Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Magnetosomes as Potential Nanocarriers for Cancer Treatment

Author(s): Rawan Alsharedeh, Nid’a Alshraiedeh, Alaa A. Aljabali* and Murtaza M. Tambuwala*

Volume 21, Issue 8, 2024

Published on: 17 July, 2023

Page: [1073 - 1081] Pages: 9

DOI: 10.2174/1567201820666230619155528

Price: $65

Abstract

Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.

Graphical Abstract

[1]
Araujo, A.; Abreu, F.; Silva, K.; Bazylinski, D.; Lins, U. Magnetotactic bacteria as potential sources of bioproducts. Mar. Drugs, 2015, 13(1), 389-430.
[http://dx.doi.org/10.3390/md13010389] [PMID: 25603340]
[2]
Lefèvre, C.T.; Bazylinski, D.A. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev., 2013, 77(3), 497-526.
[http://dx.doi.org/10.1128/MMBR.00021-13] [PMID: 24006473]
[3]
Jogler, C.; Schüler, D. Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol., 2009, 63(1), 501-521.
[http://dx.doi.org/10.1146/annurev.micro.62.081307.162908] [PMID: 19575557]
[4]
Bellini, S. Further studies on “magnetosensitive bacteria”. Chin. J. Oceanology Limnol., 2009, 27(1), 6-12.
[http://dx.doi.org/10.1007/s00343-009-0006-2]
[5]
Blakemore, R. Magnetotactic bacteria. Science, 1975, 190(4212), 377-379.
[http://dx.doi.org/10.1126/science.170679] [PMID: 170679]
[6]
Lin, W.; Bazylinski, D.A.; Xiao, T.; Wu, L.F.; Pan, Y. Life with compass: Diversity and biogeography of magnetotactic bacteria. Environ. Microbiol., 2014, 16(9), 2646-2658.
[http://dx.doi.org/10.1111/1462-2920.12313] [PMID: 24148107]
[7]
Goswami, P.; He, K.; Li, J.; Pan, Y.; Roberts, A.P.; Lin, W. Magnetotactic bacteria and magnetofossils: Ecology, evolution and environmental implications. NPJ Biofilms Microbiomes, 2022, 8(1), 43.
[http://dx.doi.org/10.1038/s41522-022-00304-0] [PMID: 35650214]
[8]
Islam, T.; Peng, C.; Ali, I. Morphological and cellular diversity of magnetotactic bacteria: A review. J. Basic Microbiol., 2018, 58(5), 378-389.
[http://dx.doi.org/10.1002/jobm.201700383] [PMID: 29112284]
[9]
Liu, P.; Tamaxia, A.; Liu, Y.; Qiu, H.; Pan, J.; Jin, Z.; Zhao, X.; Roberts, A.P.; Pan, Y.; Li, J. Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ. Microbiol., 2022, 24(2), 938-950.
[http://dx.doi.org/10.1111/1462-2920.15516] [PMID: 33876543]
[10]
Balkwill, D.L.; Maratea, D.; Blakemore, R.P. Ultrastructure of a magnetotactic spirillum. J. Bacteriol., 1980, 141(3), 1399-1408.
[http://dx.doi.org/10.1128/jb.141.3.1399-1408.1980] [PMID: 6245069]
[11]
Verdan, M.; Resende, E.; Cypriano, J.; Werneck, C.; Lins, U.; Abreu, F. Occurrence of south- and north-seeking multicellular magnetotactic prokaryotes in a coastal lagoon in the South Hemisphere. Int. Microbiol., 2022, 25(2), 309-323.
[http://dx.doi.org/10.1007/s10123-021-00218-5] [PMID: 34738176]
[12]
Teng, Z.; Zhang, Y.; Zhang, W.; Pan, H.; Xu, J.; Huang, H.; Xiao, T.; Wu, L.F. Diversity and characterization of multicellular magnetotactic prokaryotes from coral reef habitats of the paracel Islands, South China Sea. Front. Microbiol., 2018, 9, 2135.
[http://dx.doi.org/10.3389/fmicb.2018.02135] [PMID: 30271390]
[13]
McCausland, H.C.; Wetmore, K.M.; Arkin, A.P.; Komeili, A. Global analysis of biomineralization genes in magnetospirillum magneticum AMB-1. mSystems, 2022, 7(1), e01037-21.
[http://dx.doi.org/10.1128/msystems.01037-21] [PMID: 35076272]
[14]
Awal, R.P.; Haack, P.A.; Bader, C.D.; Riese, C.N.; Schüler, D.; Müller, R. Sesbanimide R, a novel cytotoxic polyketide produced by magnetotactic bacteria. MBio, 2021, 12(3), e00591-21.
[http://dx.doi.org/10.1128/mBio.00591-21] [PMID: 34006654]
[15]
Barr, C.R.; Bedrossian, M.; Lohmann, K.J.; Nealson, K.H. Magnetotactic bacteria: Concepts, conundrums, and insights from a novel in situ approach using digital holographic microscopy (DHM). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2022, 208(1), 107-124.
[http://dx.doi.org/10.1007/s00359-022-01543-4] [PMID: 35194649]
[16]
Ali, I.; Peng, C.; Khan, Z.M.; Naz, I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J. Basic Microbiol., 2017, 57(8), 643-652.
[http://dx.doi.org/10.1002/jobm.201700052] [PMID: 28464298]
[17]
Basit, A.; Wang, J.; Guo, F.; Niu, W.; Jiang, W. Improved methods for mass production of magnetosomes and applications: a review. Microb. Cell Fact., 2020, 19(1), 197.
[http://dx.doi.org/10.1186/s12934-020-01455-5] [PMID: 33081818]
[18]
Müller, F.D.; Schüler, D.; Pfeiffer, D. A compass to boost navigation: Cell biology of bacterial magnetotaxis. J. Bacteriol., 2020, 202(21), e00398-20.
[http://dx.doi.org/10.1128/JB.00398-20] [PMID: 32817094]
[19]
Lohße, A.; Kolinko, I.; Raschdorf, O.; Uebe, R.; Borg, S.; Brachmann, A.; Plitzko, J.M.; Müller, R.; Zhang, Y.; Schüler, D. Overproduction of magnetosomes by genomic amplification of biosynthesis-related gene clusters in a magnetotactic bacterium. Appl. Environ. Microbiol., 2016, 82(10), 3032-3041.
[http://dx.doi.org/10.1128/AEM.03860-15] [PMID: 26969709]
[20]
Yan, L.; Zhang, S.; Chen, P.; Liu, H.; Yin, H.; Li, H. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res., 2012, 167(9), 507-519.
[http://dx.doi.org/10.1016/j.micres.2012.04.002] [PMID: 22579104]
[21]
Orue, I.; Marcano, L.; Bender, P.; García-Prieto, A.; Valencia, S.; Mawass, M.A.; Gil-Cartón, D.; Alba Venero, D.; Honecker, D.; García-Arribas, A.; Fernández Barquín, L.; Muela, A.; Fdez-Gubieda, M.L. Configuration of the magnetosome chain: A natural magnetic nanoarchitecture. Nanoscale, 2018, 10(16), 7407-7419.
[http://dx.doi.org/10.1039/C7NR08493E] [PMID: 29557439]
[22]
Barber-Zucker, S.; Keren-Khadmy, N.; Zarivach, R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci., 2016, 25(2), 338-351.
[http://dx.doi.org/10.1002/pro.2827] [PMID: 26457474]
[23]
Vargas, G.; Cypriano, J.; Correa, T.; Leão, P.; Bazylinski, D.; Abreu, F. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules, 2018, 23(10), 2438.
[http://dx.doi.org/10.3390/molecules23102438] [PMID: 30249983]
[24]
Ben-Shimon, S.; Stein, D.; Zarivach, R. Current view of iron biomineralization in magnetotactic bacteria. Journal of Structural Biology :X,, 2021, 5100052.
[http://dx.doi.org/10.1016/j.yjsbx.2021.100052] [PMID: 34723168]
[25]
Prozorov, T. Magnetic microbes: Bacterial magnetite biomineralization. Semin. Cell Dev. Biol., 2015, 46, 36-43.
[http://dx.doi.org/10.1016/j.semcdb.2015.09.003] [PMID: 26382301]
[26]
Mathuriya, A.S. Magnetotactic bacteria: Nanodrivers of the future. Crit. Rev. Biotechnol., 2016, 36(5), 788-802.
[http://dx.doi.org/10.3109/07388551.2015.1046810]
[27]
Raza, S.; Shahin, F.; Zhai, W.; Li, H.; Alvisi, G.; Yang, K.; Chen, X.; Chen, Y.; Chen, J.; Hu, C.; Chen, H.; Guo, A. Ivermectin inhibits bovine herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication. Microorganisms, 2020, 8(3), 409.
[http://dx.doi.org/10.3390/microorganisms8030409] [PMID: 32183205]
[28]
Arai, K.; Murata, S.; Wang, T.; Yoshimura, W.; Oda-Tokuhisa, M.; Matsunaga, T.; Kisailus, D.; Arakaki, A. Adsorption of biomineralization protein Mms6 on magnetite (Fe3O4) nanoparticles. Int. J. Mol. Sci., 2022, 23(10), 5554.
[http://dx.doi.org/10.3390/ijms23105554] [PMID: 35628364]
[29]
Bellinger, M.R.; Wei, J.; Hartmann, U.; Cadiou, H.; Winklhofer, M.; Banks, M.A. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl. Acad. Sci., 2022, 119(3), e2108655119.
[http://dx.doi.org/10.1073/pnas.2108655119] [PMID: 35012979]
[30]
Liu, P.; Liu, Y.; Zhao, X.; Roberts, A.P.; Zhang, H.; Zheng, Y.; Wang, F.; Wang, L.; Menguy, N.; Pan, Y.; Li, J. Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. Environ. Microbiol., 2021, 23(2), 1115-1129.
[http://dx.doi.org/10.1111/1462-2920.15254] [PMID: 32985765]
[31]
Faivre, D.; Godec, T.U. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed., 2015, 54(16), 4728-4747.
[http://dx.doi.org/10.1002/anie.201408900] [PMID: 25851816]
[32]
McCausland, H.C.; Komeili, A. Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet., 2020, 16(2), e1008499.
[http://dx.doi.org/10.1371/journal.pgen.1008499] [PMID: 32053597]
[33]
Revathy, T.; Jayasri, M.A.; Suthindhiran, K. Suthindhiran, toxicity assessment of magnetosomes in different models. 3 Biotech, 2017, 7(2), 126.
[http://dx.doi.org/10.1007/s13205-017-0780-z]
[34]
Cypriano, J.; Werckmann, J.; Vargas, G.; Lopes dos Santos, A.; Silva, K.T.; Leão, P.; Almeida, F.P.; Bazylinski, D.A.; Farina, M.; Lins, U.; Abreu, F. Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: Implications for medical and biotechnological applications. PLoS One, 2019, 14(4), e0215657.
[http://dx.doi.org/10.1371/journal.pone.0215657] [PMID: 31013301]
[35]
Sun, J.; Ying, L.; Xing-Jie, L.; Paul, C.W. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. J Nanomater, 2011, 2011(2011), 469031-469043.
[http://dx.doi.org/10.1155/2011/469031]
[36]
Alphandéry, E.; Idbaih, A.; Adam, C.; Delattre, J.Y.; Schmitt, C.; Guyot, F.; Chebbi, I. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials, 2017, 141, 210-222.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.026] [PMID: 28689117]
[37]
Bazylinski, D.A.; Frankel, R.B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2004, 2(3), 217-230.
[http://dx.doi.org/10.1038/nrmicro842] [PMID: 15083157]
[38]
Singh, R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech., 2019, 9(11), 415.
[http://dx.doi.org/10.1007/s13205-019-1940-0]
[39]
Sun, J.B.; Duan, J.H.; Dai, S.L.; Ren, J.; Zhang, Y.D.; Tian, J.S.; Li, Y. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett., 2007, 258(1), 109-117.
[http://dx.doi.org/10.1016/j.canlet.2007.08.018] [PMID: 17920762]
[40]
Guo, L.; Ji Huang,; Zhang, X.; Li, Y.; Zheng, L. Bacterial magnetic nanoparticles as drug carriers. J. Mater. Chem., 2008, 18(48), 5993-5997.
[http://dx.doi.org/10.1039/b808556k]
[41]
Liang, P.C.; Chen, Y.C.; Chiang, C.F.; Mo, L.R.; Wei, S.Y.; Hsieh, W.Y.; Lin, W.L. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int. J. Nanomedicine, 2016, 11, 2021-2037.
[PMID: 27274233]
[42]
Geng, Y.; Wang, J.; Wang, X.; Liu, J.; Zhang, Y.; Niu, W.; Basit, A.; Liu, W.; Jiang, W. Growth-inhibitory effects of anthracycline-loaded bacterial magnetosomes against hepatic cancer in vitro and in vivo. Nanomedicine, 2019, 14(13), 1663-1680.
[http://dx.doi.org/10.2217/nnm-2018-0296] [PMID: 31167626]
[43]
Wang, J.; Geng, Y.; Zhang, Y.; Wang, X.; Liu, J.; Basit, A.; Miao, T.; Liu, W.; Jiang, W. Bacterial magnetosomes loaded with doxorubicin and transferrin improve targeted therapy of hepatocellular carcinoma. Nanotheranostics, 2019, 3(3), 284-298.
[http://dx.doi.org/10.7150/ntno.34601] [PMID: 31423412]
[44]
Li, Z.; Guo, J.R.; Chen, Q.Q.; Wang, C.Y.; Zhang, W.J.; Yao, M.C.; Zhang, W. Exploring the antitumor mechanism of high-dose cytarabine through the metabolic perturbations of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia HL-60 cells. Molecules, 2017, 22(3), 499.
[http://dx.doi.org/10.3390/molecules22030499] [PMID: 28335578]
[45]
Dai, Q.; Yiming, M.; Shibin, W. Investigation of various cross-linking methods for the immobilization of cytosine arabinoside on bacterial magnetosomes. J. Nanomater., 2017.
[http://dx.doi.org/10.1155/2017/6738484]
[46]
Liu, Y.; Dai, Q.; Wang, S.; Deng, Q.; Wu, W.; Chen, A. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-L-glutamic acid-modified bacterial magnetosomes. Int. J. Nanomedicine, 2015, 10, 1387-1397.
[http://dx.doi.org/10.2147/IJN.S76123] [PMID: 25733831]
[47]
Long, R.; Liu, Y.; Dai, Q.; Wang, S.; Deng, Q.; Zhou, X. A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials, 2016, 9(11), 889.
[http://dx.doi.org/10.3390/ma9110889] [PMID: 28774010]
[48]
Tang, Y.S.; Wang, D.; Zhou, C.; Zhang, S. Preparation and anti‐tumor efficiency evaluation of bacterial magnetosome–anti‐4‐1BB antibody complex: Bacterial magnetosome as antibody carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol. Appl. Biochem., 2019, 66(3), 290-297.
[http://dx.doi.org/10.1002/bab.1724] [PMID: 30600567]
[49]
Erdal, E.; Demirbilek, M.; Yeh, Y.; Akbal, Ö.; Ruff, L.; Bozkurt, D.; Cabuk, A.; Senel, Y.; Gumuskaya, B.; Algın, O.; Colak, S.; Esener, S.; Denkbas, E.B. A comparative study of receptor-targeted magnetosome and HSA-coated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model. Appl. Biochem. Biotechnol., 2018, 185(1), 91-113.
[http://dx.doi.org/10.1007/s12010-017-2642-x] [PMID: 29082480]
[50]
Xu, M.J.; Johnson, D.E.; Grandis, J.R. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev., 2017, 36(3), 463-473.
[http://dx.doi.org/10.1007/s10555-017-9687-8] [PMID: 28866730]
[51]
Xiang, L.; Bin, W.; Huali, J.; Wei, J.; Jiesheng, T.; Feng, G.; Ying, L. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J. Gene Med., 2007, 9(8), 679-690.
[http://dx.doi.org/10.1002/jgm.1068] [PMID: 17605136]
[52]
Liu, R.; Zhou, C.; Wang, D.; Ma, W.; Lin, C.; Wang, Y.; Liang, X.; Li, J.; Guo, S.; Wang, Y.; Zhang, Y.; Zhang, S. Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes. Cancer Biol. Ther., 2006, 5(4), 427-434.
[http://dx.doi.org/10.4161/cbt.5.4.2528] [PMID: 16575207]
[53]
Tang, Y-S.; Wang, D.; Zhou, C.; Ma, W.; Zhang, Y-Q.; Liu, B.; Zhang, S. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther., 2012, 19(12), 1187-1195.
[http://dx.doi.org/10.1038/gt.2011.197] [PMID: 22170341]
[54]
Kuzajewska, D.; Wszołek, A.; Żwierełło, W.; Kirczuk, L.; Maruszewska, A. Magnetotactic bacteria and magnetosomes as smart drug delivery systems: A new weapon on the battlefield with cancer? Biology, 2020, 9(5), 102.
[http://dx.doi.org/10.3390/biology9050102] [PMID: 32438567]
[55]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012]
[56]
Aljabali, A.A.A.; Sainsbury, F.; Lomonossoff, G.P.; Evans, D.J. Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small, 2010, 6(7), 818-821.
[http://dx.doi.org/10.1002/smll.200902135] [PMID: 20213652]
[57]
Sanz, B.; Calatayud, M.P.; De Biasi, E.; Lima, E., Jr; Mansilla, M.V.; Zysler, R.D.; Ibarra, M.R.; Goya, G.F. In silico before in vivo: How to predict the heating efficiency of magnetic nanoparticles within the intracellular space. Sci. Rep., 2016, 6(1), 38733.
[http://dx.doi.org/10.1038/srep38733] [PMID: 27924942]
[58]
Molcan, M.; Skumiel, A.; Timko, M.; Safarik, I.; Zolochevska, K.; Kopcansky, P. Tuning of magnetic hyperthermia response in the systems containing magnetosomes. Molecules, 2022, 27(17), 5605.
[http://dx.doi.org/10.3390/molecules27175605] [PMID: 36080372]
[59]
Usov, N.A.; Gubanova, E.M. Application of magnetosomes in magnetic hyperthermia. Nanomaterials, 2020, 10(7), 1320.
[http://dx.doi.org/10.3390/nano10071320] [PMID: 32635626]
[60]
Hergt, R.; Hiergeist, R.; Zeisberger, M.; Schüler, D.; Heyen, U.; Hilger, I.; Kaiser, W.A. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater., 2005, 293(1), 80-86.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.047]
[61]
Dieudonné, A.; Pignol, D.; Prévéral, S. Magnetosomes: Biogenic iron nanoparticles produced by environmental bacteria. Appl. Microbiol. Biotechnol., 2019, 103(9), 3637-3649.
[http://dx.doi.org/10.1007/s00253-019-09728-9] [PMID: 30903215]
[62]
Wu, F.; Liu, J. Decorated bacteria and the application in drug delivery. Adv. Drug Deliv. Rev., 2022, 188114443.
[http://dx.doi.org/10.1016/j.addr.2022.114443] [PMID: 35817214]
[63]
Liu, Y.; Li, G.R.; Guo, F.F.; Jiang, W.; Li, Y.; Li, L.J. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb. Cell Fact., 2010, 9(1), 99.
[http://dx.doi.org/10.1186/1475-2859-9-99] [PMID: 21144001]
[64]
Park, W.; Na, K. Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 494-508.
[http://dx.doi.org/10.1002/wnan.1325] [PMID: 25583540]
[65]
Pedziwiatr-Werbicka, E.; Horodecka, K.; Shcharbin, D.; Bryszewska, M. Nanoparticles in combating cancer: Opportunities and limitations: A brief review. Curr. Med. Chem., 2021, 28(2), 346-359.
[http://dx.doi.org/10.2174/1875533XMTA0kMDkhw] [PMID: 32000637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy