Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Graphical Abstract
[http://dx.doi.org/10.3390/md13010389] [PMID: 25603340]
[http://dx.doi.org/10.1128/MMBR.00021-13] [PMID: 24006473]
[http://dx.doi.org/10.1146/annurev.micro.62.081307.162908] [PMID: 19575557]
[http://dx.doi.org/10.1007/s00343-009-0006-2]
[http://dx.doi.org/10.1126/science.170679] [PMID: 170679]
[http://dx.doi.org/10.1111/1462-2920.12313] [PMID: 24148107]
[http://dx.doi.org/10.1038/s41522-022-00304-0] [PMID: 35650214]
[http://dx.doi.org/10.1002/jobm.201700383] [PMID: 29112284]
[http://dx.doi.org/10.1111/1462-2920.15516] [PMID: 33876543]
[http://dx.doi.org/10.1128/jb.141.3.1399-1408.1980] [PMID: 6245069]
[http://dx.doi.org/10.1007/s10123-021-00218-5] [PMID: 34738176]
[http://dx.doi.org/10.3389/fmicb.2018.02135] [PMID: 30271390]
[http://dx.doi.org/10.1128/msystems.01037-21] [PMID: 35076272]
[http://dx.doi.org/10.1128/mBio.00591-21] [PMID: 34006654]
[http://dx.doi.org/10.1007/s00359-022-01543-4] [PMID: 35194649]
[http://dx.doi.org/10.1002/jobm.201700052] [PMID: 28464298]
[http://dx.doi.org/10.1186/s12934-020-01455-5] [PMID: 33081818]
[http://dx.doi.org/10.1128/JB.00398-20] [PMID: 32817094]
[http://dx.doi.org/10.1128/AEM.03860-15] [PMID: 26969709]
[http://dx.doi.org/10.1016/j.micres.2012.04.002] [PMID: 22579104]
[http://dx.doi.org/10.1039/C7NR08493E] [PMID: 29557439]
[http://dx.doi.org/10.1002/pro.2827] [PMID: 26457474]
[http://dx.doi.org/10.3390/molecules23102438] [PMID: 30249983]
[http://dx.doi.org/10.1016/j.yjsbx.2021.100052] [PMID: 34723168]
[http://dx.doi.org/10.1016/j.semcdb.2015.09.003] [PMID: 26382301]
[http://dx.doi.org/10.3109/07388551.2015.1046810]
[http://dx.doi.org/10.3390/microorganisms8030409] [PMID: 32183205]
[http://dx.doi.org/10.3390/ijms23105554] [PMID: 35628364]
[http://dx.doi.org/10.1073/pnas.2108655119] [PMID: 35012979]
[http://dx.doi.org/10.1111/1462-2920.15254] [PMID: 32985765]
[http://dx.doi.org/10.1002/anie.201408900] [PMID: 25851816]
[http://dx.doi.org/10.1371/journal.pgen.1008499] [PMID: 32053597]
[http://dx.doi.org/10.1007/s13205-017-0780-z]
[http://dx.doi.org/10.1371/journal.pone.0215657] [PMID: 31013301]
[http://dx.doi.org/10.1155/2011/469031]
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.026] [PMID: 28689117]
[http://dx.doi.org/10.1038/nrmicro842] [PMID: 15083157]
[http://dx.doi.org/10.1007/s13205-019-1940-0]
[http://dx.doi.org/10.1016/j.canlet.2007.08.018] [PMID: 17920762]
[http://dx.doi.org/10.1039/b808556k]
[PMID: 27274233]
[http://dx.doi.org/10.2217/nnm-2018-0296] [PMID: 31167626]
[http://dx.doi.org/10.7150/ntno.34601] [PMID: 31423412]
[http://dx.doi.org/10.3390/molecules22030499] [PMID: 28335578]
[http://dx.doi.org/10.1155/2017/6738484]
[http://dx.doi.org/10.2147/IJN.S76123] [PMID: 25733831]
[http://dx.doi.org/10.3390/ma9110889] [PMID: 28774010]
[http://dx.doi.org/10.1002/bab.1724] [PMID: 30600567]
[http://dx.doi.org/10.1007/s12010-017-2642-x] [PMID: 29082480]
[http://dx.doi.org/10.1007/s10555-017-9687-8] [PMID: 28866730]
[http://dx.doi.org/10.1002/jgm.1068] [PMID: 17605136]
[http://dx.doi.org/10.4161/cbt.5.4.2528] [PMID: 16575207]
[http://dx.doi.org/10.1038/gt.2011.197] [PMID: 22170341]
[http://dx.doi.org/10.3390/biology9050102] [PMID: 32438567]
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012]
[http://dx.doi.org/10.1002/smll.200902135] [PMID: 20213652]
[http://dx.doi.org/10.1038/srep38733] [PMID: 27924942]
[http://dx.doi.org/10.3390/molecules27175605] [PMID: 36080372]
[http://dx.doi.org/10.3390/nano10071320] [PMID: 32635626]
[http://dx.doi.org/10.1016/j.jmmm.2005.01.047]
[http://dx.doi.org/10.1007/s00253-019-09728-9] [PMID: 30903215]
[http://dx.doi.org/10.1016/j.addr.2022.114443] [PMID: 35817214]
[http://dx.doi.org/10.1186/1475-2859-9-99] [PMID: 21144001]
[http://dx.doi.org/10.1002/wnan.1325] [PMID: 25583540]
[http://dx.doi.org/10.2174/1875533XMTA0kMDkhw] [PMID: 32000637]