Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects

Author(s): Dilpreet Singh* and Sanjay Nagdev

Volume 21, Issue 8, 2024

Published on: 19 January, 2024

Page: [1037 - 1049] Pages: 13

DOI: 10.2174/0115672018275382231215063052

Price: $65

conference banner
Abstract

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.

Next »
Graphical Abstract

[1]
Raghupathi, R.; Graham, D.; McINTOSH, T.K. Apoptosis after traumatic brain injury. J. Neurotrauma, 2000, 17(10), 927-938.
[http://dx.doi.org/10.1089/neu.2000.17.927] [PMID: 11063058]
[2]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[3]
Williams, E.J.; Walsh, F.S.; Doherty, P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J. Cell Biol., 2003, 160(4), 481-486.
[http://dx.doi.org/10.1083/jcb.200210164] [PMID: 12578907]
[4]
Anderson, M.A.; Burda, J.E.; Ren, Y.; Ao, Y.; O’Shea, T.M.; Kawaguchi, R.; Coppola, G.; Khakh, B.S.; Deming, T.J.; Sofroniew, M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature, 2016, 532(7598), 195-200.
[http://dx.doi.org/10.1038/nature17623] [PMID: 27027288]
[5]
Götz, M.; Sirko, S.; Beckers, J. Strategies for the regeneration of adult hippocampal neurogenesis and their relevance for CNS repair. Cell Tissue Res., 2012, 349(2), 639-648.
[6]
Tanaka, K.F.; Takebayashi, H.; Yamazaki, Y. The generation of proliferative neural progenitor cells from guinea pig enteric nervous system ganglionic progenitor cells. J. Neurosci., 2008, 28(15), 3851-3859.
[7]
Alvarez-Buylla, A.; García-Verdugo, J.M. Neurogenesis in adult subventricular zone. J. Neurosci., 2002, 22(3), 629-634.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00629.2002] [PMID: 11826091]
[8]
Goldman, S.A.; Nedergaard, M.; Windrem, M.S. Glial progenitor cell-based treatment and modeling of neurological disease. Science, 2012, 338(6106), 491-495.
[http://dx.doi.org/10.1126/science.1218071] [PMID: 23112326]
[9]
Kriegstein, A.; Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci., 2009, 32(1), 149-184.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135600] [PMID: 19555289]
[10]
Benraiss, A.; Goldman, S.A. Cellular therapy and induced neuronal replacement for Huntington’s disease. Neurotherapeutics, 2011, 8(4), 577-590.
[http://dx.doi.org/10.1007/s13311-011-0075-8] [PMID: 21971961]
[11]
Teng, Y.D.; Lavik, E.B.; Qu, X.; Park, K.I.; Ourednik, J.; Zurakowski, D.; Langer, R.; Snyder, E.Y. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci., 2002, 99(5), 3024-3029.
[http://dx.doi.org/10.1073/pnas.052678899] [PMID: 11867737]
[12]
Li, M.; Guo, K.; Ikehara, S. Effective treatment of Parkinson’s disease with neural transplantation and trophic factors. Int. J. Neurosci., 2009, 119(6), 765-777.
[PMID: 19326283]
[13]
Lindvall, O.; Kokaia, Z. Stem cells in human neurodegenerative disorders — time for clinical translation? J. Clin. Invest., 2010, 120(1), 29-40.
[http://dx.doi.org/10.1172/JCI40543] [PMID: 20051634]
[14]
Svendsen, C.N.; Smith, A.G. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci., 1999, 22(8), 357-364.
[http://dx.doi.org/10.1016/S0166-2236(99)01428-9] [PMID: 10407421]
[15]
Barker, R.A.; Dunnett, S.B. Repair of the injured central nervous system: Strategies for therapy. Trends Neurosci., 1999, 22(12), 612-618.
[16]
Lindvall, O.; Kokaia, Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol. Sci., 2009, 30(5), 260-267.
[http://dx.doi.org/10.1016/j.tips.2009.03.001] [PMID: 19362379]
[17]
Gage, F.H.; Coates, P.W.; Palmer, T.D.; Kuhn, H.G.; Fisher, L.J.; Suhonen, J.O.; Peterson, D.A.; Suhr, S.T.; Ray, J. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci., 1995, 92(25), 11879-11883.
[http://dx.doi.org/10.1073/pnas.92.25.11879] [PMID: 8524867]
[18]
Goldman, S.A.; Chen, Z. Perivascular instruction of cell genesis and fate in the adult brain. Nat. Neurosci., 2011, 14(11), 1382-1389.
[http://dx.doi.org/10.1038/nn.2963] [PMID: 22030549]
[19]
Alvarez, J.I.; Cayrol, R.; Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(2), 252-264.
[http://dx.doi.org/10.1016/j.bbadis.2010.06.017] [PMID: 20619340]
[20]
Wang, F.; Gómez-Sintes, R.; Boya, P. Lysosomal membrane permeabilization and cell death. Traffic, 2018, 19(12), 918-931.
[http://dx.doi.org/10.1111/tra.12613] [PMID: 30125440]
[21]
Salminen, A.; Ojala, J.; Kaarniranta, K.; Kauppinen, A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mol. Life Sci., 2012, 69(18), 2999-3013.
[http://dx.doi.org/10.1007/s00018-012-0962-0] [PMID: 22446749]
[22]
Chen, X.; Zhang, Q.; Shang, L. Recent advances in the field of smart drug delivery based on noble polymers. J. Control. Release, 2017, 256, 9-22.
[23]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[24]
Hynes, R.O. Integrins. Cell, 2002, 110(6), 673-687.
[http://dx.doi.org/10.1016/S0092-8674(02)00971-6] [PMID: 12297042]
[25]
del Zoppo, G.J.; Milner, R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 1966-1975.
[http://dx.doi.org/10.1161/01.ATV.0000232525.65682.a2] [PMID: 16778120]
[26]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[27]
Lindner, D.; Lokmic, Z.; Sullivan, R. Laser-capture microdissection fluorescence activated cell sorting (LCM/FACS) techniques result in suboptimal DNA amplification. PLoS One, 2009, 4(6), e8121.
[28]
Mitrousis, N.; Fokina, A.; Shoichet, M.S. Biomaterials for cell transplantation. Nat. Rev. Mater., 2018, 3(11), 441-456.
[http://dx.doi.org/10.1038/s41578-018-0057-0]
[29]
Garbayo, E.; Raval, A.P.; Curtis, K.M. Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers. J. Neurochem., 2016, 138(6), 957-970.
[PMID: 21496021]
[30]
Zhu, L.; Xu, P.C. Down-regulation of growth arrest DNA damage-inducible gene 45β expression is associated with human hepatocellular carcinoma. Am. J. Pathol., 2007, 170(5), 1964-1974.
[31]
Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; Bi, W.; Cohen, A.D.; Lopresti, B.J.; DeKosky, S.T.; Halligan, E.M.; Klunk, W.E. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol., 2008, 65(11), 1509-1517.
[http://dx.doi.org/10.1001/archneur.65.11.1509] [PMID: 19001171]
[32]
Hua, M.Y.; Liu, H.L.; Yang, H.W.; Chen, P.Y.; Tsai, R.Y.; Huang, C.Y.; Tseng, I.C.; Lyu, L.A.; Ma, C.C.; Tang, H.J.; Yen, T.C.; Wei, K.C. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials, 2011, 32(2), 516-527.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.065] [PMID: 21030073]
[33]
Pardridge, W.M. Blood-brain barrier drug targeting: The future of brain drug development. Mol. Interv., 2003, 3(2), 90-105. 51
[http://dx.doi.org/10.1124/mi.3.2.90] [PMID: 14993430]
[34]
Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4), 341-345.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[35]
Dhuria, S.V.; Hanson, L.R.; Frey, W.H., II Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci., 2010, 99(4), 1654-1673.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[36]
Lakkadwala, S.; Singh, J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces, 2019, 173, 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[37]
Kreuter, J.; Ramge, P.; Petrov, V.; Hamm, S.; Gelperina, S.E.; Engelhardt, B.; Alyautdin, R.; von Briesen, H.; Begley, D.J. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res., 2003, 20(3), 409-416.
[http://dx.doi.org/10.1023/A:1022604120952] [PMID: 12669961]
[38]
Sonali; Singh, RP.; Singh, N.; Sharma, G.; Vijayakumar, MR.; Koch, B. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv Transl Res., 2018, 8(6), 1720-1734.
[39]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y. A specific RAGE-binding peptide bi-functionalized ferritin nanocage for detecting and inhibiting Aβ fibrillation with high affinity. Biomaterials, 2014, 35(12), 3699-3710.
[40]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[41]
Garg, T.; Singh, O.; Arora, S.; Murthy, R.S.R. Scaffold: A novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2012, 29(1), 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10] [PMID: 22356721]
[42]
Fang, Y.; Zheng, J.; Yang, J.; Chen, P.Y. Nano-structured drug delivery systems for neuroprotection in ischemic stroke. Curr. Pharm. Des., 2020, 26(12), 1311-1319.
[43]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[44]
Kalia, L.V.; Kalia, S.K.; Salter, M.W. NMDA receptors in clinical neurology: Excitatory times ahead. Lancet Neurol., 2008, 7(8), 742-755.
[http://dx.doi.org/10.1016/S1474-4422(08)70165-0] [PMID: 18635022]
[45]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[46]
Lakkadwala, S.; Gange, K.N.; Chan, P.; Lee, S.; Kang, S.W.; Bajgai, J. Engineered polymeric nanoparticles for receptor-targeted blockage of oxidized low-density lipoprotein uptake and atherosclerosis. ACS Nano, 2020, 14(11), 14614-14630.
[47]
De Rosa, E.; Chiappini, C.; Fan, D.; Liu, X.; Ferrari, M.; Tasciotti, E. Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system. J. Mater. Chem., 2012, 22(30), 15235-15244.
[48]
Yang, T.; Li, B.; Qi, S.; Liu, Y.; Gai, Y.; Ye, P. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson’s disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons. J. Neurol. Sci., 2018, 386, 58-63.
[49]
Mangraviti, A.; Tzeng, S.Y.; Kozielski, K.L.; Wang, Y.; Jin, Y.; Gullotti, D.; Pedone, M.; Buaron, N.; Liu, A.; Wilson, D.R.; Hansen, S.K.; Rodriguez, F.J.; Gao, G.D.; DiMeco, F.; Brem, H.; Olivi, A.; Tyler, B.; Green, J.J. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano, 2015, 9(2), 1236-1249.
[http://dx.doi.org/10.1021/nn504905q] [PMID: 25643235]
[50]
Lu, W.; Wan, J.; She, Z.; Jiang, X.; Zhang, Q. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J. Control. Release, 2007, 118(1), 38-53.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.015] [PMID: 17240471]
[51]
Shah, A.D.; Bhangale, A.D.; Mehta, S.C. Brain-targeted drug delivery system for Alzheimer’s disease. Pharm. Dev. Technol., 2018, 23(3), 306-316.
[52]
Lu, W.; Zhang, Y.; Tan, Y.Z.; Hu, K.L.; Jiang, X.G.; Fu, S.K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J. Control. Release, 2005, 107(3), 428-448.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.027] [PMID: 16176844]
[53]
Loureiro, J.; Andrade, S.; Duarte, A.; Neves, A.; Queiroz, J.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.; Pereira, M. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules, 2017, 22(2), 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[54]
Yu, L.; Zhang, Y.; Zhang, H.; Zhu, Y.; Cao, S.; Zhang, P. Noninvasive brain drug delivery and the blood-brain barrier: In vitro, in vivo and ex vivo models. Drug Discov. Today, 2019, 24(11), 1927-1938.
[55]
Zhang, Y.; Zhang, J.; Zhang, C.; Zhang, D.; Luo, Y. The blood-brain barrier and its role in Alzheimer’s disease. J. Alzheimers Dis., 2011, 24(4), 643-656.
[PMID: 21460432]
[56]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in drug delivery and diagnostics. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[57]
Pandey, A.P.; Sawant, K.K. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C, 2016, 68, 904-918.
[http://dx.doi.org/10.1016/j.msec.2016.07.066] [PMID: 27524093]
[58]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. A review of glycosylated carriers for drug delivery. Biomaterials, 2012, 33(16), 4166-4186.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.033] [PMID: 22398205]
[59]
Chen, L.; Zhou, X.; He, C.; Sun, Y. Mesoporous silica nanoparticles for tissue‐engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1573.
[http://dx.doi.org/10.1002/wnan.1573] [PMID: 31294533]
[60]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71(2), 251-256.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[61]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37(1), 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[62]
Chandra, A.; Sharma, P.; Soni, V. Nanotechnology: A magic bullet for brain drug delivery. Curr. Pharm. Des., 2019, 25(1), 36-44.
[63]
Wu, J.; Zhao, Y.; Guo, R.; Li, Y.; Huang, R.; Pan, H. Dual-responsive polymeric micelles with aggregation-induced emission-active polythiophene for targeted drug delivery and real-time imaging. Biomaterials, 2016, 85, 169-180.
[64]
Kafa, H.; Wang, J.T.W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J.E.; Abbott, N.J.; Al-Jamal, K.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials, 2015, 53, 437-452.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.083] [PMID: 25890741]
[65]
Wang, J.T.; Kafa, H.; Bussy, C.; Saez, G.; O’Connell, O.; Sweeney, S. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am. J. Pathol., 2011, 179(4), 2587-2600.
[PMID: 21854745]
[66]
Al-Nemrawi, N.K.; Alsharif, S.M.; Jaber, A.M.; Alhaj, A.A.; Heisey, D.M.; Abu Saleh, H.M. Lipid-based nanocarriers for drug delivery and imaging: Spotlight on advanced microscopy and spectroscopy techniques. J. Nanobiotechnology, 2020, 18(1), 161.
[PMID: 33160373]
[67]
Zhao, Y.; Haney, M.J.; Mahajan, V.; Reiner, B.C.; Dunaevsky, A.; Mosley, R.L. Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson's disease. J. Nanomed. Nanotechnol., 2011, 4-5.
[68]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis, 2005, 85(5-6), 415-420.
[http://dx.doi.org/10.1016/j.tube.2005.08.009] [PMID: 16256437]
[69]
Raza, K.; Kumar, D.; Kiran, K.; Malik, R.; Arora, S.; Katare, O.P. Brain targeting for sustained action: Advances in drug delivery. Drug Deliv. Transl. Res., 2018, 8(1), 317-328.
[70]
Shariat, S.; Badiee, A.; Jalali, S.A.; Mansoori, P.; Yazdani, M.; Mortazavi, S.A. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Biochem. Biotechnol., 2014, 172(2), 943-956.
[71]
Guo, W.; Deng, L.; Yu, J.; Chen, Z.; Woo, Y.; Liu, H. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int. J. Nanomedicine, 2016, 11, 6059-6072.
[72]
Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 701-705.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[73]
Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine, 2014, 9, 2241-2257.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[74]
Shi, L.; Yang, W.; Si, T.; Zhang, J.; Gao, P. Polymeric micelles vs. polymer-drug conjugates: The influence of the drug on the carrier’s performance. Acta Biomater., 2018, 65, 144-154.
[75]
Ruan, S.; Yuan, M.; Zhang, L.; Hu, G.; Chen, J.; Cun, X.; Zhang, Q.; Yang, Y.; He, Q.; Gao, H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 2015, 37, 425-435.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.007] [PMID: 25453970]
[76]
You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release, 2012, 158(2), 319-328.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[77]
Hu, Y.; Jiang, X.; Ding, Y.; Ge, H.; Yuan, Y.; Yang, C. A new LHRH-mediated targeting lyophilized nanoparticles for the targeting therapy study of glioma. Int. J. Pharm., 2013, 448(1), 248-258.
[78]
Kim, H.; Robinson, S.B.; Csaky, K.G. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm. Res., 2009, 26(2), 329-337.
[http://dx.doi.org/10.1007/s11095-008-9745-6] [PMID: 18958405]
[79]
Tosi, G.; Fano, R.A.; Bondioli, L.; Badiali, L.; Benassi, R.; Rivasi, F.; Ruozi, B.; Forni, F.; Vandelli, M.A. Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine, 2011, 6(3), 423-436.
[http://dx.doi.org/10.2217/nnm.11.11] [PMID: 21542682]
[80]
Zhang, H.; Liang, C.; Hou, X.; Chen, W.; Li, Y. Targeting drug delivery systems for precision therapy in neurodegenerative diseases. Front. Pharmacol., 2021, 12, 736007.
[81]
Sharma, G.; Modgil, A.; Zhong, T.; Sun, C.; Singh, J. Influence of short and long PEG chains grafted onto thiolated amphiphilic copolymers on the delivery of neuroprotective nanomedicine to the CNS. Acta Biomater., 2021, 136, 172-184.
[82]
Liu, Y.; Yang, X.; Li, W.; Ma, G. Co-delivery of nerve growth factor and curcumin by lipid nanoparticles for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2020, 15, 9605-9617.
[83]
Kim, S.S.; Harford, J.B.; Pirollo, K.F.; Chang, E.H. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem. Biophys. Res. Commun., 2015, 468(3), 485-489.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.137] [PMID: 26116770]
[84]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[85]
Kulkarni, P.V.; Roney, C.A.; Antich, P.P.; Bonte, F.J.; Raghu, A.V.; Aminabhavi, T.M. Quinoline‐ n ‐butylcyanoacrylate‐based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(1), 35-47.
[http://dx.doi.org/10.1002/wnan.59] [PMID: 20049829]
[86]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[87]
Zhao, L.; Zhang, L.; Gu, Y.; Hou, Y.; Wang, L. Microglial phagocytosis and its regulation: A therapeutic target in Parkinson’s disease. Front. Mol. Neurosci., 2021, 14, 620153.
[88]
Xin, H.; Sha, X.; Jiang, X.; Zhang, W.; Chen, L.; Fang, X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 2012, 33(32), 8167-8176.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.046] [PMID: 22889488]
[89]
Shilo, M.; Sharon, A.; Baranes, K.; Motiei, M.; Lellouche, J.P.M.; Popovtzer, R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. J. Nanobiotechnology, 2015, 13(1), 19.
[http://dx.doi.org/10.1186/s12951-015-0075-7] [PMID: 25880565]
[90]
Zheng, L.; Hong, L.; Shi, L.; Guo, S.; Shen, Y.; Fu, S. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Chem. Eng. J., 2021, 415, 128947.
[91]
Jain, S.; Mittal, A.; Jain, A.K.; Mahajan, R.R. Miconazole nitrate-loaded solid lipid nanoparticles for topical delivery: Optimization and characterization. Drug Deliv. Transl. Res., 2012, 2(5), 350-358.
[92]
Sousa, F.; Castro, P.; Fonte, P.; Kennedy, P.J.; Sarmento, B. Nanoparticles for the delivery of anti-tnfα monoclonal antibodies into the brain for treatment of a mouse model of parkinson’s disease. J. Control. Release, 2018, 291, 37-50.
[93]
Yuan, Z.; Zhou, X.; Yang, X.; Zhang, X.; Zhu, W.; Yang, M. Application of polymer nanoparticles in cancer immunotherapy. Mater. Sci. Eng. C, 2019, 97, 1015-1026.
[94]
Zupancic, S.; Lavric, Z.; Kristl, J. Stability and dissolution properties of solid dispersions of acyclovir with hydroxypropyl-beta-cyclodextrin. Eur. J. Pharm. Biopharm., 2002, 54(2), 247-252.
[95]
Zensi, A.; Begley, D.; Pontikis, C.; Legros, C.; Mihoreanu, L.; Wagner, S.; Büchel, C.; von Briesen, H.; Kreuter, J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release, 2009, 137(1), 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.002] [PMID: 19285109]
[96]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[97]
Calvo, P.; Gouritin, B.; Chacun, H.; Desmaële, D.; D’Angelo, J.; Noel, J.P.; Georgin, D.; Fattal, E.; Andreux, J.P.; Couvreur, P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res., 2001, 18(8), 1157-1166.
[http://dx.doi.org/10.1023/A:1010931127745] [PMID: 11587488]
[98]
Aliev, G.; Ashraf, G.M.; Tarasov, V.V.; Chubarev, V.N.; Leszek, J.; Gasiorowski, K. Alzheimer’s disease—a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J. Neuroinflammation, 2018, 15(1), 8.
[PMID: 29310666]
[99]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.024] [PMID: 16246446]
[100]
Bharadwaj, P.; Gohel, H.; Srinivasan, S.; Leong, K.W.; Choong, C.; Ohl, C.D. Exploring the use of acoustic radiation force as a drug releasing mechanism from targeted microcapsules. J. Control. Release, 2013, 166(3), 265-272.
[PMID: 23419948]
[101]
Chen, W.; Zou, L.; Liu, S.; Ma, Y.; Cui, Z. The combination of doxorubicin and curcumin enhances the chemotherapeutic efficacy and inhibits breast cancer growth. Oncol. Rep., 2014, 32(1), 117-124.
[PMID: 24173369]
[102]
Wang, Y.; Chen, W.; Wu, J.; Zhang, J.; Wu, W.; Huang, Y. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles. J. Magn. Magn. Mater., 2015, 385, 13-18.
[103]
Hou, K.K.; Pan, H.; Lanza, G.M.; Wickline, S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials, 2013, 34(12), 3110-3119.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.037] [PMID: 23380356]
[104]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010] [PMID: 18582981]
[105]
Salamanca-Buentello, F.; Persad, D.L.; Court, E.B.; Martin, D.K.; Daar, A.S.; Singer, P.A. Nanotechnology and the developing world. PLoS Med., 2005, 2(5), e97.
[http://dx.doi.org/10.1371/journal.pmed.0020097] [PMID: 15807631]
[106]
Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A. Permeability characteristics of blood-brain barrier to pegylated interferons: Role of size exclusion chromatography as a predictor. PLoS One, 2015, 10(7), e0133225.
[PMID: 26171856]
[107]
Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 2013, 9(9-10), 1521-1532.
[http://dx.doi.org/10.1002/smll.201201390] [PMID: 23019091]
[108]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[109]
Gao, H. Perspectives on dual targeting delivery systems for brain tumors. J. Neuroimmune Pharmacol., 2017, 12(1), 6-16.
[http://dx.doi.org/10.1007/s11481-016-9687-4] [PMID: 27270720]
[110]
Tosi, G.; Bortot, B.; Ruozi, B.; Dolcetta, D.; Vandelli, M.A.; Forni, F.; Severini, G.M. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr. Med. Chem., 2013, 20(17), 2212-2225.
[http://dx.doi.org/10.2174/0929867311320170006] [PMID: 23458620]
[111]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[112]
Zhang, L.; Zhang, H.; Chen, L.; Wang, L.; Ma, Y.; Yu, H. Bio-functionalized phospholipid-capped mesoporous silica nanoparticles for controlled drug delivery. J. Control. Release, 2005, 159(3), 313-321.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.027] [PMID: 16176844]
[113]
Liu, Y.; Tan, J.; Thomas, A.; Ou-Yang, D.; Muzykantov, V.R. The shape of things to come: Importance of design in nanotechnology for drug delivery. Ther. Deliv., 2012, 3(2), 181-194.
[http://dx.doi.org/10.4155/tde.11.156] [PMID: 22834196]
[114]
Vauthier, C.; Dubernet, C.; Fattal, E.; Pinto-Alphandary, H.; Couvreur, P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev., 2003, 55(4), 519-548.
[http://dx.doi.org/10.1016/S0169-409X(03)00041-3] [PMID: 12706049]
[115]
Gagliardi, M.; Masi, G.; Mancuso, A.; Pini, A. Non-invasive brain drug delivery: A key problem in modern neuropharmacology. Curr. Top. Med. Chem., 2016, 16(16), 1789-1802.
[116]
Wang, X.; Li, J.; Wang, Y.; Koenig, L.; Gjyrezi, A.; Giannakakou, P.; Shin, E.H.; Tighiouart, M.; Chen, Z.G.; Nie, S.; Shin, D.M. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano, 2011, 5(8), 6184-6194.
[http://dx.doi.org/10.1021/nn200739q] [PMID: 21728341]
[117]
Lunov, O.; Zablotskii, V.; Syrovets, T.; Röcker, C.; Tron, K.; Nienhaus, G.U.; Simmet, T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials, 2011, 32(2), 547-555.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.111] [PMID: 20880574]
[118]
Sahni, J.K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release, 2011, 152(2), 208-231.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.033] [PMID: 21134407]
[119]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[120]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater., 2017, 2(7), 17024.
[http://dx.doi.org/10.1038/natrevmats.2017.24] [PMID: 29075517]
[121]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[122]
Wei, L.; Guo, X.; Yang, T.; Yu, M.; Zhu, M.; Zhu, B. Synthesis of hollow silica nanoparticles for application in drug delivery. J. Nanosci. Nanotechnol., 2015, 15(8), 5679-5683.
[123]
Liao, L.; Liu, J.; Dreaden, E.C.; Morton, S.W.; Shopsowitz, K.E.; Hammond, P.T.; Johnson, J.A. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc., 2014, 136(16), 5896-5899.
[http://dx.doi.org/10.1021/ja502011g] [PMID: 24724706]
[124]
Ding, Y.F.; Wang, Z.; Kwong, C.H.T.; Zhao, Y.; Mok, G.S.P.; Yu, H.Z.; Wang, R. Platelet-mimicking supramolecular nanomedicine with precisely integrated prodrugs for cascade amplification of synergistic chemotherapy. J. Control. Release, 2023, 360, 82-92.
[http://dx.doi.org/10.1016/j.jconrel.2023.06.015] [PMID: 37331605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy