Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Ruthenium-catalyzed Olefin Metathesis in Water using Thermo-responsive Diblock Copolymer Micelles

Author(s): Noriyuki Suzuki*, Ken Watanabe, Chirika Takahashi, Yuko Takeoka and Masahiro Rikukawa

Volume 27, Issue 15, 2023

Published on: 04 October, 2023

Page: [1347 - 1356] Pages: 10

DOI: 10.2174/1385272827666230911115809

Price: $65

conference banner
Abstract

Ruthenium-catalyzed olefin metathesis reactions were conducted in water with thermoresponsive block copolymers forming micelles. The block copolymers were prepared by living radical polymerization and consisted of a thermo-responsive and hydrophilic segments. The former segment included poly(N-isopropylacrylamide) or poly(N,N-diethylacrylamide), and the latter poly(sodium 4-styrene sulfonate), poly(sodium 2-acrylamido-2-methylpropanesulfonate) or poly(ethylene glycol). Homometathesis, cross-metathesis and ring-closing metathesis reactions proceeded to afford the products in moderate to good yields. Extraction efficiency from the reaction mixture was also studied.

Graphical Abstract

[1]
Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci., 2021, 12(12), 4237-4266.
[http://dx.doi.org/10.1039/D0SC06000C] [PMID: 34163692]
[2]
Lipshutz, B.H.; Ghorai, S.; Cortes-Clerget, M. The hydrophobic effect applied to organic synthesis: recent synthetic chemistry “in water”. Chemistry, 2018, 24(26), 6672-6695.
[http://dx.doi.org/10.1002/chem.201705499] [PMID: 29465785]
[3]
Christoffel, F.; Ward, T.R. Palladium-catalyzed heck cross-coupling reactions in water: A comprehensive review. Catal. Lett., 2018, 148(2), 489-511.
[http://dx.doi.org/10.1007/s10562-017-2285-0]
[4]
Lipshutz, B.H.; Gallou, F.; Handa, S. Evolution of solvents in organic chemistry. ACS Sustain. Chem. Eng., 2016, 4(11), 5838-5849.
[http://dx.doi.org/10.1021/acssuschemeng.6b01810]
[5]
Lipshutz, B.H.; Ghorai, S. Transitioning organic synthesis from organic solvents to water. What’s your E Factor? Green Chem., 2014, 16(8), 3660-3679.
[http://dx.doi.org/10.1039/C4GC00503A] [PMID: 25170307]
[6]
Lipshutz, B.H.; Abela, A.R.; Bošković, Ž.V.; Nishikata, T.; Duplais, C.; Krasovskiy, A. “Greening up” cross-coupling chemistry. Top. Catal., 2010, 53(15-18), 985-990.
[http://dx.doi.org/10.1007/s11244-010-9537-1]
[7]
Kitanosono, T.; Kobayashi, S. Reactions in water involving the “on‐water” mechanism. Chemistry, 2020, 26(43), 9408-9429.
[http://dx.doi.org/10.1002/chem.201905482] [PMID: 32058632]
[8]
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev., 2018, 118(2), 679-746.
[http://dx.doi.org/10.1021/acs.chemrev.7b00417] [PMID: 29218984]
[9]
Guo, W.; Liu, X.; Liu, Y.; Li, C. Chiral catalysis at the water/oil interface. ACS Catal., 2018, 8(1), 328-341.
[http://dx.doi.org/10.1021/acscatal.7b02118]
[10]
Uozumi, Y. Heterogeneous asymmetric catalysis in water with amphiphilic polymer-supported homochiral palladium complexes. Bull. Chem. Soc. Jpn., 2008, 81(10), 1183-1195.
[http://dx.doi.org/10.1246/bcsj.81.1183]
[11]
Pang, H.; Hu, Y.; Yu, J.; Gallou, F.; Lipshutz, B.H. Water-sculpting of a heterogeneous nanoparticle precatalyst for mizoroki–heck couplings under aqueous micellar catalysis conditions. J. Am. Chem. Soc., 2021, 143(9), 3373-3382.
[http://dx.doi.org/10.1021/jacs.0c11484] [PMID: 33630579]
[12]
Lamblin, M.; Nassar-Hardy, L.; Hierso, J.C.; Fouquet, E.; Felpin, F.X. Recyclable heterogeneous palladium catalysts in pure water: sustainable developments in suzuki, heck, sonogashira and tsuji-trost reactions. Adv. Synth. Catal., 2010, 352(1), 33-79.
[http://dx.doi.org/10.1002/adsc.200900765]
[13]
Ansari, T.N.; Gallou, F.; Handa, S. Palladium-catalyzed micellar cross-couplings: An outlook. Coord. Chem. Rev., 2023, 488, 215158.
[http://dx.doi.org/10.1016/j.ccr.2023.215158]
[14]
Wu, S.; Zhang, S.; Yang, X.; Liu, X.; Ge, X. Micelle-derived palladium nanoparticles for suzuki–miyaura coupling reactions in water at room temperature. ACS Appl. Nano Mater., 2023, 6(3), 1592-1602.
[http://dx.doi.org/10.1021/acsanm.2c04378]
[15]
Sorhie, V. Alemtoshi; Gogoi, B.; Walling, B.; Acharjee, S.A.; Bharali, P. Role of micellar nanoreactors in organic chemistry: Green and synthetic surfactant review. Sustain. Chem. Pharm., 2022, 30, 100875.
[http://dx.doi.org/10.1016/j.scp.2022.100875]
[16]
Borrego, E.; Caballero, A.; Pérez, P.J. Micellar catalysis as a tool for c–h bond functionalization toward C–C bond formation. Organometallics, 2022, 41(22), 3084-3098.
[http://dx.doi.org/10.1021/acs.organomet.2c00309]
[17]
Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci., 2021, 115, 100702.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100702]
[18]
Yu, Y.; Cheng, Y.; Tong, J.; Zhang, L.; Wei, Y.; Tian, M. Recent advances in thermo-sensitive hydrogels for drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(13), 2979-2992.
[http://dx.doi.org/10.1039/D0TB02877K] [PMID: 33885662]
[19]
Nagase, K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv. Colloid Interface Sci., 2021, 295, 102487.
[http://dx.doi.org/10.1016/j.cis.2021.102487] [PMID: 34314989]
[20]
Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(3), 1215-1242.
[http://dx.doi.org/10.3390/polym3031215]
[21]
Kobayashi, J.; Okano, T. Design of temperature-responsive polymer-grafted surfaces for cell sheet preparation and manipulation. Bull. Chem. Soc. Jpn., 2019, 92(4), 817-824.
[http://dx.doi.org/10.1246/bcsj.20180378]
[22]
He, W.; Ma, Y.; Gao, X.; Wang, X.; Dai, X.; Song, J. Application of poly(n-isopropylacrylamide) as thermosensitive smart materials. J. Phys. Conf. Ser., 2020, 1676(1), 012063.
[http://dx.doi.org/10.1088/1742-6596/1676/1/012063]
[23]
Harun-ur-Rashid, M.; Seki, T.; Takeoka, Y. Structural colored gels for tunable soft photonic crystals. Chem. Rec., 2009, 9(2), 87-105.
[http://dx.doi.org/10.1002/tcr.20169] [PMID: 19306332]
[24]
Hellweg, T. Responsive core-shell microgels: Synthesis, characterization, and possible applications. J. Polym. Sci., B, Polym. Phys., 2013, 51(14), 1073-1083.
[http://dx.doi.org/10.1002/polb.23294]
[25]
Hertle, Y.; Hellweg, T. Thermoresponsive copolymer microgels. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(43), 5874-5885.
[http://dx.doi.org/10.1039/c3tb21143f] [PMID: 32261054]
[26]
Klouda, L. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 338-349.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.017] [PMID: 26614556]
[27]
Ichijo, H. Thermo-responsive polymer gels. Macromolecular Science and Engineering; Tanabe, Y., Ed.; Springer, 1999, pp. 71-83.
[http://dx.doi.org/10.1007/978-3-642-58559-3_7]
[28]
Luo, G.F.; Chen, W.H.; Zhang, X.Z. 100th anniversary of macromolecular science viewpoint: Poly(N-isopropylacrylamide)-based thermally responsive micelles. ACS Macro Lett., 2020, 9(6), 872-881.
[http://dx.doi.org/10.1021/acsmacrolett.0c00342] [PMID: 35648534]
[29]
Agrawal, R.D.; Tatode, A.A.; Rarokar, N.R.; Umekar, M.J. Polymeric micelle as a nanocarrier for delivery of therapeutic agents: A comprehensive review. J. Drug Deliv. Ther., 2020, 10(1-s), 191-195.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3850]
[30]
Nakayama, M.; Okano, T. Intelligent thermoresponsive polymeric micelles for targeted drug delivery. J. Drug Deliv. Sci. Technol., 2006, 16(1), 35-44.
[http://dx.doi.org/10.1016/S1773-2247(06)50005-X]
[31]
Chung, J.E.; Yokoyama, M.; Suzuki, K.; Aoyagi, T.; Sakurai, Y.; Okano, T. Reversibly thermo-responsive alkyl-terminated poly(N-isopropylacrylamide) core-shell micellar structures. Colloids Surf. B Biointerfaces, 1997, 9(1-2), 37-48.
[http://dx.doi.org/10.1016/S0927-7765(97)00015-5]
[32]
Winnik, F.M.; Adronov, A.; Kitano, H. Pyrene-labeled amphiphilic poly-(N-isopropylacrylamides) prepared by using a lipophilic radical initiator: synthesis, solution properties in water, and interactions with liposomes. Can. J. Chem., 1995, 73(11), 2030-2040.
[http://dx.doi.org/10.1139/v95-251]
[33]
Suzuki, N.; Koyama, S.; Koike, R.; Ebara, N.; Arai, R.; Takeoka, Y.; Rikukawa, M.; Tsai, F.Y. Palladium-catalyzed mizoroki–heck and copper-free sonogashira coupling reactions in water using thermoresponsive polymer micelles. Polymers, 2021, 13(16), 2717.
[http://dx.doi.org/10.3390/polym13162717] [PMID: 34451255]
[34]
Suzuki, N.; Mizuno, D.; Guidote, A.M.; Koyama, S.; Masuyama, Y.; Rikukawa, M. Asymmetric reactions in water catalyzed by l-proline tethered on thermoresponsive ionic copolymers. Lett. Org. Chem., 2020, 17(9), 717-725.
[http://dx.doi.org/10.2174/1570178616666190819141307]
[35]
Suzuki, N.; Takabe, T.; Yamauchi, Y.; Koyama, S.; Koike, R.; Rikukawa, M.; Liao, W.T.; Peng, W.S.; Tsai, F.Y. Palladium-catalyzed mizoroki-heck reactions in water using thermoresponsive polymer micelles. Tetrahedron, 2019, 75(10), 1351-1358.
[http://dx.doi.org/10.1016/j.tet.2019.01.047]
[36]
Suzuki, N.; Akebi, R.; Inoue, T.; Rikukawa, M.; Masuyama, Y. Asymmetric aldol and michael reactions in water using organocatalysts immobilized on a thermoresponsive “linear” block copolymer. Curr. Organocatal., 2016, 3(3), 306-314.
[http://dx.doi.org/10.2174/2213337203666160304194141]
[37]
Suzuki, N.; Inoue, T.; Asada, T.; Akebi, R.; Kobayashi, G.; Rikukawa, M.; Masuyama, Y.; Ogasawara, M.; Takahashi, T.; Thang, S.H. Asymmetric aldol reaction on water using an organocatalyst tethered on a thermoresponsive block copolymer. Chem. Lett., 2013, 42(12), 1493-1495.
[http://dx.doi.org/10.1246/cl.130711]
[38]
Zayas, H.A.; Lu, A.; Valade, D.; Amir, F.; Jia, Z.; O’Reilly, R.K.; Monteiro, M.J. Thermoresponsive Polymer-supported L-proline micelle catalysts for the direct asymmetric aldol reaction in water. ACS Macro Lett., 2013, 2(4), 327-331.
[http://dx.doi.org/10.1021/mz4000943] [PMID: 35581760]
[39]
Wang, Z.M.; Li, M.H.; Feng, L.; Zhou, H.Y.; Wang, J.X. Construction of reversible nano reactor by thermo-responsive polymeric surfactant: Its application in chloro-methylation of naphthalene. J. Environ. Chem. Eng., 2019, 7(2), 103034.
[http://dx.doi.org/10.1016/j.jece.2019.103034]
[40]
Chen, Z.; Liang, Y.; Jia, D.S.; Cui, Z.M.; Song, W.G. Simple synthesis of sub-nanometer Pd clusters: High catalytic activity of Pd/PEG-PNIPAM in Suzuki reaction. Chin. J. Catal., 2017, 38(4), 651-657.
[http://dx.doi.org/10.1016/S1872-2067(17)62797-9]
[41]
Dolya, N.A.; Kudaibergenov, S.E. Catalysis by thermoresponsive polymers.Temperature-Responsive Polymers: Chemistry, Properties, and Applications; Khutoryanskiy, V.V; Georgiou, T.K., Ed.; John Wiley & Sons: Hoboken, 2018, pp. 357-377.
[http://dx.doi.org/10.1002/9781119157830.ch15]
[42]
Li, T.; Wang, W.; Wang, S.; Liu, L.; Chang, W.; Li, J. Thermo‐responsive block copolymer micelle‐supported (S)‐α, α‐diphenylprolinol trimethylsilyl ether for asymmetric Michael addition of nitroalkenes and aldehydes in water. J. Appl. Polym. Sci., 2021, 138(7), 49831.
[http://dx.doi.org/10.1002/app.49831]
[43]
Trnka, T.M.; Grubbs, R.H. The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story. Acc. Chem. Res., 2001, 34(1), 18-29.
[http://dx.doi.org/10.1021/ar000114f] [PMID: 11170353]
[44]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[45]
Nguyen, S.T.; Grubbs, R.H.; Ziller, J.W. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc., 1993, 115(21), 9858-9859.
[http://dx.doi.org/10.1021/ja00074a086]
[46]
Schrock, R.R.; Hoveyda, A.H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int., Ed. Engl., 2003, 42(38), 4592-4633.
[http://dx.doi.org/10.1002/anie.200300576]
[47]
Schrock, R.R.; Murdzek, J.S.; Bazan, G.C.; Robbins, J.; DiMare, M.; O’Regan, M. Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins. J. Am. Chem. Soc., 1990, 112(10), 3875-3886.
[http://dx.doi.org/10.1021/ja00166a023]
[48]
Laville, L.; Charnay, C.; Lamaty, F.; Martinez, J.; Colacino, E. Ring-closing metathesis in aqueous micellar medium. Chemistry, 2012, 18(3), 760-764.
[http://dx.doi.org/10.1002/chem.201101985] [PMID: 22161970]
[49]
Lipshutz, B.H.; Ghorai, S.; Aguinaldo, G.T. Ring-closing metathesis at room temperature within nanometer micelles using water as the only solvent. Adv. Synth. Catal., 2008, 350(7-8), 953-956.
[http://dx.doi.org/10.1002/adsc.200800114]
[50]
Lipshutz, B.H.; Ghorai, S.; Abela, A.R.; Moser, R.; Nishikata, T.; Duplais, C.; Krasovskiy, A.; Gaston, R.D.; Gadwood, R.C. TPGS-750-M: A second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem., 2011, 76(11), 4379-4391.
[http://dx.doi.org/10.1021/jo101974u] [PMID: 21548658]
[51]
Lipshutz, B.H.; Ghorai, S.; Leong, W.W.Y.; Taft, B.R.; Krogstad, D.V. Manipulating micellar environments for enhancing transition metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem., 2011, 76(12), 5061-5073.
[http://dx.doi.org/10.1021/jo200746y] [PMID: 21539384]
[52]
Davis, K.J.; Sinou, D. Ring closing metathesis in water with or without surfactants in the presence of RuCl2(PPh3)2(CHPh). J. Mol. Catal. Chem., 2002, 177(2), 173-178.
[http://dx.doi.org/10.1016/S1381-1169(01)00239-4]
[53]
Brendgen, T.; Fahlbusch, T.; Frank, M.; Schühle, D.T.; Seßler, M.; Schatz, J. Metathesis in pure water mediated by supramolecular additives. Adv. Synth. Catal., 2009, 351(3), 303-307.
[http://dx.doi.org/10.1002/adsc.200800637]
[54]
Jordan, J.P.; Grubbs, R.H. Small-molecule N-heterocyclic-carbenecontaining olefin-metathesis catalysts for use in water. Angew. Chem. Int., Ed. Engl., 2007, 46, 5152-5155.
[http://dx.doi.org/10.1002/anie.200701258]
[55]
Gawin, R.; Czarnecka, P.; Grela, K. Ruthenium catalysts bearing chelating carboxylate ligands: Application to metathesis reactions in water. Tetrahedron, 2010, 66(5), 1051-1056.
[http://dx.doi.org/10.1016/j.tet.2009.11.009]
[56]
Lipshutz, B.H.; Aguinaldo, G.T.; Ghorai, S.; Voigtritter, K. Olefin cross-metathesis reactions at room temperature using the nonionic amphiphile “PTS”: Just add water. Org. Lett., 2008, 10(7), 1325-1328.
[http://dx.doi.org/10.1021/ol800028x] [PMID: 18335947]
[57]
Tomasek, J.; Seßler, M.; Gröger, H.; Schatz, J. Olefin metathesis reaction in water and in air improved by supramolecular additives. Molecules, 2015, 20(10), 19130-19141.
[http://dx.doi.org/10.3390/molecules201019130] [PMID: 26506329]
[58]
Sauer, D.F.; Himiyama, T.; Tachikawa, K.; Fukumoto, K.; Onoda, A.; Mizohata, E.; Inoue, T.; Bocola, M.; Schwaneberg, U.; Hayashi, T.; Okuda, J. A highly active biohybrid catalyst for olefin metathesis in water: Impact of a hydrophobic cavity in a β-barrel protein. ACS Catal., 2015, 5(12), 7519-7522.
[http://dx.doi.org/10.1021/acscatal.5b01792]
[59]
Wang, Z.J.; Jackson, W.R.; Robinson, A.J. A simple and practical preparation of an efficient water soluble olefin metathesis catalyst. Green Chem., 2015, 17(6), 3407-3414.
[http://dx.doi.org/10.1039/C5GC00252D]
[60]
Ornelas, C.; Méry, D.; Cloutet, E.; Aranzaes, J.R.; Astruc, D. Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction. J. Am. Chem. Soc., 2008, 130(4), 1495-1506.
[http://dx.doi.org/10.1021/ja077392v] [PMID: 18177046]
[61]
Skowerski, K.; Szczepaniak, G.; Wierzbicka, C.; Gułajski, Ł.; Bieniek, M.; Grela, K. Highly active catalysts for olefin metathesis in water. Catal. Sci. Technol., 2012, 2(12), 2424-2427.
[http://dx.doi.org/10.1039/c2cy20320k]
[62]
Binder, J.B.; Blank, J.J.; Raines, R.T. Olefin metathesis in homogeneous aqueous media catalyzed by conventional ruthenium catalysts. Org. Lett., 2007, 9(23), 4885-4888.
[http://dx.doi.org/10.1021/ol7022505] [PMID: 17949009]
[63]
Gułajski, Ł.; Śledź, P.; Lupa, A.; Grela, K. Olefin metathesis in water using acoustic emulsification. Green Chem., 2008, 10(3), 271-274.
[http://dx.doi.org/10.1039/b719493e]
[64]
Tomasek, J.; Schatz, J. Olefin metathesis in aqueous media. Green Chem., 2013, 15(9), 2317-2338.
[http://dx.doi.org/10.1039/c3gc41042k]
[65]
Lipshutz, B.H.; Ghorai, S. Olefin metathesis in water and aqueous media.Olefin Metathesis: Theory and Practice; Grela, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2014, pp. 515-521.
[http://dx.doi.org/10.1002/9781118711613.ch21]
[66]
Buchmeiser, M.R. Polymer-supported well-defined metathesis catalysts. Chem. Rev., 2009, 109(2), 303-321.
[http://dx.doi.org/10.1021/cr800207n] [PMID: 18980343]
[67]
Burtscher, D.; Grela, K. Aqueous olefin metathesis. Angew. Chem. Int., Ed. Engl.,, 2009, 48, 442-454.
[http://dx.doi.org/10.1002/anie.200801451]
[68]
Sabatino, V.; Ward, T.R. Aqueous olefin metathesis: Recent developments and applications. Beilstein J. Org. Chem., 2019, 15, 445-468.
[http://dx.doi.org/10.3762/bjoc.15.39] [PMID: 30873229]
[69]
Grela, K.; Gułajski, Ł.; Skowerski, K. Alkene metathesis in water. Metal‐Catalyzed Reactions in Water; Wiley Online Library, 2013, pp. 291-336.
[http://dx.doi.org/10.1002/9783527656790.ch8]
[70]
Öztürk, B.Ö.; Durmuş, B.; Karabulut Şehitoğlu, S. Olefin metathesis in air using latent ruthenium catalysts: Imidazole substituted amphiphilic hydrogenated ROMP polymers providing nano-sized reaction spaces in water. Catal. Sci. Technol., 2018, 8(22), 5807-5815.
[http://dx.doi.org/10.1039/C8CY01818A]
[71]
Kim, C.; Ondrusek, B.A.; Chung, H. Removable water-soluble olefin metathesis catalyst via host–guest interaction. Org. Lett., 2018, 20(3), 736-739.
[http://dx.doi.org/10.1021/acs.orglett.7b03871] [PMID: 29350047]
[72]
Kim, C.; Chung, H. Oligo(ethylene glycol) length effect of water-soluble ru-based olefin metathesis catalysts on reactivity and removability. J. Org. Chem., 2018, 83(17), 9787-9794.
[http://dx.doi.org/10.1021/acs.joc.8b01312] [PMID: 30092137]
[73]
Malinowska, M.; Kozlowska, M.; Hryniewicka, A.; Morzycki, J.W. New olefin metathesis catalyst bearing N-mesitylimidazole and nitrate ligands: Synthesis, activity, and performance in aqueous media. J. Organomet. Chem., 2019, 896, 154-161.
[http://dx.doi.org/10.1016/j.jorganchem.2019.06.018]
[74]
Nagyházi, M.; Turczel, G.; Balla, Á.; Szálas, G.; Tóth, I.; Gál, G.T.; Petra, B.; Anastas, P.T.; Tuba, R. Towards sustainable catalysis: Highly efficient olefin metathesis in protic media using phase labelled cyclic alkyl amino carbene (CAAC) ruthenium catalysts. ChemCatChem, 2020, 12(7), 1953-1957.
[http://dx.doi.org/10.1002/cctc.201902258]
[75]
Tunalı, Z.; Sagdic, K.; Inci, F.; Öztürk, B.Ö. Encapsulation of the hoveyda–grubbs 2nd generation catalyst in magnetically separable alginate/mesoporous carbon beads for olefin metathesis reactions in water. React. Chem. Eng., 2022, 7(7), 1617-1625.
[http://dx.doi.org/10.1039/D2RE00058J]
[76]
Patrzałek, M.; Zieliński, A.; Pasparakis, G.; Vamvakaki, M.; Ruszczyńska, A.; Bulska, E.; Kajetanowicz, A.; Grela, K. Testing diverse strategies for ruthenium catalyst removal after aqueous homogeneous olefin metathesis. J. Organomet. Chem., 2022, 965-966, 122320.
[http://dx.doi.org/10.1016/j.jorganchem.2022.122320]
[77]
Blanco, C.O.; Fogg, D.E. Water-accelerated decomposition of olefin metathesis catalysts. ACS Catal., 2023, 13(2), 1097-1102.
[http://dx.doi.org/10.1021/acscatal.2c05573] [PMID: 36714054]
[78]
James, C.C.; Laan, P.C.M.; de Bruin, B.; Reek, J.N.H. Kinetic protection of a water‐soluble olefin metathesis catalyst for potential use under biological conditions. ChemCatChem, 2023, 15(7), e202201272.
[http://dx.doi.org/10.1002/cctc.202201272]
[79]
Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and recyclable monomeric and dendritic ru-based metathesis catalysts. J. Am. Chem. Soc., 2000, 122(34), 8168-8179.
[http://dx.doi.org/10.1021/ja001179g]
[80]
Grela, K.; Harutyunyan, S.; Michrowska, A. A highly efficient ruthenium catalyst for metathesis reactions. Angew. Chem. Int. Ed., 2002, 41(21), 4038-4040.
[http://dx.doi.org/10.1002/1521-3773(20021104)41:21<4038:AID-ANIE4038>3.0.CO;2-0] [PMID: 12412074]
[81]
Lynn, D.M.; Dias, E.L.; Grubbs, R.H.; Mohr, B. Acid activation of ruthenium metathesis catalysts and living ROMP metathesis polymerization in water. WO Patent 9922865 A1 (US6486279B2),, 2002.
[82]
Blanco, C.O.; Sims, J.; Nascimento, D.L.; Goudreault, A.Y.; Steinmann, S.N.; Michel, C.; Fogg, D.E. The Impact of water on ru-catalyzed olefin metathesis: Potent deactivating effects even at low water concentrations. ACS Catal., 2021, 11(2), 893-899.
[http://dx.doi.org/10.1021/acscatal.0c04279] [PMID: 33614193]
[83]
Chatterjee, A.K.; Choi, T.L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125(37), 11360-11370.
[http://dx.doi.org/10.1021/ja0214882] [PMID: 16220959]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy