Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Exploring Applications of Flexible Vesicular Systems as Transdermal Drug Delivery

Author(s): Palwinder Kaur, Surajpal Verma, Bhupendra Tomar, Manish Vyas*, Violina Kakoty, Paramita Saha and Sarathlal Kalarikkal Chandran

Volume 21, Issue 8, 2024

Published on: 12 September, 2023

Page: [1062 - 1072] Pages: 11

DOI: 10.2174/1567201821666230830125253

Price: $65

Abstract

Deformable lipidic-nano carriers are a category of advanced liposomal formulations. Deformable lipidic-nano carriers have a specific character to transform by rearranging the lipidic backbone to squeeze themself through a pore opening ten times smaller than their diameter when exposed to a variable condition like hydration gradient as these have potentially been used as a non-invasive delivery system to transdermally migrate various therapeutic agents for over three decades. Despite their vast application in transdermal drug delivery system, non-uniformity to express their chemical nature still exist and authors use various terms synonymously and interchangeably with each other.

The present study delineates the terminologies used to express different derived deformable vesicular carriers to harmonize the terminological use. It also includes the effectiveness of deformable nanocarriers like Transferosomes, Ethosomes, Menthosomes, Invasomes, and Glycerosomes in skin conditions like basal cell carcinoma, fungal and viral infections, and hyperpigmentation disorders, along with others.

Various review and research articles were selected from the ‘Pubmed’ database. The keywords like Transferosomes, Flexi-vesicular system, ultra-deformable vesicles, and nano-vesicular systems were used to extract the data.

The data was reviewed and compiled to categorically classify different flexible vesicular systems. The composition of the different vesicular systems is identified and a report of various pathological conditions where the use of flexible lipid nanocarrier systems was implemented is compiled. The review also offers suggestive approaches where the applicability of these systems can be explored further.

Graphical Abstract

[1]
Perrie, Y. Gregory Gregoriadis: Introducing liposomes to drug delivery. J. Drug Target., 2008, 16(7-8), 518-519.
[http://dx.doi.org/10.1080/10611860802228376] [PMID: 18686119]
[2]
Sharma, V.K.; Agrawal, M.K. A historical perspective of liposomes-a bio nanomaterial. Mater. Today Proc., 2021, 45, 2963-2966.
[http://dx.doi.org/10.1016/j.matpr.2020.11.952]
[3]
Bayburt, T.H.; Sligar, S.G. Membrane protein assembly into Nanodiscs. FEBS Lett., 2010, 584(9), 1721-1727.
[http://dx.doi.org/10.1016/j.febslet.2009.10.024] [PMID: 19836392]
[4]
Neuhaus, F.; Mueller, D.; Tanasescu, R.; Balog, S.; Ishikawa, T.; Brezesinski, G.; Zumbuehl, A. Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Template-Free Self-Assembly. Angew. Chem. Int. Ed., 2017, 56(23), 6515-6518.
[http://dx.doi.org/10.1002/anie.201701634] [PMID: 28444913]
[5]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[6]
Zhang, J.; Froelich, A.; Michniak-Kohn, B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics, 2020, 12(3), 282.
[http://dx.doi.org/10.3390/pharmaceutics12030282] [PMID: 32245190]
[7]
Cevc, G.; Blume, G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta Biomembr., 2001, 1514(2), 191-205.
[http://dx.doi.org/10.1016/S0005-2736(01)00369-8] [PMID: 11557020]
[8]
Nayak, D.; Tippavajhala, V.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran. J. Pharm. Res., 2021, 20(1), 186-205.
[PMID: 34400952]
[9]
Rathod, S.; Arya, S.; Shukla, R.; Ray, D.; Aswal, V.K.; Bahadur, P.; Tiwari, S. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127246.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127246]
[10]
Sharma, G.; Thakur, K.; Setia, A.; Amarji, B.; Singh, M.P.; Raza, K.; Katare, O.P. Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): Evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection. Drug Deliv. Transl. Res., 2017, 7(5), 683-694.
[http://dx.doi.org/10.1007/s13346-017-0417-0] [PMID: 28801835]
[11]
Khan, I.; Apostolou, M.; Bnyan, R.; Houacine, C.; Elhissi, A.; Yousaf, S.S. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int. J. Pharm., 2020, 575, 118919.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118919] [PMID: 31816351]
[12]
Jain, S.; Sapre, R.; Umamaheswari, R.B.; Jain, N.K. Protransfersomes for effective transdermal delivery of norgestrel preparation and in vitro characterization. Indian J. Pharm. Sci., 2003, 65, 152-160.
[13]
Schmitt, J V.; Miot, H.A. Oral acetylsalicylic acid and prevalence of actinic keratosis. Rev. Assoc. Med. Bras., 2014, 60(2), 131-138.
[http://dx.doi.org/10.1590/1806-9282.60.02.010]
[14]
Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv., 2015, 22(6), 795-802.
[http://dx.doi.org/10.3109/10717544.2014.902146] [PMID: 24735246]
[15]
Corona, R.; Dogliotti, E.; D’Errico, M.; Sera, F.; Iavarone, I.; Baliva, G.; Chinni, LM; Gobello, T.; Mazzanti, C. Risk factors for basal cell carcinoma in a Mediterranean population: Role of recreational sun exposure early in life. Arch. Dermatol., 2001, 137(9), 1162-1168.
[16]
Gallagher, R.P.; Hill, G.B.; Bajdik, C.D.; Fincham, S.; Coldman, A.J.; McLean, D.I.; Threlfall, W.J. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch. Dermatol., 1995, 131(2), 157-163.
[http://dx.doi.org/10.1001/archderm.1995.01690140041006] [PMID: 7857111]
[17]
Dika, E.; Scarfì, F.; Ferracin, M.; Broseghini, E.; Marcelli, E.; Bortolani, B.; Campione, E.; Riefolo, M.; Ricci, C.; Lambertini, M. Basal Cell Carcinoma: A Comprehensive Review. Int. J. Mol. Sci., 2020, 21(15), 5572.
[http://dx.doi.org/10.3390/ijms21155572] [PMID: 32759706]
[18]
Maloney, M. Arsenic in Dermatology. Dermatol. Surg., 1996, 22(3), 301-304.
[http://dx.doi.org/10.1111/j.1524-4725.1996.tb00322.x] [PMID: 8599743]
[19]
Hartevelt, M.M.; Bavinck, J.N.B.; Kootte, A.M.M.; Vermeer, B.J.; Vandenbroucke, J.P. Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation, 1990, 49(3), 506-509.
[http://dx.doi.org/10.1097/00007890-199003000-00006] [PMID: 2316011]
[20]
Fadel, M.; Samy, N.; Nasr, M.; Alyoussef, A.A. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm. Dev. Technol., 2017, 22(4), 545-550.
[http://dx.doi.org/10.3109/10837450.2016.1146294] [PMID: 26895257]
[21]
Friedman-Kien, A.; Saltzman, B.; Cao, Y.; Nestor, M.; Mirabile, M.; Jun Li, J.; Peterman, T. Kaposi’s sarcoma in HIV-negative homosexual men. Lancet, 1990, 335(8682), 168-169.
[http://dx.doi.org/10.1016/0140-6736(90)90041-3] [PMID: 1967458]
[22]
Schwartz, R.A. Kaposi’s sarcoma: An update. J. Surg. Oncol., 2004, 87(3), 146-151.
[http://dx.doi.org/10.1002/jso.20090] [PMID: 15334644]
[23]
Ruocco, E.; Ruocco, V.; Tornesello, M.L.; Gambardella, A.; Wolf, R.; Buonaguro, F.M. Kaposi’s sarcoma: Etiology and pathogenesis, inducing factors, causal associations, and treatments: Facts and controversies. Clin. Dermatol., 2013, 31(4), 413-422.
[http://dx.doi.org/10.1016/j.clindermatol.2013.01.008] [PMID: 23806158]
[24]
Motlhale, M.; Sitas, F.; Bradshaw, D.; Chen, W.C.; Singini, M.G.; de Villiers, C.B.; Lewis, C.M.; Muchengeti, M.; Waterboer, T.; Mathew, C.G.; Newton, R.; Singh, E. Epidemiology of Kaposi’s sarcoma in sub-Saharan Africa. Cancer Epidemiol., 2022, 78, 102167.
[http://dx.doi.org/10.1016/j.canep.2022.102167] [PMID: 35504064]
[25]
Marinkovich, M.P. Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer, 2007, 7(5), 370-380.
[http://dx.doi.org/10.1038/nrc2089] [PMID: 17457303]
[26]
Lee, D.A.; Miller, S.J. Nonmelanoma skin cancer. Facial Plast. Surg. Clin. North Am., 2009, 17(3), 309-324.
[http://dx.doi.org/10.1016/j.fsc.2009.04.004] [PMID: 19698913]
[27]
Akgül, B.; Cooke, J.C.; Storey, A. HPV-associated skin disease. J. Pathol., 2006, 208(2), 165-175.
[http://dx.doi.org/10.1002/path.1893] [PMID: 16362995]
[28]
Moloney, F.J.; Comber, H.; O’Lorcain, P.; O’Kelly, P.; Conlon, P.J.; Murphy, G.M. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br. J. Dermatol., 2006, 154(3), 498-504.
[http://dx.doi.org/10.1111/j.1365-2133.2005.07021.x] [PMID: 16445782]
[29]
Morita, A. Tobacco smoke causes premature skin aging. J. Dermatol. Sci., 2007, 48(3), 169-175.
[http://dx.doi.org/10.1016/j.jdermsci.2007.06.015] [PMID: 17951030]
[30]
Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Invest., 2012, 122(2), 464-472.
[http://dx.doi.org/10.1172/JCI57415] [PMID: 22293185]
[31]
Combalia, A.; Carrera, C. Squamous Cell Carcinoma: An Update on Diagnosis and Treatment. Dermatol. Pract. Concept., 2020, 10(3), e2020066.
[http://dx.doi.org/10.5826/dpc.1003a66] [PMID: 32642314]
[32]
Gupta, V.; Karthikeyan, C.; Trivedi, P. Localized delivery of cisplatin for the effective management of squamous cell carcinoma from protransfersome formulation. Arch. Pharm. Res., 2012, 35(5), 851-859.
[http://dx.doi.org/10.1007/s12272-012-0510-3] [PMID: 22644852]
[33]
Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res., 2021, 38(6), 947-970.
[http://dx.doi.org/10.1007/s11095-021-03053-5] [PMID: 34036520]
[34]
Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf. B Biointerfaces, 2020, 195, 111262.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[35]
Kumar Mishra, K.; Deep Kaur, C.; Verma, S.; Kumar Sahu, A.; Kumar Dash, D.; Kashyap, P.; Prasad Mishra, S. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system.Nanomedicines; IntechOpen Limited: London, 2019.
[36]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[37]
Ascenso, A.; Raposo, S.; Batista, C.; Cardoso, P.; Mendes, T.; Praça, F. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomed., 2015, 10(1), 5837-5851.
[38]
Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B.W.; Holopainen, J.; Karttunen, M. Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers. Biophys. J., 2006, 90(4), 1121-1135.
[http://dx.doi.org/10.1529/biophysj.105.062364] [PMID: 16326895]
[39]
Godin, B.; Touitou, E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr. Drug Deliv., 2005, 2(3), 269-275.
[http://dx.doi.org/10.2174/1567201054367931] [PMID: 16305429]
[40]
Godin, B.; Touitou, E.; Rubinstein, E.; Athamna, A.; Athamna, M. A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: An in vivo study. J. Antimicrob. Chemother., 2005, 55(6), 989-994.
[http://dx.doi.org/10.1093/jac/dki125] [PMID: 15857943]
[41]
Touitou, E.; Godin, B.; Shumilov, M.; Bishouty, N.; Ainbinder, D.; Shouval, R.; Ingber, A.; Leibovici, V. Efficacy and tolerability of clindamycin phosphate and salicylic acid gel in the treatment of mild to moderate acne vulgaris. J. Eur. Acad. Dermatol. Venereol., 2008, 22(5), 629-631.
[http://dx.doi.org/10.1111/j.1468-3083.2007.02398.x] [PMID: 18410627]
[42]
Mohammed, M.I.; Makky, A.M.A.; Teaima, M.H.M.; Abdellatif, M.M.; Hamzawy, M.A.; Khalil, M A F. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: In vitro and in vivo study. Drug Deliv., 2016, 23(5), 1558-1564.
[PMID: 25726990]
[43]
Padula, C.; Sartori, F.; Marra, F.; Santi, P. The influence of iontophoresis on acyclovir transport and accumulation in rabbit ear skin. Pharm. Res., 2005, 22(9), 1519-1524.
[http://dx.doi.org/10.1007/s11095-005-5884-1] [PMID: 16132364]
[44]
Horwitz, E.; Pisanty, S.; Czerninski, R.; Helser, M.; Eliav, E.; Touitou, E. A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1999, 87(6), 700-705.
[http://dx.doi.org/10.1016/S1079-2104(99)70164-2] [PMID: 10397661]
[45]
Worrall, G. Topical Acyclovir for Recurrent Herpes Labialis in Primary Care: Critical appraisal. Can. Fam. Physician, 1991, 37, 92-98.
[PMID: 21234082]
[46]
Aggarwal, N.; Goindi, S. Dermatopharmacokinetic and pharmacodynamic evaluation of ethosomes of griseofulvin designed for dermal delivery. J. Nanopart. Res., 2013, 15(10), 1983.
[http://dx.doi.org/10.1007/s11051-013-1983-9]
[47]
Guo, F.; Wang, J.; Ma, M.; Tan, F.; Li, N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: Characterization, in vitro and in vivo evaluation. J. Mater. Sci. Mater. Med., 2015, 26(4), 175.
[http://dx.doi.org/10.1007/s10856-015-5487-2] [PMID: 25825320]
[48]
Verma, P.; Pathak, K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine, 2012, 8(4), 489-496.
[http://dx.doi.org/10.1016/j.nano.2011.07.004]
[49]
Indora, N; Kaushik, D Design, development and evaluation of ethosomal gel of fluconazole for topical fungal infection; Academia, 2015.
[50]
Akhtar, N.; Pathak, K. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: Development and comparison with ethosomal gel. AAPS PharmSciTech, 2012, 13(1), 344-355.
[http://dx.doi.org/10.1208/s12249-012-9754-y] [PMID: 22282041]
[51]
Duangjit, S.; Obata, Y.; Sano, H.; Kikuchi, S.; Onuki, Y.; Opanasopit, P.; Ngawhirunpat, T.; Maitani, Y.; Takayama, K. Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: Optimization and characterization. Biol. Pharm. Bull., 2012, 35(10), 1720-1728.
[http://dx.doi.org/10.1248/bpb.b12-00343] [PMID: 23037161]
[52]
Wang, Y.; Yang, B.; Zhou, G.; Zhang, F. Two cases of dermatitis herpetiformis successfully treated with tetracycline and niacinamide. Acta Dermatovenerol. Croat., 2018, 26(3), 273-275.
[PMID: 30390734]
[53]
Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the use of dapsone in dermatology. Int. J. Dermatol., 2020, 59(7), 787-795.
[http://dx.doi.org/10.1111/ijd.14761] [PMID: 31909480]
[54]
Chen, J.; Jiang, Q.D.; Chai, Y.P.; Zhang, H.; Peng, P.; Yang, X.X. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules, 2016, 21(12), 1709.
[http://dx.doi.org/10.3390/molecules21121709] [PMID: 27973428]
[55]
Babaie, S.; Del Bakhshayesh, A.R.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A Novel Nanocarrier for Transdermal Drug Delivery; Nanomater: Basel, Switzerland, 2020, p. 10.
[56]
Apolinário, A.C.; Hauschke, L.; Nunes, J.R.; Lopes, L.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’? Prog. Lipid Res., 2021, 82, 101096.
[http://dx.doi.org/10.1016/j.plipres.2021.101096] [PMID: 33831455]
[57]
Babaie, S.; Bakhshayesh, A.R.D.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel), 2020, 10(2), 341.
[http://dx.doi.org/10.3390/nano10020341] [PMID: 32079276]
[58]
Prasanthi, D Iontophoretic Transdermal Delivery of Finasteride in Vesicular Invasomal Carriers. Pharm. Nanotechnol., 2013, 1, 136-150.
[59]
Amnuaikit, T.; Limsuwan, T.; Khongkow, P.; Boonme, P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J Pharm Sci, 2018, 13(5), 472-484.
[http://dx.doi.org/10.1016/j.ajps.2018.02.004] [PMID: 32104421]
[60]
Luksiene, Z. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas), 2003, 39(12), 1137-1150.
[PMID: 14704501]
[61]
Dragicevic-Curic, N.; Gräfe, S.; Albrecht, V.; Fahr, A. Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: A pilot study. J. Photochem. Photobiol, 2008, 91(1), 41-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.01.009]
[62]
Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: Optimization, characterization, and evaluation in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 3521-3532.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[63]
Melis, V.; Manca, M.L.; Bullita, E.; Tamburini, E.; Castangia, I.; Cardia, M.C.; Valenti, D.; Fadda, A.M.; Peris, J.E.; Manconi, M. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs. Colloids Surf. B Biointerfaces, 2016, 143, 301-308.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.044] [PMID: 27022870]
[64]
Gupta, P.; Mazumder, R.; Padhi, S. Glycerosomes: Advanced Liposomal Drug Delivery System. Indian J. Pharm. Sci., 2020, 2020, 82.
[65]
Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm., 2013, 455(1-2), 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[66]
Manca, M.L.; Castangia, I.; Caddeo, C.; Pando, D.; Escribano, E.; Valenti, D.; Lampis, S.; Zaru, M.; Fadda, A.M.; Manconi, M. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf. B Biointerfaces, 2014, 123, 566-574.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.059] [PMID: 25444664]
[67]
Rani, D.; Singh, C.; Kumar, A.; Sharma, V.K. Formulation development and in-vitro evaluation of minoxidil bearing glycerosomes. Am. J. Biomed. Res, 2016, 4, 27-37.
[68]
Abdellatif, MM; Khalil, IA; Khalil, M A F Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int. J. Pharm., 2017, 527(1-2), 1-11.
[69]
Vitonyte, J; Manca, ML; Caddeo, C; Valenti, D; Peris, JE; Usach, I; Nacher, A; Matos, M; Gutiérrez, G Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm., 2017, 114, 278-287.
[70]
Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Abdel Hakim, L.F. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box-Behnken statistical design. Drug Dev. Ind. Pharm., 2018, 44(11), 1871-1884.
[http://dx.doi.org/10.1080/03639045.2018.1504963] [PMID: 30044654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy