005-2760(93)90101-E] [PMID: 8443240]
[52]
Fischer, W. The polar lipids of group B Streptococci. I. Glucosylated diphosphatidylglycerol, a novel glycopholipid. Biochim. Biophys. Acta, 1977, 487(1), 74-88.
[http://dx.doi.org/10.1016/0005-2760(77)90045-5] [PMID: 857901]
[53]
Fischer, W.; Arneth-Seifert, D. D-Alanylcardiolipin, a major component of the unique lipid pattern of Vagococcus fluvialis. J. Bacteriol., 1998, 180(11), 2950-2957.
[http://dx.doi.org/10.1128/JB.180.11.2950-2957.1998] [PMID: 9603887]
[54]
Fischer, W.; Leopold, K. Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int. J. Syst. Bacteriol., 1999, 49(Pt 2), 653-662.
[http://dx.doi.org/10.1099/00207713-49-2-653] [PMID: 10408878]
[55]
Dare, K.; Shepherd, J.; Roy, H.; Seveau, S.; Ibba, M. LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance. Virulence, 2014, 5(4), 534-546.
[http://dx.doi.org/10.4161/viru.28359] [PMID: 24603093]
[56]
Rashid, R.; Veleba, M.; Kline, K.A. Focal targeting of the bacterial envelope by antimicrobial peptides. Front. Cell Dev. Biol., 2016, 4, 55.
[http://dx.doi.org/10.3389/fcell.2016.00055] [PMID: 27376064]
[57]
Rashid, R.; Nair, Z.J.; Chia, D.M.H.; Chong, K.K.L.; Cazenave Gassiot, A.; Morley, S.A.; Allen, D.K.; Chen, S.L.; Chng, S.S.; Wenk, M.R.; Kline, K.A. Depleting cationic lipids involved in antimicrobial resistance drives adaptive lipid remodeling in enterococcus faecalis. MBio, 2023, 14(1), e0307322.
[http://dx.doi.org/10.1128/mbio.03073-22] [PMID: 36629455]
[58]
Fields, R.N.; Roy, H. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances. RNA Biol., 2018, 15(4-5), 480-491.
[http://dx.doi.org/10.1080/15476286.2017.1356980] [PMID: 28816600]
[59]
Oliver, P.M.; Crooks, J.A.; Leidl, M.; Yoon, E.J.; Saghatelian, A.; Weibel, D.B. Localization of anionic phospholipids in Escherichia coli cells. J. Bacteriol., 2014, 196(19), 3386-3398.
[http://dx.doi.org/10.1128/JB.01877-14] [PMID: 25002539]
[60]
Rossi, R.M.; Yum, L.; Agaisse, H.; Payne, S.M. Cardiolipin synthesis and outer membrane localization are required for Shigella flexneri Virulence. MBio, 2017, 8(4), e01199-17.
[http://dx.doi.org/10.1128/mBio.01199-17] [PMID: 28851846]
[61]
Stöckl, M.T.; Herrmann, A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta, 2010, 1798(7), 1444-1456.
[http://dx.doi.org/10.1016/j.bbamem.2009.12.015] [PMID: 20056106]
[62]
Lopez, D. Molecular composition of functional microdomains in bacterial membranes. Chem. Phys. Lipids, 2015, 192, 3-11.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.08.015] [PMID: 26320704]
[63]
Matsumoto, K.; Kusaka, J.; Nishibori, A.; Hara, H. Lipid domains in bacterial membranes. Mol. Microbiol., 2006, 61(5), 1110-1117.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05317.x] [PMID: 16925550]
[64]
Rosch, J.; Caparon, M. A microdomain for protein secretion in Gram-positive bacteria. Science, 2004, 304(5676), 1513-1515.
[http://dx.doi.org/10.1126/science.1097404] [PMID: 15178803]
[65]
García-Fernández, E.; Koch, G.; Wagner, R.M.; Fekete, A.; Stengel, S.T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S.M.; Stigloher, C.; Lopez, D. Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell, 2017, 171(6), 1354-1367.e20.
[http://dx.doi.org/10.1016/j.cell.2017.10.012] [PMID: 29103614]
[66]
Lin, Y.; Sanson, M.A.; Vega, L.A.; Shah, B.; Regmi, S.; Cubria, M.B.; Flores, A.R. ExPortal and the LiaFSR regulatory system coordinate the response to cell membrane stress in streptococcus pyogenes. MBio, 2020, 11(5), e01804-20.
[http://dx.doi.org/10.1128/mBio.01804-20] [PMID: 32934083]
[67]
Barák, I.; Muchová, K. The role of lipid domains in bacterial cell processes. Int. J. Mol. Sci., 2013, 14(2), 4050-4065.
[http://dx.doi.org/10.3390/ijms14024050] [PMID: 23429192]
[68]
Gifford, S.M.; Meyer, P. Enzyme function is regulated by its location. Comput. Biol. Chem., 2015, 59(Pt B), 113-122.
[69]
Corey, R.A.; Song, W.; Duncan, A.L.; Ansell, T.B.; Sansom, M.S.P.; Stansfeld, P.J. Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. Sci. Adv., 2021, 7(34), eabh2217.
[http://dx.doi.org/10.1126/sciadv.abh2217] [PMID: 34417182]
[70]
Romantsov, T.; Helbig, S.; Culham, D.E.; Gill, C.; Stalker, L.; Wood, J.M. Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol. Microbiol., 2007, 64(6), 1455-1465.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05727.x] [PMID: 17504273]
[71]
Shi, H.; Bratton, B.P.; Gitai, Z.; Huang, K.C. How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell, 2018, 172(6), 1294-1305.
[http://dx.doi.org/10.1016/j.cell.2018.02.050] [PMID: 29522748]
[72]
Bratton, B.P.; Shaevitz, J.W.; Gitai, Z.; Morgenstein, R.M. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. Nat. Commun., 2018, 9(1), 2797.
[http://dx.doi.org/10.1038/s41467-018-05186-5] [PMID: 30022070]
[73]
Ouellette, S.P.; Fisher-Marvin, L.A.; Harpring, M.; Lee, J.; Rucks, E.A.; Cox, J.V. Localized cardiolipin synthesis is required for the assembly of MreB during the polarized cell division of Chlamydia trachomatis. PLoS Pathog., 2022, 18(9), e1010836.
[http://dx.doi.org/10.1371/journal.ppat.1010836] [PMID: 36095021]
[74]
Haucke, V.; Kozlov, M.M. Membrane remodeling in clathrin-mediated endocytosis. J. Cell Sci., 2018, 131(17), jcs216812.
[http://dx.doi.org/10.1242/jcs.216812] [PMID: 30177505]
[75]
Campelo, F.; Malhotra, V. Membrane fission: The biogenesis of transport carriers. Annu. Rev. Biochem., 2012, 81(1), 407-427.
[http://dx.doi.org/10.1146/annurev-biochem-051710-094912] [PMID: 22463692]
[76]
Ahmed, I.; Akram, Z.; Iqbal, H.M.N.; Munn, A.L. The regulation of endosomal sorting complex required for transport and accessory proteins in multivesicular body sorting and enveloped viral budding - An overview. Int. J. Biol. Macromol., 2019, 127, 1-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.015] [PMID: 30615963]
[77]
Jaumouillé, V.; Waterman, C.M. Physical constraints and forces involved in phagocytosis. Front. Immunol., 2020, 11, 1097.
[http://dx.doi.org/10.3389/fimmu.2020.01097] [PMID: 32595635]
[78]
Carlton, J.G.; Jones, H.; Eggert, U.S. Membrane and organelle dynamics during cell division. Nat. Rev. Mol. Cell Biol., 2020, 21(3), 151-166.
[http://dx.doi.org/10.1038/s41580-019-0208-1] [PMID: 32034394]
[79]
Errington, J. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol., 2003, 1(2), 117-126.
[http://dx.doi.org/10.1038/nrmicro750] [PMID: 15035041]
[80]
Higgins, D.; Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev., 2012, 36(1), 131-148.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00310.x] [PMID: 22091839]
[81]
Tan, I.S.; Ramamurthi, K.S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep., 2014, 6(3), 212-225.
[http://dx.doi.org/10.1111/1758-2229.12130] [PMID: 24983526]
[82]
Doan, T.; Coleman, J.; Marquis, K.A.; Meeske, A.J.; Burton, B.M.; Karatekin, E.; Rudner, D.Z. FisB mediates membrane fission during sporulation in Bacillus subtilis. Genes Dev., 2013, 27(3), 322-334.
[http://dx.doi.org/10.1101/gad.209049.112] [PMID: 23388828]
[83]
Eriksson, H.M.; Wessman, P.; Ge, C.; Edwards, K.; Wieslander, A. Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase. J. Biol. Chem., 2009, 284(49), 33904-33914.
[http://dx.doi.org/10.1074/jbc.M109.021618] [PMID: 19767390]
[84]
Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol., 2015, 13(10), 605-619.
[http://dx.doi.org/10.1038/nrmicro3525] [PMID: 26373371]
[85]
Bitto, N.J.; Kaparakis-Liaskos, M. The therapeutic benefit of bacterial membrane vesicles. Int. J. Mol. Sci., 2017, 18(6), 1287.
[http://dx.doi.org/10.3390/ijms18061287] [PMID: 28621731]
[86]
Bohuszewicz, O.; Liu, J.; Low, H.H. Membrane remodelling in bacteria. J. Struct. Biol., 2016, 196(1), 3-14.
[http://dx.doi.org/10.1016/j.jsb.2016.05.010] [PMID: 27265614]
[87]
Uebe, R.; Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol., 2016, 14(10), 621-637.
[http://dx.doi.org/10.1038/nrmicro.2016.99] [PMID: 27620945]
[88]
Ellen, A.F.; Zolghadr, B.; Driessen, A.M.J.; Albers, S.V. Shaping the archaeal cell envelope. Archaea, 2010, 2010, 608243.
[http://dx.doi.org/10.1155/2010/608243] [PMID: 20671907]
[89]
Rossman, J.S.; Lamb, R.A. Viral membrane scission. Annu. Rev. Cell Dev. Biol., 2013, 29(1), 551-569.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155838] [PMID: 24099087]
[90]
Adu-Gyamfi, E.; Johnson, K.A.; Fraser, M.E.; Scott, J.L.; Soni, S.P.; Jones, K.R.; Digman, M.A.; Gratton, E.; Tessier, C.R.; Stahelin, R.V. Host cell plasma membrane phosphatidylserine regulates the assembly and budding of ebola virus. J. Virol., 2015, 89(18), 9440-9453.
[http://dx.doi.org/10.1128/JVI.01087-15] [PMID: 26136573]
[91]
Bigalke, J.M.; Heldwein, E.E. Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J., 2015, 34(23), 2921-2936.
[http://dx.doi.org/10.15252/embj.201592359] [PMID: 26511020]
[92]
Herneisen, A.L.; Sahu, I.D.; McCarrick, R.M.; Feix, J.B.; Lorigan, G.A.; Howard, K.P. A budding-defective M2 mutant exhibits reduced membrane interaction, insensitivity to cholesterol, and perturbed interdomain coupling. Biochemistry, 2017, 56(44), 5955-5963.
[http://dx.doi.org/10.1021/acs.biochem.7b00924] [PMID: 29034683]
[93]
Wong, J.Y.; Park, C.K.; Seitz, M.; Israelachvili, J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys. J., 1999, 77(3), 1458-1468.
[http://dx.doi.org/10.1016/S0006-3495(99)76993-6] [PMID: 10465756]
[94]
Kozlovsky, Y.; Kozlov, M.M. Membrane fission: model for intermediate structures. Biophys. J., 2003, 85(1), 85-96.
[http://dx.doi.org/10.1016/S0006-3495(03)74457-9] [PMID: 12829467]
[95]
Bashkirov, P.V.; Akimov, S.A.; Evseev, A.I.; Schmid, S.L.; Zimmerberg, J.; Frolov, V.A. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell, 2008, 135(7), 1276-1286.
[http://dx.doi.org/10.1016/j.cell.2008.11.028] [PMID: 19084269]
[96]
Kozlov, M.M.; McMahon, H.T.; Chernomordik, L.V. Protein-driven membrane stresses in fusion and fission. Trends Biochem. Sci., 2010, 35(12), 699-706.
[http://dx.doi.org/10.1016/j.tibs.2010.06.003] [PMID: 20638285]
[97]
Haines, T.H. A new look at cardiolipin. Biochim. Biophys. Acta, 2009, 1788(10), 1997-2002.
[http://dx.doi.org/10.1016/j.bbamem.2009.09.008] [PMID: 19801076]
[98]
Ortiz, A.; Killian, J.A.; Verkleij, A.J.; Wilschut, J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J., 1999, 77(4), 2003-2014.
[http://dx.doi.org/10.1016/S0006-3495(99)77041-4] [PMID: 10512820]
[99]
Antonny, B.; Beraud-Dufour, S.; Chardin, P.; Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry, 1997, 36(15), 4675-4684.
[http://dx.doi.org/10.1021/bi962252b] [PMID: 9109679]
[100]
Farsad, K.; Ringstad, N.; Takei, K.; Floyd, S.R.; Rose, K.; De Camilli, P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol., 2001, 155(2), 193-200.
[http://dx.doi.org/10.1083/jcb.200107075] [PMID: 11604418]
[101]
Boucrot, E.; Pick, A.; Çamdere, G.; Liska, N.; Evergren, E.; McMahon, H.T.; Kozlov, M.M. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell, 2012, 149(1), 124-136.
[http://dx.doi.org/10.1016/j.cell.2012.01.047] [PMID: 22464325]
[102]
Martyna, A.; Bahsoun, B.; Badham, M.D.; Srinivasan, S.; Howard, M.J.; Rossman, J.S. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission. Sci. Rep., 2017, 7(1), 44695.
[http://dx.doi.org/10.1038/srep44695] [PMID: 28317901]
[103]
Danne, L.; Aktas, M.; Unger, A.; Linke, W.A.; Erdmann, R.; Narberhaus, F. Membrane remodeling by a bacterial phospholipid-methylating enzyme. MBio, 2017, 8(1), e02082-16.
[http://dx.doi.org/10.1128/mBio.02082-16] [PMID: 28196959]
[104]
van den Brink-van der Laan, E.; Boots, J.W.P.; Spelbrink, R.E.J.; Kool, G.M.; Breukink, E.; Killian, J.A.; de Kruijff, B. Membrane interaction of the glycosyltransferase MurG: A special role for cardiolipin. J. Bacteriol., 2003, 185(13), 3773-3779.
[http://dx.doi.org/10.1128/JB.185.13.3773-3779.2003] [PMID: 12813070]
[105]
Lind, J.; Rämö, T.; Klement, M.L.; Bárány-Wallje, E.; Epand, R.M.; Epand, R.F.; Mäler, L.; Wieslander, A.; Wieslander, A. High cationic charge and bilayer interface-binding helices in a regulatory lipid glycosyltransferase. Biochemistry, 2007, 46(19), 5664-5677.
[http://dx.doi.org/10.1021/bi700042x] [PMID: 17444657]
[106]
Albesa-Jové, D.; Giganti, D.; Jackson, M.; Alzari, P.M.; Guerin, M.E. Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology, 2014, 24(2), 108-124.
[http://dx.doi.org/10.1093/glycob/cwt101] [PMID: 24253765]
[107]
Ge, C.; Gómez-Llobregat, J.; Skwark, M.J.; Ruysschaert, J.M.; Wieslander, A.; Lindén, M. Membrane remodeling capacity of a vesicle-inducing glycosyltransferase. FEBS J., 2014, 281(16), 3667-3684.
[http://dx.doi.org/10.1111/febs.12889] [PMID: 24961908]
[108]
Ariöz, C.; Götzke, H.; Lindholm, L.; Eriksson, J.; Edwards, K.; Daley, D.O.; Barth, A.; Wieslander, A. Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes. Biochim. Biophys. Acta, 2014, 1838(7), 1862-1870.
[http://dx.doi.org/10.1016/j.bbamem.2014.04.001] [PMID: 24726609]
[109]
Zhou, H.; Lutkenhaus, J. Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol., 2003, 185(15), 4326-4335.
[http://dx.doi.org/10.1128/JB.185.15.4326-4335.2003] [PMID: 12867440]
[110]
Renner, L.D.; Weibel, D.B. MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J. Biol. Chem., 2012, 287(46), 38835-38844.
[http://dx.doi.org/10.1074/jbc.M112.407817] [PMID: 23012351]
[111]
Lee, J.; Cox, J.V.; Ouellette, S.P. Critical role for the extended N terminus of chlamydial MreB in directing its membrane association and potential interaction with divisome proteins. J. Bacteriol., 2020, 202(9), e00034-e20.
[http://dx.doi.org/10.1128/JB.00034-20] [PMID: 32041796]
[112]
Ni, H.; Fan, W.; Li, C.; Wu, Q.; Hou, H.; Hu, D.; Zheng, F.; Zhu, X.; Wang, C.; Cao, X.; Shao, Z.Q.; Pan, X. Streptococcus suis DivIVA Protein Is a Substrate of Ser/Thr Kinase STK and Involved in Cell Division Regulation. Front. Cell. Infect. Microbiol., 2018, 8, 85.
[http://dx.doi.org/10.3389/fcimb.2018.00085] [PMID: 29616196]
[113]
Edwards, D.H.; Errington, J. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol., 1997, 24(5), 905-915.
[http://dx.doi.org/10.1046/j.1365-2958.1997.3811764.x] [PMID: 9219999]
[114]
Eswaramoorthy, P.; Erb, M.L.; Gregory, J.A.; Silverman, J.; Pogliano, K.; Pogliano, J.; Ramamurthi, K.S. Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis. MBio, 2011, 2(6), e00257-11.
[http://dx.doi.org/10.1128/mBio.00257-11] [PMID: 22108385]
[115]
Labajová, N.; Baranova, N.; Jurásek, M.; Vácha, R.; Loose, M.; Barák, I. Cardiolipin-containing lipid membranes attract the bacterial cell division protein DivIVA. Int. J. Mol. Sci., 2021, 22(15), 8350.
[http://dx.doi.org/10.3390/ijms22158350] [PMID: 34361115]
[116]
Hsieh, C.W.; Lin, T.Y.; Lai, H.M.; Lin, C.C.; Hsieh, T.S.; Shih, Y.L. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol., 2010, 75(2), 499-512.
[http://dx.doi.org/10.1111/j.1365-2958.2009.07006.x] [PMID: 20025670]
[117]
Ma, L.; King, G.F.; Rothfield, L. Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection. Mol. Microbiol., 2004, 54(1), 99-108.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04265.x] [PMID: 15458408]
[118]
Fishov, I.; Woldringh, C.L. Visualization of membrane domains in Escherichia coli. Mol. Microbiol., 1999, 32(6), 1166-1172.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01425.x] [PMID: 10383758]
[119]
Ramm, B.; Heermann, T.; Schwille, P. The E. coli MinCDE system in the regulation of protein patterns and gradients. Cell. Mol. Life Sci., 2019, 76(21), 4245-4273.
[http://dx.doi.org/10.1007/s00018-019-03218-x] [PMID: 31317204]
[120]
Crane, J.M.; Randall, L.L. The sec system: Protein export in Escherichia coli. Ecosal Plus, 2017, 7(2), ecosalplus. ESP-0002-2017.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0002-2017] [PMID: 29165233]
[121]
Rapoport, T.A.; Li, L.; Park, E. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol., 2017, 33(1), 369-390.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060439] [PMID: 28564553]
[122]
Tsukazaki, T.; Nureki, O. The mechanism of protein export enhancement by the SecDF membrane component. Biophysics, 2011, 7, 129-133.
[http://dx.doi.org/10.2142/biophysics.7.129]
[123]
Ryabichko, S.; Ferreira, V.M.; Vitrac, H.; Kiyamova, R.; Dowhan, W.; Bogdanov, M. Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Sci. Rep., 2020, 10(1), 6296.
[http://dx.doi.org/10.1038/s41598-020-63280-5] [PMID: 32286407]
[124]
Gold, V.A.M.; Robson, A.; Bao, H.; Romantsov, T.; Duong, F.; Collinson, I. The action of cardiolipin on the bacterial translocon. Proc. Natl. Acad. Sci., 2010, 107(22), 10044-10049.
[http://dx.doi.org/10.1073/pnas.0914680107] [PMID: 20479269]
[125]
Kamel, M.; Löwe, M.; Schott-Verdugo, S.; Gohlke, H.; Kedrov, A. Unsaturated fatty acids augment protein transport via the SecA:SecYEG translocon. FEBS J., 2022, 289(1), 140-162.
[http://dx.doi.org/10.1111/febs.16140] [PMID: 34312977]
[126]
Webby, M.N.; Oluwole, A.O.; Pedebos, C.; Inns, P.G.; Olerinyova, A.; Prakaash, D.; Housden, N.G.; Benn, G.; Sun, D.; Hoogenboom, B.W.; Kukura, P.; Mohammed, S.; Robinson, C.V.; Khalid, S.; Kleanthous, C. Lipids mediate supramolecular outer membrane protein assembly in bacteria. Sci. Adv., 2022, 8(44), eadc9566.
[http://dx.doi.org/10.1126/sciadv.adc9566] [PMID: 36322653]
[127]
Arias-Cartin, R.; Grimaldi, S.; Arnoux, P.; Guigliarelli, B.; Magalon, A. Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications. Biochim. Biophys. Acta, 2012, 1817(10), 1937-1949.
[http://dx.doi.org/10.1016/j.bbabio.2012.04.005] [PMID: 22561115]
[128]
Laganowsky, A.; Reading, E.; Allison, T.M.; Ulmschneider, M.B.; Degiacomi, M.T.; Baldwin, A.J.; Robinson, C.V. Membrane proteins bind lipids selectively to modulate their structure and function. Nature, 2014, 510(7503), 172-175.
[http://dx.doi.org/10.1038/nature13419] [PMID: 24899312]
[129]
Tan, C.L.J.; Torres, J. Positive cooperativity in the activation of E. coli aquaporin Z by cardiolipin: Potential for lipid-based aquaporin modulators. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(5), 158899.
[http://dx.doi.org/10.1016/j.bbalip.2021.158899] [PMID: 33581256]
[130]
Jormakka, M.; Törnroth, S.; Byrne, B.; Iwata, S. Molecular basis of proton motive force generation: Structure of formate dehydrogenase-N. Science, 2002, 295(5561), 1863-1868.
[http://dx.doi.org/10.1126/science.1068186] [PMID: 11884747]
[131]
Yankovskaya, V.; Horsefield, R.; Törnroth, S.; Luna-Chavez, C.; Miyoshi, H.; Léger, C.; Byrne, B.; Cecchini, G.; Iwata, S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 2003, 299(5607), 700-704.
[http://dx.doi.org/10.1126/science.1079605] [PMID: 12560550]
[132]
Zhang, L.; Rajendram, M.; Weibel, D.B.; Yethiraj, A.; Cui, Q. Ionic hydrogen bonds and lipid packing defects determine the binding orientation and insertion depth of RecA on multicomponent lipid bilayers. J. Phys. Chem. B, 2016, 120(33), 8424-8437.
[http://dx.doi.org/10.1021/acs.jpcb.6b02164] [PMID: 27095675]
[133]
Karo, J.; Peterson, P.; Vendelin, M. Molecular dynamics simulations of creatine kinase and adenine nucleotide translocase in mitochondrial membrane patch. J. Biol. Chem., 2012, 287(10), 7467-7476.
[http://dx.doi.org/10.1074/jbc.M111.332320] [PMID: 22241474]
[134]
Malhotra, K.; Modak, A.; Nangia, S.; Daman, T.H.; Gunsel, U.; Robinson, V.L.; Mokranjac, D.; May, E.R.; Alder, N.N. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. Sci. Adv., 2017, 3(9), e1700532.
[http://dx.doi.org/10.1126/sciadv.1700532] [PMID: 28879236]
[135]
Mohammadyani, D.; Yanamala, N.; Samhan-Arias, A.K.; Kapralov, A.A.; Stepanov, G.; Nuar, N.; Planas-Iglesias, J.; Sanghera, N.; Kagan, V.E.; Klein-Seetharaman, J. Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation. Biochim. Biophys. Acta Biomembr., 2018, 1860(5), 1057-1068.
[http://dx.doi.org/10.1016/j.bbamem.2018.01.009] [PMID: 29317202]
[136]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[137]
Zhang, T.; Muraih, J.K.; Tishbi, N.; Herskowitz, J.; Victor, R.L.; Silverman, J.; Uwumarenogie, S.; Taylor, S.D.; Palmer, M.; Mintzer, E. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J. Biol. Chem., 2014, 289(17), 11584-11591.
[http://dx.doi.org/10.1074/jbc.M114.554444] [PMID: 24616102]
[138]
Kandaswamy, K.; Liew, T.H.; Wang, C.Y.; Huston-Warren, E.; Meyer-Hoffert, U.; Hultenby, K.; Schröder, J.M.; Caparon, M.G.; Normark, S.; Henriques-Normark, B.; Hultgren, S.J.; Kline, K.A. Focal targeting by human β-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc. Natl. Acad. Sci, 2013, 110(50), 20230-20235.
[http://dx.doi.org/10.1073/pnas.1319066110] [PMID: 24191013]
[139]
Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; van Kessel, K.P.M.; van Strijp, J.A.G. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med., 2001, 193(9), 1067-1076.
[http://dx.doi.org/10.1084/jem.193.9.1067] [PMID: 11342591]
[140]
Samant, S.; Hsu, F.F.; Neyfakh, A.A.; Lee, H. The Bacillus anthracis protein MprF is required for synthesis of lysylphosphatidylglycerols and for resistance to cationic antimicrobial peptides. J. Bacteriol., 2009, 191(4), 1311-1319.
[http://dx.doi.org/10.1128/JB.01345-08] [PMID: 19074395]
[141]
Bao, Y.; Sakinc, T.; Laverde, D.; Wobser, D.; Benachour, A.; Theilacker, C.; Hartke, A.; Huebner, J. Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis. PLoS One, 2012, 7(6), e38458.
[http://dx.doi.org/10.1371/journal.pone.0038458] [PMID: 22723861]
[142]
Ernst, C.M.; Staubitz, P.; Mishra, N.N.; Yang, S.J.; Hornig, G.; Kalbacher, H.; Bayer, A.S.; Kraus, D.; Peschel, A. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog., 2009, 5(11), e1000660.
[http://dx.doi.org/10.1371/journal.ppat.1000660] [PMID: 19915718]
[143]
Thedieck, K.; Hain, T.; Mohamed, W.; Tindall, B.J.; Nimtz, M.; Chakraborty, T.; Wehland, J.; Jänsch, L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol. Microbiol., 2006, 62(5), 1325-1339.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x] [PMID: 17042784]
[144]
Ernst, C.M.; Peschel, A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol. Microbiol., 2011, 80(2), 290-299.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07576.x] [PMID: 21306448]
[145]
Swain, J.; El Khoury, M.; Kempf, J.; Briée, F.; Van Der Smissen, P.; Décout, J.L.; Mingeot-Leclercq, M.P. Effect of cardiolipin on the antimicrobial activity of a new amphiphilic aminoglycoside derivative on Pseudomonas aeruginosa. PLoS One, 2018, 13(8), e0201752.
[http://dx.doi.org/10.1371/journal.pone.0201752] [PMID: 30125281]
[146]
Lin, T.Y.; Gross, W.S.; Auer, G.K.; Weibel, D.B. Cardiolipin alters Rhodobacter sphaeroides cell shape by affecting peptidoglycan precursor biosynthesis. MBio, 2019, 10(1), e02401-18.
[http://dx.doi.org/10.1128/mBio.02401-18] [PMID: 30782656]
[147]
Wipperman, M.F.; Heaton, B.E.; Nautiyal, A.; Adefisayo, O.; Evans, H.; Gupta, R.; van Ditmarsch, D.; Soni, R.; Hendrickson, R.; Johnson, J.; Krogan, N.; Glickman, M.S. Mycobacterial mutagenesis and drug resistance are controlled by phosphorylation- and cardiolipin-mediated inhibition of the RecA coprotease. Mol. Cell, 2018, 72(1), 152-161.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.07.037] [PMID: 30174294]
[148]
Lewis, R.N.A.H.; Zweytick, D.; Pabst, G.; Lohner, K.; McElhaney, R.N. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Biophys. J., 2007, 92(9), 3166-3177.
[http://dx.doi.org/10.1529/biophysj.106.094003] [PMID: 17293402]
[149]
Matsuzaki, K.; Sugishita, K.; Ishibe, N.; Ueha, M.; Nakata, S.; Miyajima, K.; Epand, R.M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry, 1998, 37(34), 11856-11863.
[http://dx.doi.org/10.1021/bi980539y] [PMID: 9718308]
[150]
dos Santos Cabrera, M.P.; Costa, S.T.B.; de Souza, B.M.; Palma, M.S.; Ruggiero, J.R.; Ruggiero Neto, J. Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur. Biophys. J., 2008, 37(6), 879-891.
[http://dx.doi.org/10.1007/s00249-008-0299-7] [PMID: 18414845]
[151]
Lin, T.Y.; Weibel, D.B. Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol., 2016, 100(10), 4255-4267.
[http://dx.doi.org/10.1007/s00253-016-7468-x] [PMID: 27026177]
[152]
Horsefield, R.; Yankovskaya, V.; Sexton, G.; Whittingham, W.; Shiomi, K.; Ōmura, S.; Byrne, B.; Cecchini, G.; Iwata, S. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. J. Biol. Chem., 2006, 281(11), 7309-7316.
[http://dx.doi.org/10.1074/jbc.M508173200] [PMID: 16407191]
[153]
Pewzner-Jung, Y.; Tavakoli Tabazavareh, S.; Grassmé, H.; Becker, K.A.; Japtok, L.; Steinmann, J.; Joseph, T.; Lang, S.; Tuemmler, B.; Schuchman, E.H.; Lentsch, A.B.; Kleuser, B.; Edwards, M.J.; Futerman, A.H.; Gulbins, E. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa. EMBO Mol. Med., 2014, 6(9), 1205-1214.
[http://dx.doi.org/10.15252/emmm.201404075] [PMID: 25085879]
[154]
Tavakoli Tabazavareh, S.; Seitz, A.; Jernigan, P.; Sehl, C.; Keitsch, S.; Lang, S.; Kahl, B.C.; Edwards, M.; Grassmé, H.; Gulbins, E.; Becker, K.A. Lack of sphingosine causes susceptibility to pulmonary staphylococcus aureus infections in cystic fibrosis. Cell. Physiol. Biochem., 2016, 38(6), 2094-2102.
[http://dx.doi.org/10.1159/000445567] [PMID: 27184795]
[155]
Bibel, D.J.; Aly, R.; Shinefield, H.R. Antimicrobial activity of sphingosines. J. Invest. Dermatol., 1992, 98(3), 269-273.
[http://dx.doi.org/10.1111/1523-1747.ep12497842] [PMID: 1545135]
[156]
Fischer, C.L.; Walters, K.S.; Drake, D.R.; Blanchette, D.R.; Dawson, D.V.; Brogden, K.A.; Wertz, P.W. Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage. Skin Pharmacol. Physiol., 2013, 26(1), 36-44.
[http://dx.doi.org/10.1159/000343175] [PMID: 23128426]
[157]
Azuma, M.M.; Balani, P.; Boisvert, H.; Gil, M.; Egashira, K.; Yamaguchi, T.; Hasturk, H.; Duncan, M.; Kawai, T.; Movila, A. Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem. Biophys. Res. Commun., 2018, 495(4), 2383-2389.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.137] [PMID: 29278706]
[158]
LaBauve, A.E.; Wargo, M.J. Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung. PLoS Pathog., 2014, 10(1), e1003889.
[http://dx.doi.org/10.1371/journal.ppat.1003889] [PMID: 24465209]
[159]
Grassmé, H.; Henry, B.; Ziobro, R.; Becker, K.A.; Riethmüller, J.; Gardner, A.; Seitz, A.P.; Steinmann, J.; Lang, S.; Ward, C.; Schuchman, E.H.; Caldwell, C.C.; Kamler, M.; Edwards, M.J.; Brodlie, M.; Gulbins, E. β1-integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe, 2017, 21(6), 707-718.e8.
[http://dx.doi.org/10.1016/j.chom.2017.05.001] [PMID: 28552668]
[160]
Verhaegh, R.; Becker, K.A.; Edwards, M.J.; Gulbins, E. Sphingosine kills bacteria by binding to cardiolipin. J. Biol. Chem., 2020, 295(22), 7686-7696.
[http://dx.doi.org/10.1074/jbc.RA119.012325] [PMID: 32327486]
[161]
Ayoub, M.C.; Hammoudi, H.D. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics, 2020, 9(3), 119.
[http://dx.doi.org/10.3390/antibiotics9030119] [PMID: 32178356]
[162]
Pfefferle, K.; Lopalco, P.; Breisch, J.; Siemund, A.; Corcelli, A.; Averhoff, B. in vivo synthesis of monolysocardiolipin and cardiolipin by Acinetobacter baumannii phospholipase D and effect on cationic antimicrobial peptide resistance. Environ. Microbiol., 2020, 22(12), 5300-5308.
[http://dx.doi.org/10.1111/1462-2920.15231] [PMID: 32929857]
[163]
Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[http://dx.doi.org/10.1128/CMR.00134-14] [PMID: 26016486]
[164]
Ledger, E.V.K.; Mesnage, S.; Edwards, A.M. Human serum triggers antibiotic tolerance in Staphylococcus aureus. Nat. Commun., 2022, 13(1), 2041.
[http://dx.doi.org/10.1038/s41467-022-29717-3] [PMID: 35440121]
[165]
Simons, K.; van Meer, G. Lipid sorting in epithelial cells. Biochemistry, 1988, 27(17), 6197-6202.
[http://dx.doi.org/10.1021/bi00417a001] [PMID: 3064805]
[166]
Bramkamp, M.; Lopez, D. Exploring the existence of lipid rafts in bacteria. Microbiol. Mol. Biol. Rev., 2015, 79(1), 81-100.
[http://dx.doi.org/10.1128/MMBR.00036-14] [PMID: 25652542]
[167]
Carlsson, F.; Stålhammar-Carlemalm, M.; Flärdh, K.; Sandin, C.; Carlemalm, E.; Lindahl, G. Signal sequence directs localized secretion of bacterial surface proteins. Nature, 2006, 442(7105), 943-946.
[http://dx.doi.org/10.1038/nature05021] [PMID: 16929299]
[168]
Willdigg, J.R.; Helmann, J.D. Mini review: Bacterial membrane composition and its modulation in response to stress. Front. Mol. Biosci., 2021, 8, 634438.
[http://dx.doi.org/10.3389/fmolb.2021.634438] [PMID: 34046426]
[169]
Nagendra Prasad, H.S.; Karthik, C.S.; Manukumar, H.M.; Mallesha, L.; Mallu, P. New approach to address antibiotic resistance: Miss loading of functional membrane microdomains (FMM) of methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog., 2019, 127, 106-115.
[http://dx.doi.org/10.1016/j.micpath.2018.11.038] [PMID: 30503959]
[170]
Planas-Iglesias, J.; Dwarakanath, H.; Mohammadyani, D.; Yanamala, N.; Kagan, V.E.; Klein-Seetharaman, J. Cardiolipin interactions with proteins. Biophys. J., 2015, 109(6), 1282-1294.
[http://dx.doi.org/10.1016/j.bpj.2015.07.034] [PMID: 26300339]
[171]
Arnarez, C.; Mazat, J.P.; Elezgaray, J.; Marrink, S.J.; Periole, X. Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. J. Am. Chem. Soc., 2013, 135(8), 3112-3120.
[http://dx.doi.org/10.1021/ja310577u] [PMID: 23363024]
[172]
Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov., 2010, 9(2), 117-128.
[http://dx.doi.org/10.1038/nrd3013] [PMID: 20081869]
[173]
Fleitas Martínez, O.; Cardoso, M.H.; Ribeiro, S.M.; Franco, O.L. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front. Cell. Infect. Microbiol., 2019, 9, 74.
[http://dx.doi.org/10.3389/fcimb.2019.00074] [PMID: 31001485]
[174]
Ford, C.A.; Hurford, I.M.; Cassat, J.E. Antivirulence strategies for the treatment of staphylococcus aureus infections: A mini review. Front. Microbiol., 2021, 11, 632706.
[http://dx.doi.org/10.3389/fmicb.2020.632706] [PMID: 33519793]
[175]
Yeo, W.S.; Dyzenhaus, S.; Torres, V.J.; Brinsmade, S.R.; Bae, T. Regulation of bacterial two-component systems by cardiolipin. Infect. Immun., 2023, 91(4), e0004623.
[http://dx.doi.org/10.1128/iai.00046-23] [PMID: 36975788]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy