Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers

Author(s): Bocui Song*, Qian Chen, Chunyu Tong, Yuqi Li, Shuang Li, Xue Shen, Wenqi Niu, Meihan Hao, Yunfei Ma and Yanhong Wang*

Volume 21, Issue 8, 2024

Published on: 10 October, 2023

Page: [1050 - 1061] Pages: 12

DOI: 10.2174/0115672018255493230922101434

Price: $65

Abstract

Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.

Graphical Abstract

[1]
Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig., 2019, 49(4), 347-380.
[http://dx.doi.org/10.1007/s40005-019-00439-x]
[2]
Jem, K.J.; Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Indus Eng Polym Res, 2020, 3(2), 60-70.
[http://dx.doi.org/10.1016/j.aiepr.2020.01.002]
[3]
Gangapurwala, G.; Vollrath, A.; De San Luis, A.; Schubert, U.S. PLA/PLGA-based drug delivery systems produced with supercritical CO2—A green future for particle formulation? Pharmaceutics, 2020, 12(11), 1118.
[http://dx.doi.org/10.3390/pharmaceutics12111118] [PMID: 33233637]
[4]
Blasi, P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig., 2019, 49(4), 337-346.
[http://dx.doi.org/10.1007/s40005-019-00453-z]
[5]
Damiati, S.A.; Rossi, D.; Joensson, H.N.; Damiati, S. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics. Sci. Rep., 2020, 10(1), 19517.
[http://dx.doi.org/10.1038/s41598-020-76477-5] [PMID: 33177577]
[6]
Nurdin, D.; Hardiansyah, A.; Chaldun, E.R.; Fikkriyah, A.K.; Dharsono, H.D.A.; Kurnia, D.; Satari, M.H. Preparation and Characterization of Terpenoid-Encapsulated PLGA Microparticles and its Antibacterial Activity against Enterococcus faecalis. Key Eng. Mater., 2019, 829, 263-269.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.829.263]
[7]
Alqahtani, F.Y.; Aleanizy, F.S.; El Tahir, E.; Alkahtani, H.M.; AlQuadeib, B.T. Paclitaxel. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 205-238.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.001] [PMID: 31029218]
[8]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[9]
Chen, P.P. Study on separation and purification of paclitaxel and construction of its sustained-release carrier; University of Chemical Technology: Beijing, 2019.
[http://dx.doi.org/10.26939/d.cnki.gbhgu.2019.001245]
[10]
Guo, C.L.; Yao, S.P.; Yin, X.J.; Jiao, Y. Effect of paclitaxel sustained-release microspheres on tumor suppressive effect and pathopathology in animal models of ovarian cancer by action of the PI3K/AKT/p53 pathway. Chinese J. Clin. Obs. Gyneco., 2021, 22(5), 514-515.
[http://dx.doi.org/10.13390/j.issn.1672-1861.2021.05.024]
[11]
Alfaleh, M.A.; Hashem, A.M.; Abujamel, T.S.; Alhakamy, N.A.; Kalam, M.A.; Riadi, Y.; Md, S. Apigenin Loaded Lipoid–PLGA–TPGS Nanoparticles for Colon Cancer Therapy: Characterization, Sustained Release, Cytotoxicity, and Apoptosis Pathways. Polymers (Basel), 2022, 14(17), 3577.
[http://dx.doi.org/10.3390/polym14173577] [PMID: 36080654]
[12]
Baishya, R.; Nayak, D.K.; Kumar, D.; Sinha, S.; Gupta, A.; Ganguly, S.; Debnath, M.C. Ursolic acid loaded PLGA nanoparticles: In vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm. Res., 2016, 33(11), 2691-2703.
[http://dx.doi.org/10.1007/s11095-016-1994-1] [PMID: 27431865]
[13]
Zhong, Y.; Su, T.; Shi, Q.; Feng, Y.; Tao, Z.; Huang, Q.; Li, L.; Hu, L.; Li, S.; Tan, H.; Liu, S.; Yang, H. Co-administration of iRGD enhances tumor-targeted delivery and anti-tumor effects of paclitaxel-loaded PLGA nanoparticles for colorectal cancer treatment. Int. J. Nanomedicine, 2019, 14, 8543-8560.
[http://dx.doi.org/10.2147/IJN.S219820] [PMID: 31802868]
[14]
Tonbul, H.; Sahin, A.; Tavukcuoglu, E.; Esendagli, G.; Capan, Y. Combination drug delivery with actively-targeted PLGA nanoparticles to overcome multidrug resistance in breast cancer. J. Drug Deliv. Sci. Technol., 2019, 54, 101380.
[http://dx.doi.org/10.1016/j.jddst.2019.101380]
[15]
Ganipineni, L.P.; Ucakar, B.; Joudiou, N.; Bianco, J.; Danhier, P.; Zhao, M.; Bastiancich, C.; Gallez, B.; Danhier, F.; Préat, V. Magnetic targeting of paclitaxel-loaded poly(lactic-co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int. J. Nanomedicine, 2018, 13, 4509-4521.
[http://dx.doi.org/10.2147/IJN.S165184] [PMID: 30127603]
[16]
Hu, Y.; Chen, D.; Zheng, P.; Yu, J.; He, J.; Mao, X.; Yu, B. The bidirectional interactions between resveratrol and gut microbiota, an insight into oxidative stress and inflammatory bowel disease therapy. BioMed Res. Int., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/5403761] [PMID: 31179328]
[17]
Wang, J.; Zhang, Z.; Fang, A.; Wu, K.; Chen, X.; Wang, G.; Mao, F. Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1. Biol. Pharm. Bull., 2020, 43(3), 450-457.
[http://dx.doi.org/10.1248/bpb.b19-00786] [PMID: 32115503]
[18]
Siu, F.; Ye, S.; Lin, H.; Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomedicine, 2018, 13, 4133-4144.
[http://dx.doi.org/10.2147/IJN.S164235] [PMID: 30038494]
[19]
Li, X.; Su, J.; Kamal, Z.; Guo, P.; Wu, X.; Lu, L.; Wu, H.; Qiu, M. Odorranalectin modified PEG–PLGA/PEG–PBLG curcumin-loaded nanoparticle for intranasal administration. Drug Dev. Ind. Pharm., 2020, 46(6), 899-909.
[http://dx.doi.org/10.1080/03639045.2020.1762202] [PMID: 32375569]
[20]
Chen, X.; Zhang, H.; Wang, C.; Su, Y.; Xiong, M.; Feng, X.; Chen, D.; Ke, Z.; Wen, L.; Chen, G. Curcumin-Encapsulated Chitosan-Coated Nanoformulation as an Improved Otoprotective Strategy for Ototoxic Hearing Loss. Mol. Pharm., 2022, 19(7), 2217-2230.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00067] [PMID: 35575590]
[21]
Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Simultaneous pulmonary administration of celecoxib and naringin using a nebulization-friendly nanoemulsion: A device-targeted delivery for treatment of lung cancer. Expert Opin. Drug Deliv., 2022, 19(5), 611-622.
[http://dx.doi.org/10.1080/17425247.2022.2076833] [PMID: 35538642]
[22]
Sharma, A.; Hawthorne, S.; Jha, S.K.; Jha, N.K.; Kumar, D.; Girgis, S.; Goswami, V.K.; Gupta, G.; Singh, S.; Dureja, H.; Chellappan, D.K.; Dua, K. Effects of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles in MDA-MB231 human breast cancer cells. Nanomedicine (Lond.), 2021, 16(20), 1763-1773.
[http://dx.doi.org/10.2217/nnm-2021-0066] [PMID: 34296625]
[23]
Bacanlı, M.; Eşım, Ö.; Erdoğan, H.; Sarper, M.; Erdem, O.; Özkan, Y. Evaluation of cytotoxic and genotoxic effects of paclitaxel-loaded PLGA nanoparticles in neuroblastoma cells. Food Chem. Toxicol., 2021, 154, 112323.
[http://dx.doi.org/10.1016/j.fct.2021.112323] [PMID: 34111492]
[24]
Kızılbey, K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega, 2019, 4(1), 555-562.
[http://dx.doi.org/10.1021/acsomega.8b02767]
[25]
Feng, Z.; Jiao, L.; Wu, Z.; Xu, J.; Gu, P.; Xu, S.; Liu, Z.; Hu, Y.; Liu, J.; Wu, Y.; Wang, D. A novel nanomedicine ameliorates acute inflammatory bowel disease by regulating macrophages and T-cells. Mol. Pharm., 2021, 18(9), 3484-3495.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00415] [PMID: 34310145]
[26]
Ren, Z.; Qin, T.; Liu, X.; Luo, Y.; Qiu, F.; Long, Y.; Ma, Y.; Li, J.; Huang, Y. Optimization of Hericium erinaceus polysaccharide-loaded Poly (lactic-co-glycolicacid) nanoparticles by RSM and its absorption in Caco-2 cell monolayers. Int. J. Biol. Macromol., 2018, 118(Pt A), 932-937.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.169] [PMID: 29966670]
[27]
Fodor-Kardos, A.; Kiss, Á.F.; Monostory, K.; Feczkó, T. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Advances, 2020, 10(27), 15893-15900.
[http://dx.doi.org/10.1039/C9RA09928J] [PMID: 35493658]
[28]
Shang, Y.X.; Wang, Y.R.; Tang, F.Y.; Qiu, K.; Wei, X.H.; Wang, Z.T. Transferrin modified notoginsenoside R1-loaded PEG-PLGA nanoparticles: Preparation and in vitro release evaluation. Acad. J. Shanghai Uni. Trad. Chinese Med., 2021, 35(3), 71-78.
[http://dx.doi.org/10.16306/j.1008-861x.2021.03.013]
[29]
Cao, Y.; Ahmed, A.M.Q.; Du, H.H.; Sun, W.; Lu, X.; Xu, Z.; Tao, J.; Cao, Q.R. Formulation and characterization of combretastatin A4 loaded PLGA nanoparticles. Curr. Drug Deliv., 2020, 6(12), 1-25.
[http://dx.doi.org/10.2174/1567201819666220209093443] [PMID: 35139789]
[30]
Xu, H.Y.; Xie, L.Y.; Chang, D.; Hou, Z.Q.; Ke, J.Z. Preparation of Me PEG-PLGA Hydroxy Camptothecin Nanoparticles by Improved Dialysis Method. Chinese J. Mod. Appl. Pharm., 2016, 33(6), 746-751.
[http://dx.doi.org/10.13748/j.cnki.issn1007-7693.2016.06.016]
[31]
Arpagaus, C. PLA/PLGA nanoparticles prepared by nano spray drying. J. Pharm. Investig., 2019, 49(4), 405-426.
[http://dx.doi.org/10.1007/s40005-019-00441-3]
[32]
Anzar, N.; Mirza, M.A.; Anwer, K.; Khuroo, T.; Alshetaili, A.S.; Alshahrani, S.M.; Meena, J.; Hasan, N.; Talegaonkar, S.; Panda, A.K.; Iqbal, Z. Preparation, evaluation and pharmacokinetic studies of spray dried PLGA polymeric submicron particles of simvastatin for the effective treatment of breast cancer. J. Mol. Liq., 2018, 249, 609-616.
[http://dx.doi.org/10.1016/j.molliq.2017.11.081]
[33]
Lababidi, N.; Montefusco-Pereira, C.V.; de Souza Carvalho-Wodarz, C.; Lehr, C.M.; Schneider, M. Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. Eur. J. Pharm. Biopharm., 2020, 157, 200-210.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.010] [PMID: 33222771]
[34]
Takeuchi, I.; Taniguchi, Y.; Tamura, Y.; Ochiai, K.; Makino, K. Effects of l-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: Fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf. A Physicochem. Eng. Asp., 2018, 537, 411-417.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.047]
[35]
Long, L.; Zhong, W.; Guo, L.; Ji, J.; Nie, H. Effect of Bufalin-PLGA Microspheres in the Alleviation of Neuropathic Pain via the CCI Model. Front. Pharmacol., 2022, 13, 910885.
[http://dx.doi.org/10.3389/fphar.2022.910885] [PMID: 35770074]
[36]
Ma, X.F. New progress in the synthesis of PLA and the preparation of PLA microspheres. Chem. Eng., 2020, 2020(12), 58-60.
[http://dx.doi.org/10.16247/j.cnki.23-1171/tq.20201258]
[37]
Mihalik, N.E.; Wen, S.; Driesschaert, B.; Eubank, T.D. Formulation and In vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech, 2021, 22(5), 191-222.
[http://dx.doi.org/10.1208/s12249-021-02049-z] [PMID: 34169366]
[38]
Tok, K.C.; Gumustas, M.; Sengel-Turk, C.T.; Amasya, G.; Bayram, B.; Arioglu-Inan, E. Development of salting-out extraction methodology for the determination of piroxicam from polymeric based nanocarriers and biological samples. J. Pharm. Biomed. Anal., 2022, 219, 114966.
[http://dx.doi.org/10.1016/j.jpba.2022.114966]
[39]
Tuba SENGEL TÜRK, C.; Bayram, B. Development and in-vitro evaluation of chitosan chloride decorated PLGA based polymeric nanoparticles of nimesulide. J. Res. Pharm., 2021, 25(4), 379-387.
[http://dx.doi.org/10.29228/jrp.28]
[40]
Liu, C.; Qi, W.; Teng, Z.; Xu, R.; Xi, Y.; Qin, Y.; Xu, F.; Shi, L.; Zhao, M.; Xia, M. NGR-modified PEG-PLGA micelles containing Shikonin enhance targeting of dendritic cells for therapy of allergic rhinitis. Int. Immunopharmacol., 2022, 107(1), 108649.
[http://dx.doi.org/10.1016/j.intimp.2022.108649] [PMID: 35286915]
[41]
Cao, X.; Wang, B. Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment. J. Biomater. Appl., 2021, 36(5), 843-850.
[http://dx.doi.org/10.1177/08853282211017701] [PMID: 34000859]
[42]
Park, M.H.; Jun, H.S.; Jeon, J.W.; Park, J.K.; Lee, B.J.; Suh, G.H.; Park, J.S.; Cho, C.W. Preparation and characterization of bee venom-loaded PLGA particles for sustained release. Pharm. Dev. Technol., 2018, 23(9), 857-864.
[http://dx.doi.org/10.1080/10837450.2016.1264415] [PMID: 27881046]
[43]
Zhang, E.; Osipova, N.; Sokolov, M.; Maksimenko, O.; Semyonkin, A.; Wang, M.; Grigartzik, L.; Gelperina, S.; Sabel, B.A.; Henrich-Noack, P. Exploring the systemic delivery of a poorly water-soluble model drug to the retina using PLGA nanoparticles. Eur. J. Pharm. Sci., 2021, 164, 105905.
[http://dx.doi.org/10.1016/j.ejps.2021.105905] [PMID: 34116175]
[44]
Kamali, H.; Atamanesh, M.; Kaffash, E.; Mohammadpour, F.; Khodaverdi, E.; Hadizadeh, F. Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. J. Drug Deliv. Sci. Technol., 2020, 57, 101702.
[http://dx.doi.org/10.1016/j.jddst.2020.101702]
[45]
Zabihi, F.; Xin, N.; Jia, J.; Chen, T.; Zhao, Y. High yield and high loading preparation of curcumin-PLGA nanoparticles using a modified supercritical antisolvent technique. Ind. Eng. Chem. Res., 2014, 53(15), 6569-6574.
[http://dx.doi.org/10.1021/ie404215h]
[46]
Chu, Q.; Zhang, Y.; Chen, W.; Jia, R.; Yu, X.; Wang, Y.; Li, Y.; Liu, Y.; Ye, X.; Yu, L.; Zheng, X. Apios americana Medik flowers polysaccharide (AFP) alleviate Cyclophosphamide-induced immunosuppression in ICR mice. Int. J. Biol. Macromol., 2020, 144, 829-836.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.035] [PMID: 31734373]
[47]
Feng, H.; Fan, J.; Lin, L.; Liu, Y.; Chai, D.; Yang, J. Immunomodulatory effects of phosphorylated radix cyathulae officinalis polysaccharides in immunosuppressed mice. Molecules, 2019, 24(22), 4150-4164.
[http://dx.doi.org/10.3390/molecules24224150] [PMID: 31731832]
[48]
Kan, Y.; Liu, Y.; Huang, Y.; Zhao, L.; Jiang, C.; Zhu, Y.; Pang, Z.; Hu, J.; Pang, W.; Lin, W. The regulatory effects of Pseudostellaria heterophylla polysaccharide on immune function and gut flora in immunosuppressed mice. Food Sci. Nutr., 2022, 10(11), 3828-3841.
[http://dx.doi.org/10.1002/fsn3.2979] [PMID: 36348804]
[49]
Wu, D.; Liu, Z.; Feng, Y.; Tang, F.; Li, S.; Zhang, X.; Li, H.; Liu, Q.; Zhang, L.; Liu, Q.; Yang, X.; Feng, H. Development and characterization of DEC-205 receptor targeted Potentilla anserina L polysaccharide PLGA nanoparticles as an antigen delivery system to enhance in vitro and in vivo immune responses in mice. Int. J. Biol. Macromol., 2023, 224, 998-1011.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.184] [PMID: 36306904]
[50]
Gu, P.; Wusiman, A.; Zhang, Y.; Cai, G.; Xu, S.; Zhu, S.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants. Vet. Microbiol., 2020, 251, 108894.
[http://dx.doi.org/10.1016/j.vetmic.2020.108894] [PMID: 33096470]
[51]
Kaufmann, S.H.E. Immunology’s coming of age. Front. Immunol., 2019, 10, 684.
[http://dx.doi.org/10.3389/fimmu.2019.00684] [PMID: 31001278]
[52]
Luo, L.; Zheng, S.; Huang, Y.; Qin, T.; Xing, J.; Niu, Y.; Bo, R.; Liu, Z.; Huang, Y.; Hu, Y.; Liu, J.; Wu, Y.; Wang, D. Preparation and characterization of Chinese yam polysaccharide PLGA nanoparticles and their immunological activity. Int. J. Pharm., 2016, 511(1), 140-150.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.130] [PMID: 27374200]
[53]
Harryvan, T.J.; de Lange, S.; Hawinkels, L.J.A.C.; Verdegaal, E.M.E. The ABCs of antigen presentation by stromal non-professional antigen-presenting cells. Int. J. Mol. Sci., 2021, 23(1), 137-150.
[http://dx.doi.org/10.3390/ijms23010137] [PMID: 35008560]
[54]
Wu, H.; Chen, H.; Liu, J.; Xing, Z.; Ni, J.; Teng, L.; Chen, Y. Amomum longiligulare polysaccharide 1- PLGA nanoparticle promotes the immune activities of T lymphocytes and dendritic cells. Int. Immunopharmacol., 2022, 112, 109204.
[http://dx.doi.org/10.1016/j.intimp.2022.109204] [PMID: 36067651]
[55]
Bai, X.; Feng, Z.; Peng, S.; Zhu, T.; Jiao, L.; Mao, N.; Gu, P.; Liu, Z.; Yang, Y.; Wang, D. Chitosan-modified Phellinus igniarius polysaccharide PLGA nanoparticles ameliorated inflammatory bowel disease. Biomater. Adv., 2022, 139, 213002.
[http://dx.doi.org/10.1016/j.bioadv.2022.213002] [PMID: 35882149]
[56]
Sun, L.; Wang, X.; Saredy, J.; Yuan, Z.; Yang, X.; Wang, H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol., 2020, 37, 101759.
[http://dx.doi.org/10.1016/j.redox.2020.101759] [PMID: 33086106]
[57]
Luo, Y.; Ren, Z.; Bo, R.; Liu, X.; Zhang, J.; Yu, R.; Chen, S.; Meng, Z.; Xu, Y.; Ma, Y.; Huang, Y.; Qin, T. Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus. Int. J. Biol. Macromol., 2020, 143, 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.061] [PMID: 31830456]
[58]
Xu, S.W. Study on the intracellular pH-responsive astragalus polysaccharide-encapsulated plga nanoparticles as adjuvant vaccines; Nanjing Agricultural University: Nanjing, 2019.
[http://dx.doi.org/10.27244/d.cnki.gnjnu.2019.000512]
[59]
Megha, K.B.; Mohanan, P.V. Role of immunoglobulin and antibodies in disease management. Int. J. Biol. Macromol., 2021, 169, 28-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.073] [PMID: 33340621]
[60]
Crow, M.K.; Olferiev, M.; Kirou, K.A. Type I interferons in autoimmune disease. Annu. Rev. Pathol., 2019, 14(1), 369-393.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043952] [PMID: 30332560]
[61]
Fugger, L.; Jensen, L.T.; Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell, 2020, 181(1), 63-80.
[http://dx.doi.org/10.1016/j.cell.2020.03.007] [PMID: 32243797]
[62]
Radu, A.F.; Bungau, S.G. Management of rheumatoid arthritis: An overview. Cells, 2021, 10(11), 2857.
[http://dx.doi.org/10.3390/cells10112857] [PMID: 34831081]
[63]
Fang, Q.; Zhou, C.; Nandakumar, K.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/3830212] [PMID: 32256192]
[64]
Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun., 2020, 110, 102400.
[http://dx.doi.org/10.1016/j.jaut.2019.102400] [PMID: 31980337]
[65]
Mohanty, S.; Konkimalla, V.B.; Pal, A.; Sharma, T.; Si, S.C. Naringin as sustained delivery nanoparticles ameliorates the anti-inflammatory activity in a Freund’s complete adjuvant-induced arthritis model. ACS Omega, 2021, 6(43), 28630-28641.
[http://dx.doi.org/10.1021/acsomega.1c03066] [PMID: 34746558]
[66]
Fan, D.; Guo, Q.; Shen, J.; Zheng, K.; Lu, C.; Zhang, G.; Lu, A.; He, X. The effect of triptolide in rheumatoid arthritis: From basic research towards clinical translation. Int. J. Mol. Sci., 2018, 19(2), 376-393.
[http://dx.doi.org/10.3390/ijms19020376] [PMID: 29373547]
[67]
Wang, L.; Che, K.; Liu, Y. Pharmacokinetics, distribution and efficacy of triptolide PLGA microspheres after intra-articular injection in a rat rheumatoid arthritis model. Xenobiotica, 2021, 51(6), 703-715.
[http://dx.doi.org/10.1080/00498254.2021.1923860] [PMID: 33938387]
[68]
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci., 2019, 20(6), 1475-1503.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[69]
Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 2020, 323(19), 1945-1960.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[70]
Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of psoriasis and development of treatment. J. Dermatol., 2018, 45(3), 264-272.
[http://dx.doi.org/10.1111/1346-8138.14139] [PMID: 29226422]
[71]
Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release, 2017, 254, 44-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.385] [PMID: 28344018]
[72]
Flynn, S.; Eisenstein, S. Inflammatory bowel disease presentation and diagnosis. Surg. Clin. North Am., 2019, 99(6), 1051-1062.
[http://dx.doi.org/10.1016/j.suc.2019.08.001] [PMID: 31676047]
[73]
Chang, J.T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med., 2020, 383(27), 2652-2664.
[http://dx.doi.org/10.1056/NEJMra2002697] [PMID: 33382932]
[74]
Feng, Z.; Peng, S.; Wu, Z.; Jiao, L.; Xu, S.; Wu, Y.; Liu, Z.; Hu, Y.; Liu, J.; Wu, Y.; Wang, D. Ramulus mori polysaccharide-loaded PLGA nanoparticles and their anti-inflammatory effects in vivo. Int. J. Biol. Macromol., 2021, 182, 2024-2036.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.200] [PMID: 34087293]
[75]
Naserifar, M.; Hosseinzadeh, H.; Abnous, K.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci., 2020, 262, 118555.
[http://dx.doi.org/10.1016/j.lfs.2020.118555] [PMID: 33035579]
[76]
Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; Toppila-Salmi, S. Allergic rhinitis. Nat. Rev. Dis. Primers, 2020, 6(1), 95-112.
[http://dx.doi.org/10.1038/s41572-020-00227-0] [PMID: 33273461]
[77]
Meng, Y.; Wang, C.; Zhang, L. Recent developments and highlights in allergic rhinitis. Allergy, 2019, 74(12), 2320-2328.
[http://dx.doi.org/10.1111/all.14067] [PMID: 31571226]
[78]
Komlósi, Z.I.; van de Veen, W.; Kovács, N.; Szűcs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med., 2022, 85, 100995.
[http://dx.doi.org/10.1016/j.mam.2021.100995] [PMID: 34364680]
[79]
Zhang, Y.; Song, Y.; Wang, C.; Jiang, J.; Liu, S.; Bai, Q.; Li, L.; Jin, H.; Jin, Y.; Yan, G. Panax notoginseng saponin R1 attenuates allergic rhinitis through AMPK/Drp1 mediated mitochondrial fission. Biochem. Pharmacol., 2022, 202, 115106.
[http://dx.doi.org/10.1016/j.bcp.2022.115106] [PMID: 35623408]
[80]
Liu, Y.; Lei, Z.; Chai, H.; Kang, Q.; Qin, X. Salidroside alleviates hepatic ischemia–reperfusion injury during liver transplant in rat through regulating TLR-4/NF-κB/NLRP3 inflammatory pathway. Sci. Rep., 2022, 12(1), 13973.
[http://dx.doi.org/10.1038/s41598-022-18369-4] [PMID: 34992227]
[81]
Roy, S.; Manna, K.; Jha, T.; Saha, K.D. Chrysin-loaded PLGA attenuates OVA-induced allergic asthma by modulating TLR/NF-κB/NLRP3 axis. Nanomedicine, 2020, 30, 102292.
[http://dx.doi.org/10.1016/j.nano.2020.102292] [PMID: 32853785]
[82]
Shahgordi, S.; Sankian, M.; Yazdani, Y.; Mashayekhi, K.; Hasan Ayati, S.; Sadeghi, M.; Saeidi, M.; Hashemi, M. Immune responses modulation by curcumin and allergen encapsulated into PLGA nanoparticles in mice model of rhinitis allergic through sublingual immunotherapy. Int. Immunopharmacol., 2020, 84, 106525.
[http://dx.doi.org/10.1016/j.intimp.2020.106525] [PMID: 32361190]
[83]
Chen, L.; Mehrabi Nasab, E.; Shamsadin Athari, S. Effect of loaded glycyrrhizic acid on PLGA nano-particle on treatment of allergic asthma. Iran. J. Allergy Asthma Immunol., 2022, 21(1), 65-72.
[http://dx.doi.org/10.18502/ijaai.v21i1.8617] [PMID: 35524379]
[84]
Sykes, M.; Sachs, D.H. Transplanting organs from pigs to humans. Sci. Immunol., 2019, 4(41), eaau6298.
[http://dx.doi.org/10.1126/sciimmunol.aau6298] [PMID: 31676497]
[85]
Yang, Z.; Han, F.; Liao, T.; Zheng, H.; Luo, Z.; Ma, M.; He, J.; Li, L.; Ye, Y.; Zhang, R.; Huang, Z.; Zhang, Y.; Sun, Q. Artemisinin attenuates transplant rejection by inhibiting multiple lymphocytes and prolongs cardiac allograft survival. Front. Immunol., 2021, 12, 634368.
[http://dx.doi.org/10.3389/fimmu.2021.634368] [PMID: 33717174]
[86]
Ye, S.; Liu, H.; Chen, Y.; Qiu, F.; Liang, C.L.; Zhang, Q.; Huang, H.; Wang, S.; Zhang, Z.D.; Lu, W.; Dai, Z. A novel immunosuppressant, luteolin, modulates alloimmunity and suppresses murine allograft rejection. J. Immunol., 2019, 203(12), 3436-3446.
[http://dx.doi.org/10.4049/jimmunol.1900612] [PMID: 31732527]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy